1
|
White E, Kennedy T, Ruffell S, Perkins D, Sarris J. Ayahuasca and Dimethyltryptamine Adverse Events and Toxicity Analysis: A Systematic Thematic Review. Int J Toxicol 2024; 43:327-339. [PMID: 38363085 PMCID: PMC11088222 DOI: 10.1177/10915818241230916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The objective of this paper is to conduct a systematic thematic review of adverse events, safety, and toxicity of traditional ayahuasca plant preparations and its main psychoactive alkaloids (dimethyltryptamine [DMT], harmine, harmaline, and tetrahydroharmine), including discussing clinical considerations (within clinical trials or approved settings). A systematic literature search of preclinical, clinical, epidemiological, and pharmacovigilance data (as well as pertinent reviews and case studies) was conducted for articles using the electronic databases of PubMed and Web of Science (to 6 July 2023) and PsycINFO, ClinicalTrials.gov, and Embase (to 21 September 2022) and included articles in English in peer-reviewed journals. Additionally, reference lists were searched. Due to the breadth of the area covered, we presented the relevant data in a thematic format. Our searches revealed 78 relevant articles. Data showed that ayahuasca or DMT is generally safe; however, some adverse human events have been reported. Animal models using higher doses of ayahuasca have shown abortifacient and teratogenic effects. Isolated harmala alkaloid studies have also revealed evidence of potential toxicity at higher doses, which may increase with co-administration with certain medications. Harmaline revealed the most issues in preclinical models. Nevertheless, animal models involving higher-dose synthetic isolates may not necessarily be able to be extrapolated to human use of therapeutic doses of plant-based extracts. Serious adverse effects are rarely reported within healthy populations, indicating an acceptable safety profile for the traditional use of ayahuasca and DMT in controlled settings. Further randomized, controlled trials with judicious blinding, larger samples, and longer duration are needed.
Collapse
Affiliation(s)
- Eleanor White
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Tom Kennedy
- The University of Queensland, Brisbane, QLD, Australia
| | - Simon Ruffell
- Psychae Institue, Melbourne, VIC, Australia
- Onaya Science, Iquitos, Peru
| | - Daniel Perkins
- Psychae Institue, Melbourne, VIC, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jerome Sarris
- Psychae Institue, Melbourne, VIC, Australia
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Hersey M, Mereu M, Jones CS, Bartole MK, Chen AY, Cao J, Hiranita T, Chun LE, Lopez JP, Katz JL, Newman AH, Tanda G. Dual DAT and sigma receptor inhibitors attenuate cocaine effects on nucleus accumbens dopamine dynamics in rats. Eur J Neurosci 2024; 59:2436-2449. [PMID: 38444104 PMCID: PMC11108740 DOI: 10.1111/ejn.16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Maddalena Mereu
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Claire S. Jones
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | | | - Andy Y. Chen
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Jianjing Cao
- Medicinal Chemistry Section, NIDA IRP, Baltimore, MD 21224, USA
| | | | - Lauren E. Chun
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Jessica P. Lopez
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | | | - Amy Hauck Newman
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
- Medicinal Chemistry Section, NIDA IRP, Baltimore, MD 21224, USA
| | - Gianluigi Tanda
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Valentina S, Blasio A, Ferragud A, Quadir SG, Iyer MR, Rice KC, Cottone P. Characterization of a differential reinforcement of low rates of responding task in non-deprived male and female rats: Role of Sigma-1 receptors. Neuropharmacology 2021; 200:108786. [PMID: 34516984 PMCID: PMC9869339 DOI: 10.1016/j.neuropharm.2021.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 01/26/2023]
Abstract
Impulsive action can be defined as the inability to withhold a response and represents one of the dimensions of the broad construct impulsivity. Here, we characterized a modified differential reinforcement of low rates of responding (DRL) task developed in our laboratory, in which impulsive action is measured in ad libitum fed/watered subjects. Specifically, we first determined the effects of both sex and estrous cycle on impulsive action by systematically comparing male and estrous-synchronized female subjects. In addition, we evaluated the convergent validity of this modified DRL task by testing the effects of the D2R/5HT2AR antagonist, aripiprazole, and the noncompetitive NMDAR antagonist, MK-801. Finally, we tested the effects of the selective antagonist BD-1063 and agonist PRE-084 of Sigma-1 receptor (Sig-1R) on impulsive action using this modified DRL task. We found that female rats showed and increased inability to withhold a response when compared to males, and this effect was driven by the metestrus/diestrus phase of the estrous cycle. In addition, aripiprazole and MK-801 fully retained their capability to reduce and increase impulsive action, respectively. Finally, the selective Sig-1R antagonist, BD-1063 dose-dependently reduced the inability to withhold a response in both sexes, though more potently in female rats. In summary, we show that impulsive action, as measured in a modified DRL task which minimizes energy-homeostatic influences, is a function of both sex and estrous cycle. Furthermore, we validate the convergent validity of the task and provide evidence that Sig-1R antagonism may represent a novel pharmacological strategy to reduce impulsive action.
Collapse
Affiliation(s)
- Sabino Valentina
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Antonio Ferragud
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Sema G Quadir
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
5
|
Sigma receptor-induced heavy drinking in rats: Modulation by the opioid receptor system. Pharmacol Biochem Behav 2020; 192:172914. [PMID: 32205151 DOI: 10.1016/j.pbb.2020.172914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Alcohol use disorder (AUD) is a major cause of morbidity and mortality worldwide, for which new efficacious treatments are necessary. The opioid receptor system is a mediator of the rewarding effects of alcohol; in particular, while activation of μ opioid receptors enhances ethanol intake in rodents, opioid-receptor antagonists, such as naloxone and naltrexone, reduce its pleasurable and reinforcing effects, thereby decreasing alcohol. Sigma receptors (Sig-Rs) have been proposed as modulators of the effects of alcohol and, therefore, as a potential new pharmacological target for AUD. Somewhat analogously to μ opioid ligands, SigR agonists increase, while SigR antagonists decrease alcohol intake in animal models of excessive alcohol drinking. However, a potential cross-talk between these two receptor systems in relation to alcohol consumption has so far not been investigated. Here, we addressed this question pharmacologically, by testing the effects of either activating or inhibiting opioid receptors on the heavy alcohol drinking induced by chronic stimulation of SigR in alcohol-preferring rats. We found that the opioid receptor agonist morphine, which per se increases ethanol intake, at a sub-threshold dose reduces the binge-like drinking induced by the repeated treatment with the SigR agonist 1,3-di-o-tolylguanidine (DTG); conversely, the opioid receptor antagonist naltrexone, which per se reduces ethanol intake, at a sub-threshold dose potentiates the DTG-induced binge-like drinking. Our data show a cross-talk between the opioid and SigR systems relevant to the modulation of alcohol drinking, which provides important insights into the neurobiology of AUD and may lead to the development of novel therapies, either standalone or in combination.
Collapse
|
6
|
Romero L, Portillo-Salido E. Trends in Sigma-1 Receptor Research: A 25-Year Bibliometric Analysis. Front Pharmacol 2019; 10:564. [PMID: 31178733 PMCID: PMC6543269 DOI: 10.3389/fphar.2019.00564] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: There are previous reviews focused on Sigma-1 receptor but no bibliometric studies examining this field as a whole. This article aims to present a global view of Sigma-1 receptor research and its intellectual structure. Methods: We used bibliometric indicators of a basic nature as well as techniques for the visualization and analysis of networks of scientific information extracted from Scopus database. Results: In total, 1,102 articles from 1992 to 2017 were identified. The growth in the production of articles is not constant over time, with periods of stagnation of approximately 5 years. Only 247 authors have five or more publications. The authors appear grouped in relatively independent clusters, thus suggesting a low level of collaborations between those dedicated to the Sigma-1 receptor. The United States was the country with the highest production followed by Japan and Germany. Spain, Japan, and Italy showed the highest per million inhabitants ratio. The highest citation/article ratio was reached in France, United States, and Canada. The leading institutions were the University of Münster, the National Institutes of Health, ESTEVE, and INSERM. The top authors in number of publications were Wünsch-B, Schepmann-D, and Maurice-T. Hayashi-T, Su-TP and Bowen-WD showed the highest citations per article. The article by Hayashi-T and Su-TP in Cell (2007) describing the Sigma-1 receptor as a chaperone protein is the top cited reference. Cluster labeling from author co-citation analysis shows that research has been focused on specific diseases such as addiction, neuroprotection and neurodegenerative diseases, psychiatric disorders, and pain. High-frequency terms in author keywords suggest that the research efforts in some areas such as neuroimaging, cocaine addiction or psychiatric disorders have declined over time, while others such as neurodegenerative diseases or pain are currently most popular. Perspective: A greater involvement of the scientific community, with an increase in the scientific production related to Sigma-1, is desirable. Additional boost needed to improve research performance is likely to come from combining data from different laboratories to overcome the limitations of individual approaches. The resulting maps are a useful and attractive tool for the Sigma-1 receptor research community, as they reveal the main lines of exploration at a glance.
Collapse
Affiliation(s)
- Luz Romero
- Drug Discovery and Preclinical Development, Esteve Pharmaceuticals, Parc Científic de Barcelona, Barcelona, Spain
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, Esteve Pharmaceuticals, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Moore CF, Panciera JI, Sabino V, Cottone P. Neuropharmacology of compulsive eating. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0024. [PMID: 29352024 DOI: 10.1098/rstb.2017.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Compulsive eating behaviour is a transdiagnostic construct observed in certain forms of obesity and eating disorders, as well as in the proposed construct of 'food addiction'. Compulsive eating can be conceptualized as comprising three elements: (i) habitual overeating, (ii) overeating to relieve a negative emotional state, and (iii) overeating despite adverse consequences. Neurobiological processes that include maladaptive habit formation, the emergence of a negative affect, and dysfunctions in inhibitory control are thought to drive the development and persistence of compulsive eating behaviour. These complex psychobehavioural processes are under the control of various neuropharmacological systems. Here, we describe the current evidence implicating these systems in compulsive eating behaviour, and contextualize them within the three elements. A better understanding of the neuropharmacological substrates of compulsive eating behaviour has the potential to significantly advance the pharmacotherapy for feeding-related pathologies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Graduate Program for Neuroscience, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Julia I Panciera
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,MS in Medical Sciences Program, Graduate Medical Sciences, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Master of Public Health Program, Department of Health Policy and Management, Boston University School of Public Health, 715 Albany Street, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| |
Collapse
|
8
|
Small molecule modulators of σ2R/Tmem97 reduce alcohol withdrawal-induced behaviors. Neuropsychopharmacology 2018; 43:1867-1875. [PMID: 29728649 PMCID: PMC6046036 DOI: 10.1038/s41386-018-0067-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Repeated cycles of intoxication and withdrawal enhance the negative reinforcing properties of alcohol and lead to neuroadaptations that underlie withdrawal symptoms driving alcohol dependence. Pharmacotherapies that target these neuroadaptations may help break the cycle of dependence. The sigma-1 receptor (σ1R) subtype has attracted interest as a possible modulator of the rewarding and reinforcing effects of alcohol. However, whether the sigma-2 receptor, recently cloned and identified as transmembrane protein 97 (σ2R/TMEM97), plays a role in alcohol-related behaviors is currently unknown. Using a Caenorhabditis elegans model, we identified two novel, selective σ2R/Tmem97 modulators that reduce alcohol withdrawal behavior via an ortholog of σ2R/TMEM97. We then show that one of these compounds blunted withdrawal-induced excessive alcohol drinking in a well-established rodent model of alcohol dependence. These discoveries provide the first evidence that σ2R/TMEM97 is involved in alcohol withdrawal behaviors and that this receptor is a potential new target for treating alcohol use disorder.
Collapse
|
9
|
Imaging sigma receptors in the brain: New opportunities for diagnosis of Alzheimer's disease and therapeutic development. Neurosci Lett 2018; 691:3-10. [PMID: 30040970 DOI: 10.1016/j.neulet.2018.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The sigma-1 (σ1) receptor is a chaperone protein located on the mitochondria-associated membrane of the endoplasmic reticulum, while the sigma-2 receptor (σ2) is an endoplasmic reticulum-resident membrane protein. Recent evidence indicates that both of these receptors figure prominently in the pathophysiology of Alzheimer's disease (AD) and thus are targets for the development of novel, disease-modifying therapeutic strategies. Radioligand-based molecular imaging technique such as positron emission tomography (PET) imaging is a powerful tool for the investigation of protein target expression and function in living subjects. In this review, we survey the development of PET radioligands for the σ1 or σ2 receptors and assess their potential for human imaging applications. The availability of PET imaging with σ1 or σ2 receptor-specific radioligands in humans will allow the investigation of these receptors in vivo and lead to further understanding of their respective roles in AD pathogenesis and progression. Moreover, PET imaging can be used in target occupancy studies to assess target engagement and correlate receptor occupancy and therapeutic response of σ1 receptor agonists and σ2 receptor antagonists currently in clinical trials. It is expected that neuroimaging of σ1 and σ2 receptors in the brain will shed new light on AD pathophysiology and may provide us with new biomarkers for diagnosis of AD and efficacy monitoring of emerging AD therapeutic strategies.
Collapse
|
10
|
Yano H, Bonifazi A, Xu M, Guthrie DA, Schneck SN, Abramyan AM, Fant AD, Hong WC, Newman AH, Shi L. Pharmacological profiling of sigma 1 receptor ligands by novel receptor homomer assays. Neuropharmacology 2018; 133:264-275. [PMID: 29407216 PMCID: PMC5858991 DOI: 10.1016/j.neuropharm.2018.01.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/06/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The sigma 1 receptor (σ1R) is a structurally unique transmembrane protein that functions as a molecular chaperone in the endoplasmic reticulum (ER), and has been implicated in cancer, neuropathic pain, and psychostimulant abuse. Despite physiological and pharmacological significance, mechanistic underpinnings of structure-function relationships of σ1R are poorly understood, and molecular interactions of selective ligands with σ1R have not been elucidated. The recent crystallographic determination of σ1R as a homo-trimer provides the foundation for mechanistic elucidation at the molecular level. Here we report novel bioluminescence resonance energy transfer (BRET) assays that enable analyses of ligand-induced multimerization of σ1R and its interaction with BiP. Haloperidol, PD144418, and 4-PPBP enhanced σ1R homomer BRET signals in a dose dependent manner, suggesting their significant effects in stabilizing σ1R multimerization, whereas (+)-pentazocine and several other ligands do not. In non-denaturing gels, (+)-pentazocine significantly decreased whereas haloperidol increased the fraction of σ1R multimers, consistent with the results from the homomer BRET assay. Further, BRET assays examining heteromeric σ1R-BiP interaction revealed that (+)-pentazocine and haloperidol induced opposite trends of signals. From molecular modeling and simulations of σ1R in complex with the tested ligands, we identified initial clues that may lead to the differed responses of σ1R upon binding of structurally diverse ligands. By combining multiple in vitro pharmacological and in silico molecular biophysical methods, we propose a novel integrative approach to analyze σ1R-ligand binding and its impact on interaction of σ1R with client proteins.
Collapse
Affiliation(s)
- Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Stephanie N Schneck
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Ara M Abramyan
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Andrew D Fant
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - W Conrad Hong
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
11
|
Moore CF, Schlain GS, Mancino S, Sabino V, Cottone P. A behavioral and pharmacological characterization of palatable diet alternation in mice. Pharmacol Biochem Behav 2017; 163:1-8. [PMID: 29097161 PMCID: PMC5911178 DOI: 10.1016/j.pbb.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 12/28/2022]
Abstract
Obesity and eating disorders are widespread in Western societies. Both the increased availability of highly palatable foods and dieting are major risk factors contributing to the epidemic of disorders of feeding. The purpose of this study was to characterize an animal model of maladaptive feeding induced by intermittent access to a palatable diet alternation in mice. In this study, mice were either continuously provided with standard chow food (Chow/Chow), or provided with standard chow for 2days and a high-sucrose, palatable food for 1day (Chow/Palatable). Following stability of intake within the cycling paradigm, we then investigated the effects of several pharmacological treatments on excessive eating of palatable food: naltrexone, an opioid receptor antagonist, SR141716A, a cannabinoid-1 receptor antagonist/inverse agonist, and BD-1063, a sigma-1 receptor antagonist. Over successive cycles, Chow/Palatable mice showed an escalation of palatable food intake within the first hour of renewed access to palatable diet and displayed hypophagia upon its removal. Naltrexone, SR141716A, and BD-1063 all reduced overconsumption of palatable food during this first hour. Here we provide evidence of strong face and convergent validity in a palatable diet alternation model in mice, confirming multiple shared underlying mechanisms of pathological eating across species, and thus making it a useful therapeutic development tool.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Graduate Program for Neuroscience, Boston University School of Medicine, Boston, MA, USA
| | - Gabrielle S Schlain
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Samantha Mancino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Moore CF, Sabino V, Koob GF, Cottone P. Neuroscience of Compulsive Eating Behavior. Front Neurosci 2017; 11:469. [PMID: 28883784 PMCID: PMC5573809 DOI: 10.3389/fnins.2017.00469] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023] Open
Abstract
A systematic characterization of compulsivity in pathological forms of eating has been proposed in the context of three functional domains: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. In this review, we provide evidence supporting this hypothesis and we differentiate the nascent field of neurocircuits and neurochemical mediators of compulsive eating through their underlying neuropsychobiological processes. A better understanding of the neurobiological mechanisms that lead to compulsive eating behavior can improve behavioral and pharmacological intervention for disorders of pathological eating.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of MedicineBoston, MA, United States.,Graduate Program for Neuroscience, Boston University School of MedicineBoston, MA, United States
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of MedicineBoston, MA, United States
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, United States
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of MedicineBoston, MA, United States
| |
Collapse
|