1
|
Coulombe PA, Pineda CM, Jacob JT, Nair RR. Nuclear roles for non-lamin intermediate filament proteins. Curr Opin Cell Biol 2024; 86:102303. [PMID: 38113712 PMCID: PMC11056187 DOI: 10.1016/j.ceb.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
The nuclear-localized lamins have long been thought to be the only intermediate filaments (IFs) with an impact on the architecture, properties, and functions of the nucleus. Recent studies, however, uncovered significant roles for IFs other than lamins (here referred to as "non-lamin IFs") in regulating key properties of the nucleus in various cell types and biological settings. In the cytoplasm, IFs often occur in the perinuclear space where they contribute to local stiffness and impact the shape and/or the integrity of the nucleus, particularly in cells under stress. In addition, selective non-lamin IF proteins can occur inside the nucleus where they partake in fundamental processes including nuclear architecture and chromatin organization, regulation of gene expression, cell cycle progression, and the repair of DNA damage. This text reviews the evidence supporting a role for non-lamin IF proteins in regulating various properties of the nucleus and highlights opportunities for further study.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin T Jacob
- Public Health Laboratory Division, District of Columbia Department of Forensic Sciences, Washington, DC 20024, USA
| | - Raji R Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Tenhami M, Polari L, Kujari H, Löyttyniemi E, Toivola DM, Voutilainen M. Keratin 7 expression in different anatomical parts of colonic epithelium in inflammatory bowel diseases and its prognostic value: a 3-year follow-up study. Sci Rep 2023; 13:11979. [PMID: 37488244 PMCID: PMC10366087 DOI: 10.1038/s41598-023-39066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
The diagnosis of inflammatory bowel diseases (IBD) may be challenging and their clinical course, characterized by relapses and spontaneous or drug-induced remissions, is difficult to predict. Novel prognostic biomarkers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein which is not normally expressed in the colonic epithelium. It was recently shown that K7 expression in the colonic epithelium is associated with ulcerative colitis and Crohn's disease, the two main subtypes of IBD. Here we investigated IBD associated K7 neo-expression in different regions of colon and terminal ileum. The correlation of the K7 expression with the inflammatory activity of the epithelium was analyzed in each region. The prognostic value of K7 was estimated by comparing the clinical disease activity after 3 years with the K7 expression at the time of enrollment. Our data shows that the level of K7 expression in inflamed epithelium varies depending on the anatomical region and it is the most pronounced in ascending and descending colon, but it did not predict the severity of IBD for the following 3 years. These results warrant future studies focusing on the biological role of K7 in colon and its utilization as potential IBD biomarker.
Collapse
Affiliation(s)
- Mervi Tenhami
- Division of Digestive Surgery, Turku University Hospital and University of Turku, P.O. Box 52, 20521, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences, Åbo Akademi University, Turku, Finland
- InFlames Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Harry Kujari
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Åbo Akademi University, Turku, Finland
- InFlames Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Markku Voutilainen
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Colonocyte keratin 7 is expressed de novo in inflammatory bowel diseases and associated with pathological changes and drug-resistance. Sci Rep 2022; 12:22213. [PMID: 36564440 PMCID: PMC9789078 DOI: 10.1038/s41598-022-26603-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The clinical course of IBD, characterized by relapses and remissions, is difficult to predict. Initial diagnosis can be challenging, and novel disease markers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein not expressed in the colonic epithelium but has been reported in IBD-associated colorectal tumors. Our aim was to analyze whether K7 is expressed in chronic colonic inflammatory diseases and evaluate its potential as a novel biomarker. K7 was analyzed in two patient cohorts using immunohistochemistry-stained colon samples and single-cell quantitative digital pathology methods. K7 was correlated to pathological changes and clinical patient characteristics. Our data shows that K7 is expressed de novo in the colonic epithelium of ulcerative colitis and Crohn's disease IBD patients, but not in collagenous or lymphocytic colitis. K7 mRNA expression was significantly increased in colons of IBD patients compared to controls when assessed in publicly available datasets. While K7 increased in areas with inflammatory activity, it was not expressed in specific crypt compartments and did not correlate with neutrophils or stool calprotectin. K7 was increased in areas proximal to pathological alterations and was most pronounced in drug-resistant ulcerative colitis. In conclusion, colonic epithelial K7 is neo-expressed selectively in IBD patients and could be investigated for its potential as a disease biomarker.
Collapse
|
4
|
The Adhesion G-Protein-Coupled Receptor GPR115/ADGRF4 Regulates Epidermal Differentiation and Associates with Cytoskeletal KRT1. Cells 2022; 11:cells11193151. [PMID: 36231117 PMCID: PMC9563031 DOI: 10.3390/cells11193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile, but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis, supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of epidermal differentiation and KRT1.
Collapse
|
5
|
Wang D, Deng L, Xu X, Ji Y, Jiao Z. Elevated SYNC Expression Is Associated with Gastric Tumorigenesis and Infiltration of M2-Polarized Macrophages in the Gastric Tumor Immune Microenvironment. Genet Test Mol Biomarkers 2021; 25:236-246. [PMID: 33734892 DOI: 10.1089/gtmb.2020.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: To assess the expression and epigenetic regulation of Syncoilin, intermediate filament protein (SYNC) in gastric cancer tissues, and to determine its associations with clinicopathological features; immune infiltration of macrophages in tumors; and patient survival. Materials and Methods: Clinicopathological features, expression profiles, and methylation data of the SYNC gene were obtained from multi-institutional real-world public datasets. A total of 1601 samples from patients with gastric cancer were examined. The associations between clinicopathological features and SYNC expression levels were assessed by the chi-square test; survival was assessed using the Kaplan-Meier analysis. The infiltration levels of M1, 2-polarized tumor-associated macrophages (TAMs) in a gastric tumor immune microenvironment were quantified using deconvolution, and the correlation between SYNC expression level and M1, 2-polarized macrophages' infiltration was examined using the Pearson correlation test. SYNC gene methylation data were analyzed to investigate epigenetic control of its expression. Results: SYNC expression was elevated in gastric cancer tissues (p < 0.01), and was associated with a poorer overall survival (p < 0.01) and poorer postprogression survival (p = 0.01). Higher SYNC levels were significantly associated with more aggressive clinicopathological features in gastric cancer patients (p < 0.05). SYNC was also associated with the infiltration of M2-polarized TAMs in the gastric tumor immune microenvironment (p < 0.001). Hypomethylation was shown to be associated with SYNC's upregulation (p < 0.05). Conclusion: SYNC is highly expressed in gastric cancer tissues and has the potential to be a therapeutic target and to serve as a prognostic marker.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacy, Center for Precision Cancer Medicine, Clinical Oncology Pharmacist Training Bases (National Health Commission), Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lihua Deng
- Department of Oncology, Center for Precision Cancer Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiaona Xu
- Department of Central Laboratories, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yinghui Ji
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zheng Jiao
- Department of Pharmacy, Center for Precision Cancer Medicine, Clinical Oncology Pharmacist Training Bases (National Health Commission), Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Sundaram MV. Intermediate filaments: New insights are bublin up. Curr Biol 2021; 31:R719-R721. [PMID: 34102119 DOI: 10.1016/j.cub.2021.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytoplasmic intermediate filaments affect cell shape and tissue integrity, and mutations in the proteins that make up these filaments contribute to many human diseases. A new study has identified a conserved protein, BBLN-1/bublin, that is important for intermediate filament organization.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Room 446a, Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
7
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
8
|
Jacob JT, Nair RR, Poll BG, Pineda CM, Hobbs RP, Matunis MJ, Coulombe PA. Keratin 17 regulates nuclear morphology and chromatin organization. J Cell Sci 2020; 133:jcs254094. [PMID: 33008845 PMCID: PMC7648610 DOI: 10.1242/jcs.254094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Keratin 17 (KRT17; K17), a non-lamin intermediate filament protein, was recently found to occur in the nucleus. We report here on K17-dependent differences in nuclear morphology, chromatin organization, and cell proliferation. Human tumor keratinocyte cell lines lacking K17 exhibit flatter nuclei relative to normal. Re-expression of wild-type K17, but not a mutant form lacking an intact nuclear localization signal (NLS), rescues nuclear morphology in KRT17-null cells. Analyses of primary cultures of skin keratinocytes from a mouse strain expressing K17 with a mutated NLS corroborated these findings. Proteomics screens identified K17-interacting nuclear proteins with known roles in gene expression, chromatin organization and RNA processing. Key histone modifications and LAP2β (an isoform encoded by TMPO) localization within the nucleus are altered in the absence of K17, correlating with decreased cell proliferation and suppression of GLI1 target genes. Nuclear K17 thus impacts nuclear morphology with an associated impact on chromatin organization, gene expression, and proliferation in epithelial cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Raji R Nair
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian G Poll
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christopher M Pineda
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan P Hobbs
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Geisler F, Coch RA, Richardson C, Goldberg M, Bevilacqua C, Prevedel R, Leube RE. Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function. Sci Rep 2020; 10:3142. [PMID: 32081918 PMCID: PMC7035338 DOI: 10.1038/s41598-020-59791-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The abundance and diversity of intermediate filaments (IFs) in the C. elegans intestine indicate important contributions to intestinal function and organismal wellbeing. Fluorescent IF reporters localize below the actin-rich brush border and are highly enriched in the lumen-enveloping endotube, which is attached to the C. elegans apical junction. Mapping intestinal viscoelasticity by contact-free Brillouin microscopy reveals that the IF-rich endotube is positioned at the interface between the stiff brush border and soft cytoplasm suggesting a mechanical buffering function to deal with the frequent luminal distortions occurring during food intake and movement. In accordance, depletion of IFB-2, IFC-2 and IFD-2 leads to intestinal lumen dilation although depletion of IFC-1, IFD-1 and IFP-1 do not. Ultrastructural analyses of loss of function mutants further show that IFC-2 mutants have a rarefied endotube and IFB-2 mutants lack an endotube altogether. Remarkably, almost all IFB-2- and IFC-2-deficient animals develop to fertile adults. But developmental retardation, reduced brood size, altered survival and increased sensitivity to microbial toxin, osmotic and oxidative stress are seen in both mutants albeit to different degrees. Taken together, we propose that individual intestinal IF polypeptides contribute in different ways to endotube morphogenesis and cooperate to cope with changing environments.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Cogné B, Bouameur JE, Hayot G, Latypova X, Pattabiraman S, Caillaud A, Si-Tayeb K, Besnard T, Küry S, Chariau C, Gaignerie A, David L, Bordure P, Kaganovich D, Bézieau S, Golzio C, Magin TM, Isidor B. A dominant vimentin variant causes a rare syndrome with premature aging. Eur J Hum Genet 2020; 28:1218-1230. [PMID: 32066935 PMCID: PMC7609319 DOI: 10.1038/s41431-020-0583-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Progeroid syndromes are a group of rare genetic disorders, which mimic natural aging. Unraveling the molecular defects in such conditions could impact our understanding of age-related syndromes such as Alzheimer’s or cardiovascular diseases. Here we report a de novo heterozygous missense variant in the intermediate filament vimentin (c.1160 T > C; p.(Leu387Pro)) causing a multisystem disorder associated with frontonasal dysostosis and premature aging in a 39-year-old individual. Human vimentin p.(Leu387Pro) expression in zebrafish perturbed body fat distribution, and craniofacial and peripheral nervous system development. In addition, studies in patient-derived and transfected cells revealed that the variant affects vimentin turnover and its ability to form filaments in the absence of wild-type vimentin. Vimentin p.(Leu387Pro) expression diminished the amount of peripilin and reduced lipid accumulation in differentiating adipocytes, recapitulating key patient’s features in vivo and in vitro. Our data highlight the function of vimentin during development and suggest its contribution to natural aging.
Collapse
Affiliation(s)
- Benjamin Cogné
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Jamal-Eddine Bouameur
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103, Leipzig, Germany
| | - Gaëlle Hayot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Xenia Latypova
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Sundararaghavan Pattabiraman
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Walweg 33, 37073, Göttingen, Germany
| | - Amandine Caillaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Karim Si-Tayeb
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Thomas Besnard
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Sébastien Küry
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Anne Gaignerie
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France.,Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000, Nantes, France
| | - Philippe Bordure
- Centre Hospitalier Universitaire de Nantes, Service Oto-rhino-laryngologie, 9 quai Moncousu, 44093, Nantes, France
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Walweg 33, 37073, Göttingen, Germany.,1 Base Pharmaceuticals, 9A Monument Square, #2A, Boston, MA, 02129, USA
| | - Stéphane Bézieau
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France.,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Christelle Golzio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Strasbourg, France.
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103, Leipzig, Germany.
| | - Bertrand Isidor
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, France. .,Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France.
| |
Collapse
|
11
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
12
|
Majumdar R, Steen K, Coulombe PA, Parent CA. Non-canonical processes that shape the cell migration landscape. Curr Opin Cell Biol 2019; 57:123-134. [PMID: 30852463 PMCID: PMC7087401 DOI: 10.1016/j.ceb.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Migration is a vital, intricate, and multi-faceted process that involves the entire cell, entails the integration of multiple external cues and, at times, necessitates high-level coordination among fields of cells that can be physically attached or not, depending on the physiological setting. Recent advances have highlighted the essential role of cellular components that have not been traditionally considered when studying cell migration. This review details how much we recently learned by studying the role of intermediate filaments, the nucleus, extracellular vesicles, and mitochondria during cell migration.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Favre B, Begré N, Bouameur JE, Lingasamy P, Conover GM, Fontao L, Borradori L. Desmoplakin interacts with the coil 1 of different types of intermediate filament proteins and displays high affinity for assembled intermediate filaments. PLoS One 2018; 13:e0205038. [PMID: 30286183 PMCID: PMC6171917 DOI: 10.1371/journal.pone.0205038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 12/04/2022] Open
Abstract
The interaction of intermediate filaments (IFs) with the cell-cell adhesion complexes desmosomes is crucial for cytoskeletal organization and cell resilience in the epidermis and heart. The intracellular desmosomal protein desmoplakin anchors IFs to the cell adhesion complexes predominantly via its four last carboxy-terminal domains (C-terminus). However, it remains unclear why the C-terminus of desmoplakin interacts with different IF types or if there are different binding affinities for each type of IFs that may influence the stability of cell-specific adhesion complexes. By yeast three-hybrid and fluorescence binding assays, we found that the coiled-coil 1 of the conserved central rod domain of the heterodimeric cytokeratins (Ks) 5 and 14 (K5/K14) was required for their interaction with the C-terminus of desmoplakin, while their unique amino head- and C-tail domains were dispensable. Similar findings were obtained in vitro with K1/K10, and the type III IF proteins desmin and vimentin. Binding assays testing the C-terminus of desmoplakin with assembled K5/K14 and desmin IFs yielded an apparent affinity in the nM range. Our findings reveal that the same conserved domain of IF proteins binds to the C-terminus of desmoplakin, which may help explain the previously reported broad binding IF-specificity to desmoplakin. Our data suggest that desmoplakin high-affinity binding to diverse IF proteins ensures robust linkages of IF cytoskeleton and desmosomes that maintain the structural integrity of cellular adhesion complexes. In summary, our results give new insights into the molecular basis of the IF-desmosome association.
Collapse
Affiliation(s)
- Bertrand Favre
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Nadja Begré
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jamal-Eddine Bouameur
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Prakash Lingasamy
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gloria M. Conover
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lionel Fontao
- Department of Dermatology, Geneva University Hospitals, Geneva, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
14
|
Pena J, Dulger N, Singh T, Zhou J, Majeska R, Redenti S, Vazquez M. Controlled microenvironments to evaluate chemotactic properties of cultured Müller glia. Exp Eye Res 2018; 173:129-137. [PMID: 29753729 DOI: 10.1016/j.exer.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Emerging therapies have begun to evaluate the abilities of Müller glial cells (MGCs) to protect and/or regenerate neurons following retina injury. The migration of donor cells is central to many reparative strategies, where cells must achieve appropriate positioning to facilitate localized repair. Although chemical cues have been implicated in the MGC migratory responses of numerous retinopathies, MGC-based therapies have yet to explore the extent to which external biochemical stimuli can direct MGC behavior. The current study uses a microfluidics-based assay to evaluate the migration of cultured rMC-1 cells (as model MGC) in response to quantitatively-controlled microenvironments of signaling factors implicated in retinal regeneration: basic Fibroblast Growth factor (bFGF or FGF2); Fibroblast Growth factor 8 (FGF8); Vascular Endothelial Growth Factor (VEGF); and Epidermal Growth Factor (EGF). Findings indicate that rMC-1 cells exhibited minimal motility in response to FGF2, FGF8 and VEGF, but highly-directional migration in response to EGF. Further, the responses were blocked by inhibitors of EGF-R and of the MAPK signaling pathway. Significantly, microfluidics data demonstrate that changes in the EGF gradient (i.e. change in EGF concentration over distance) resulted in the directional chemotactic migration of the cells. By contrast, small increases in EGF concentration, alone, resulted in non-directional cell motility, or chemokinesis. This microfluidics-enhanced approach, incorporating the ability both to modulate and asses the responses of motile donor cells to a range of potential chemotactic stimuli, can be applied to potential donor cell populations obtained directly from human specimens, and readily expanded to incorporate drug-eluting biomaterials and combinations of desired ligands.
Collapse
Affiliation(s)
- Juan Pena
- The City College of New York, Department of Biomedical Engineering, 160 Convent Ave., Steinman Hall ST-403D, New York, NY, 10031, USA
| | - Nihan Dulger
- The City College of New York, Department of Biomedical Engineering, 160 Convent Ave., Steinman Hall ST-403D, New York, NY, 10031, USA
| | - Tanya Singh
- The City College of New York, Department of Biomedical Engineering, 160 Convent Ave., Steinman Hall ST-403D, New York, NY, 10031, USA
| | - Jing Zhou
- Lehman College, Department of Biology, 250 Bedford Park Blvd, Bronx, NY, 10468, USA
| | - Robert Majeska
- The City College of New York, Department of Biomedical Engineering, 160 Convent Ave., Steinman Hall ST-403D, New York, NY, 10031, USA
| | - Stephen Redenti
- Lehman College, Department of Biology, 250 Bedford Park Blvd, Bronx, NY, 10468, USA; The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Maribel Vazquez
- The City College of New York, Department of Biomedical Engineering, 160 Convent Ave., Steinman Hall ST-403D, New York, NY, 10031, USA; The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
15
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle. J Proteomics 2018; 191:212-227. [PMID: 29408692 DOI: 10.1016/j.jprot.2018.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
The highly progressive neuromuscular disorder dystrophinopathy is triggered by primary abnormalities in the Dmd gene, which causes cytoskeletal instability and loss of sarcolemmal integrity. Comparative organellar proteomics was employed to identify sarcolemma-associated proteins with an altered concentration in dystrophic muscle tissue from the mdx-4cv mouse model of dystrophinopathy. A lectin agglutination method was used to prepare a sarcolemma-enriched fraction and resulted in the identification of 190 significantly changed protein species. Proteomics established differential expression patterns for key components of the muscle plasma membrane, cytoskeletal network, extracellular matrix, metabolic pathways, cellular stress response, protein synthesis, immune response and neuromuscular junction. The deficiency in dystrophin and drastic reduction in dystrophin-associated proteins appears to trigger (i) enhanced membrane repair involving myoferlin, dysferlin and annexins, (ii) increased protein synthesis and the compensatory up-regulation of cytoskeletal proteins, (iii) the decrease in the scaffolding protein periaxin and myelin PO involved in myelination of motor neurons, (iv) complex changes in bioenergetic pathways, (v) elevated levels of molecular chaperones to prevent proteotoxic effects, (vi) increased collagen deposition causing reactive myofibrosis, (vii) disturbed ion homeostasis at the sarcolemma and associated membrane systems, and (viii) a robust inflammatory response by the innate immune system in response to chronic muscle damage. SIGNIFICANCE: Duchenne muscular dystrophy is a devastating muscle wasting disease and represents the most frequently inherited neuromuscular disorder in humans. Genetic abnormalities in the Dmd gene cause a loss of sarcolemmal integrity and highly progressive muscle fibre degeneration. Changes in the neuromuscular system are associated with necrosis, fibrosis and inflammation. In order to evaluate secondary changes in the sarcolemma membrane system due to the lack of the membrane cytoskeletal protein dystrophin, comparative organellar proteomics was used to study the mdx-4cv mouse model of dystrophinopathy. Mass spectrometric analyses identified a variety of altered components of the extracellular matrix-sarcolemma-cytoskeleton axis in dystrophic muscles. This included proteins involved in membrane repair, cytoskeletal restoration, calcium homeostasis, cellular signalling, stress response, neuromuscular transmission and reactive myofibrosis, as well as immune cell infiltration. These pathobiochemical alterations agree with the idea of highly complex secondary changes in X-linked muscular dystrophy and support the concept that micro-rupturing of the dystrophin-deficient plasma membrane is at the core of muscle wasting pathology.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
16
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
17
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Abstract
Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany.
| |
Collapse
|