1
|
Singh N, Poggensee L, Huang Y, Evans CT, Suda KJ, Bulman ZP. Antibiotic susceptibility patterns of viridans group streptococci isolates in the United States from 2010 to 2020. JAC Antimicrob Resist 2022; 4:dlac049. [PMID: 35599725 PMCID: PMC9117386 DOI: 10.1093/jacamr/dlac049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Viridans group streptococci (VGS) are typically part of the commensal flora but can also cause severe invasive diseases such as infective endocarditis. There are limited data available showing antibiotic susceptibility over time for VGS. Objectives To evaluate antibiotic susceptibility trends in VGS over time. Methods In vitro susceptibility patterns for 33 antibiotics were examined for Streptococcus mitis, Streptococcus oralis, and non-speciated VGS isolates from patients in Veterans Affairs (VA) Medical Centers in the United States between 2010 and 2020. Susceptibility determinations were made by the individual clinical microbiology laboratories and data were retrospectively collected from the VA Corporate Data Warehouse. Susceptibility trends were analysed using Poisson regression. Results A total of 14 981 VGS isolates were included of which 19.5%, 0.7% and 79.8% were S. mitis, S. oralis and non-speciated VGS isolates, respectively. Cumulative susceptibility rates across all years were similar between species for ceftriaxone (range: 96.0% to 100%), clindamycin (81.3% to 84.5%), and vancomycin (99.7% to 100%). For penicillin, susceptibility rates were 71.0%, 80.9% and 86.3% for S. mitis, S. oralis and non-speciated isolates, respectively. From 2010 to 2020, susceptibility of non-speciated VGS isolates decreased for erythromycin (P = 0.0674), penicillin (P = 0.0835), and tetracycline (P = 0.0994); though the decrease was only significant for clindamycin (P = 0.0033). For S. mitis, a significant susceptibility rate decrease was observed for erythromycin (P = 0.0112). Conclusions Susceptibility rates for some clinically relevant antibiotics declined between 2010 and 2020. This worrisome trend highlights the need to improve antimicrobial stewardship efforts to limit unnecessary antibiotic use and preserve empirical treatment options.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Linda Poggensee
- Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr VA Hospital, Hines, IL, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Charlesnika T. Evans
- Center for Healthcare Studies and Department of Preventive Medicine Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, U.S. Department of Veterans Affairs, Pittsburgh, PA, USA
| | - Katie J. Suda
- Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, U.S. Department of Veterans Affairs, Pittsburgh, PA, USA,Division of General Internal Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zackery P. Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA,Corresponding author. E-mail:
| |
Collapse
|
2
|
Henares D, Rocafort M, Brotons P, de Sevilla MF, Mira A, Launes C, Cabrera-Rubio R, Muñoz-Almagro C. Rapid Increase of Oral Bacteria in Nasopharyngeal Microbiota After Antibiotic Treatment in Children With Invasive Pneumococcal Disease. Front Cell Infect Microbiol 2021; 11:744727. [PMID: 34712623 PMCID: PMC8546175 DOI: 10.3389/fcimb.2021.744727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction Antibiotics are commonly prescribed to young children for treating bacterial infections such as invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae. Despite the obvious benefits of antibiotics, little is known about their possible side effects on children’s nasopharyngeal microbiota. In other ecological niches, antibiotics have been described to perturb the balanced microbiota with short- and long-term effects on children’s health. The present study aims to evaluate and compare the nasopharyngeal microbiota of children with IPD and different degree of antibiotic exposure. Methods We investigated differences in nasopharyngeal microbiota of two groups of children <18 years with IPD: children not exposed to antibiotics before sample collection (n=27) compared to children previously exposed (n=54). Epidemiological/clinical data were collected from subjects, and microbiota was characterized by Illumina sequencing of V3-V4 amplicons of the 16S rRNA gene. Results Main epidemiological/clinical factors were similar across groups. Antibiotic-exposed patients were treated during a median of 4 days (IQR: 3–6) with at least one beta-lactam (100.0%). Higher bacterial richness and diversity were found in the group exposed to antibiotics. Different streptococcal amplicon sequence variants (ASVs) were differentially abundant across groups: antibiotic use was associated to lower relative abundances of Streptococcus ASV2 and Streptococcus ASV11 (phylogenetically close to S. pneumoniae), and higher relative abundances of Streptococcus ASV3 and Streptococcus ASV12 (phylogenetically close to viridans group streptococci). ASVs assigned to typical bacteria from the oral cavity, including Veillonella, Alloprevotella, Porphyromonas, Granulicatella, or Capnocytophaga, were associated to the antibiotic-exposed group. Common nosocomial genera such as Staphylococcus, Acinetobacter, and Pseudomonas were also enriched in the group exposed to antibiotics. Conclusion Our results point toward a reduction of S. pneumoniae abundance on the nasopharynx of children with IPD after antibiotic treatment and a short-term repopulation of this altered niche by oral and nosocomial bacteria. Future research studies will have to evaluate the clinical implications of these findings and if these populations would benefit from the probiotic/prebiotic administration or even from the improvement on oral hygiene practices frequently neglected among hospitalized children.
Collapse
Affiliation(s)
- Desiree Henares
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Muntsa Rocafort
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariona F de Sevilla
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Department, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Alex Mira
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Department of Health and Genomics, Center for Advanced Research in Public Health, Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Cristian Launes
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Department, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre (TEAGASC), Moorepark, Fermoy, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|