1
|
Ardini M, Angelucci F, Rea F, Paluzzi L, Gabriele F, Palerma M, Di Leandro L, Ippoliti R, Pitari G. Functional and structural characterization of the human indolethylamine N-methyltransferase through fluorometric, thermal and computational docking analyses. Biol Direct 2025; 20:50. [PMID: 40211327 PMCID: PMC11987180 DOI: 10.1186/s13062-025-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND The "psychedelic renaissance" is sparking growing interest in clinical research, along with a rise in clinical trials. Substances such as 3,4-methylenedioxymethamphetamine (MDMA), psilocybin and N,N-dimethyltryptamine (DMT) are involved. The focus of this paper is on indolethylamine N-methyltransferase (INMT), a crucial enzyme in the biosynthesis of key compounds, including DMT, which meets science, medicine and spirituality. The presence of DMT in animals and plants raises many questions about its biological role. Meanwhile, the distribution of INMT in various organs and its involvement in diseases like cancer and mental disorders also fuel investigations worldwide. However, INMT remains largely unexplored, particularly its enzymatic mechanism and structural properties, leaving a significant gap in potential applications. RESULTS This study examines for the first time the catalytic activity of the human INMT (hINMT) using a simple fluorometric steady-state assay employing the substrate quinoline. The findings are supported by thermal shift and docking analyses, providing valuable information about optimal chemical conditions and potential binding sites for substrates. The thermal shift assays indicate that recombinant hINMT is unstable and requires acidic or near-neutral pH and low salt levels. These experiments also allow for the estimation of dissociation constants for its natural coenzymes SAM and SAH, helping to determine the appropriate setup for the fluorometric assays and calculate kinetic constants, which are comparable to other methyltransferases. The docking indicates that quinoline occupies the same site as the natural substrate tryptamine, further validating the fluorometric approach. CONCLUSIONS The paper provides a foundation for thoroughly studying hINMT under consistent conditions, which is crucial for obtaining reliable kinetic data and maintaining molecular stability for future structural analysis. This represents a valid alternative over previous endpoint radioactive-based and chromatography-mass spectrometry assays, which can provide only apparent steady-state parameters. Given the polymorphisms observed in hINMT and their potential association with psychiatric disorders, e.g., schizophrenia, and cancer, this strategy could serve as an invaluable tool for understanding the structure-function relationship of enzyme mutants and their role in diseases. Furthermore, these findings for the first time provide insights into the interaction modalities of hINMT with its substrates and lay the groundwork for inhibition experiments aimed at practical applications.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Rea
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Paluzzi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Science, Technology and Society, University School for Advanced Studies of Pavia, Pavia, Italy
| | - Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marta Palerma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Science, Technology and Society, University School for Advanced Studies of Pavia, Pavia, Italy
| | - Luana Di Leandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Xing W, Wu W, Wu J, Cai K, Wang Q, Zhang M, Lai S. The behavioral characteristics of addiction and mental disorder caused by dextromethorphan abuse were analyzed in multiple dimensions. Expert Opin Drug Saf 2025:1-6. [PMID: 39753518 DOI: 10.1080/14740338.2025.2449995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 11/08/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND The aims of this study were to promote the rational use and supervision of dextromethorphan (DM). This study analyzed serious adverse events such as addiction and mental disorders caused by DM in Shenzhen and the behavioral characteristics of people suspected of abusing DM on the Internet. METHODS Adverse drug reaction/event (ADR/E) reports from 2017 to 2023 were extracted from the National Pharmaceutical Adverse Reaction Monitoring System database. The sales data from 2017 to 2022 were extracted from an Internet platform of selling DM in Shenzhen. Various signal detection methods were used for retrospective analysis and descriptive analysis. RESULTS Signal detection results (ROR = 299830.00, 95%CI = 26475.78 -573,184.22) found a high association between DM abuse and addiction. Dextromethorphan abusers have behavioral characteristics such as low age, long duration of abuse, and withdrawal difficulties. Online sales data showed that the number of purchases (P < 0.01), total doses (P < 0.01), and duration of purchases (P < 0.01) in the suspected abuse group were significantly higher than those in the normal group. CONCLUSION The result is possible to provide more accurate portraits of individuals who were suspected of abusing dexmedetomidine and therefore has significant implications in terms of promoting practices that enable rational use of this medication.
Collapse
Affiliation(s)
- Weiqing Xing
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Wenyu Wu
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Jianru Wu
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Kangjun Cai
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Qian Wang
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Min Zhang
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| | - Shukun Lai
- Department of ADR Monitoring, Shenzhen Institute of Pharmacovigilance and Risk Management, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Mu H, Ye L, Wang B. Detailed resume of S-methyltransferases: Categories, structures, biological functions and research advancements in related pathophysiology and pharmacotherapy. Biochem Pharmacol 2024; 226:116361. [PMID: 38876259 DOI: 10.1016/j.bcp.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Methylation is a vital chemical reaction in the metabolism of many drugs, neurotransmitters, hormones, and exogenous compounds. Among them, S-methylation plays a significant role in the biotransformation of sulfur-containing compounds, particularly chemicals with sulfhydryl groups. Currently, only three S-methyltransferases have been reported: thiopurine methyltransferase (TPMT), thiol methyltransferase (TMT), and thioether methyltransferase (TEMT). These enzymes are involved in various biological processes such as gene regulation, signal transduction, protein repair, tumor progression, and biosynthesis and degradation reactions in animals, plants, and microorganisms. Furthermore, they play pivotal roles in the metabolic pathways of essential drugs and contribute to the advancement of diseases such as tumors. This paper reviews the research progress on relevant structural features, metabolic mechanisms, inhibitor development, and influencing factors (gene polymorphism, S-adenosylmethionine level, race, sex, age, and disease) of S-methyltransferases. We hope that a better comprehension of S-methyltransferases will help to provide a reference for the development of novel strategies for related disorders and improve long-term efficacy.
Collapse
Affiliation(s)
- Hongfei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
4
|
Zhang Y, Li Y. β-hydroxybutyrate inhibits malignant phenotypes of prostate cancer cells through β-hydroxybutyrylation of indoleacetamide-N-methyltransferase. Cancer Cell Int 2024; 24:121. [PMID: 38555451 PMCID: PMC10981303 DOI: 10.1186/s12935-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers in men and is associated with high mortality and disability rates. β-hydroxybutyrate (BHB), a ketone body, has received increasing attention for its role in cancer. However, its role in PCa remains unclear. This study aimed to explore the mechanism and feasibility of BHB as a treatment alternative for PCa. METHODS Colony formation assay, flow cytometry, western blot assay, and transwell assays were performed to determine the effect of BHB on the proliferation and metastasis of PCa cells. Tumor sphere formation and aldehyde dehydrogenase assays were used to identify the impact of BHB or indoleacetamide-N-methyltransferase (INMT) on the stemness of PCa cells. N6-methyladenosine (m6A)-meRIP real-time reverse transcription polymerase chain reaction and dual luciferase assays were conducted to confirm INMT upregulation via the METTL3-m6A pathway. Co-IP assay was used to detect the epigenetic modification of INMT by BHB-mediated β-hydroxybutyrylation (kbhb) and screen enzymes that regulate INMT kbhb. Mouse xenograft experiments demonstrated the antitumor effects of BHB in vivo. RESULTS BHB can inhibit the proliferation, migration, and invasion of PCa cells by suppressing their stemness. Mechanistically, INMT, whose expression is upregulated by the METTL3-m6A pathway, was demonstrated to be an oncogenic gene that promotes the stem-like characteristics of PCa cells. BHB can suppress the malignant phenotypes of PCa by kbhb of INMT, which in turn inhibits INMT expression. CONCLUSIONS Our findings indicate a role of BHB in PCa metabolic therapy, thereby suggesting an epigenetic therapeutic strategy to target INMT in aggressive PCa. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China.
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China
| |
Collapse
|
5
|
Robinson TS, Osman MA. An Emerging Role for Sigma Receptor 1 in Personalized Treatment of Breast Cancer. Cancers (Basel) 2023; 15:3464. [PMID: 37444574 PMCID: PMC10340381 DOI: 10.3390/cancers15133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear and hinders clinical utility. SigmaR1 is widely expressed in organ tissues and localized to various sub-cellular compartments, particularly the endoplasmic reticulum (ER), the mitochondrial-associated membranes (MAMs) and the nuclear envelope. As such, it involves diverse cellular functions, including protein quality control/ER stress, calcium signaling, cholesterol homeostasis, mitochondrial integrity and energy metabolism. Consequently, SigmaR1 has been implicated in a number of cancers and degenerative diseases and thus has been intensively pursued as a therapeutic target. Because SigmaR1 binds a number of structurally unrelated ligands, it presents an excellent context-dependent therapeutic target. Here, we review its role in breast cancer and the current therapies that have been considered based on its known functions. As SigmaR1 is not classified as an oncoprotein, we propose a model in which it serves as an oligomerization adaptor in key cellular pathways, which may help illuminate its association with variable diseases and pave the way for clinical utility in personalized medicine.
Collapse
Affiliation(s)
| | - Mahasin A. Osman
- Department of Medicine, Division of Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
6
|
Vargas-Perez H, Grieder TE, van der Kooy D. Neural Plasticity in the Ventral Tegmental Area, Aversive Motivation during Drug Withdrawal and Hallucinogenic Therapy. J Psychoactive Drugs 2023; 55:62-72. [PMID: 35114904 DOI: 10.1080/02791072.2022.2033889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aberrant glutamatergic signaling has been closely related to several pathologies of the central nervous system. Glutamatergic activity can induce an increase in neural plasticity mediated by brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA), a nodal point in the mesolimbic dopamine system. Recent studies have related BDNF dependent plasticity in the VTA with the modulation of aversive motivation to deal with noxious environmental stimuli. The disarray of these learning mechanisms would produce an abnormal augmentation in the representation of the emotional information related to aversion, sometimes even in the absence of external environmental trigger, inducing pathologies linked to mood disorders such as depression and drug addiction. Recent studies point out that serotonin (5-hydroxytryptamine, 5-HT) receptors, especially the 2a (5-HT2a) subtype, play an important role in BDNF-related neural plasticity in the VTA. It has been observed that a single administration of a 5HT2a agonist can both revert an animal to a nondependent state from a drug-dependent state (produced by the chronic administration of a substance of abuse). The 5HT2a agonist also reverted the BDNF-induced neural plasticity in the VTA, suggesting that the administration of 5-HT2a agonists could be used as effective therapeutic agents to treat drug addiction. These findings could explain the neurobiological correlate of the therapeutic use of 5HT2a agonists, which can be found in animals, plants and fungi during traditional medicine ceremonies and rituals to treat mood related disorders.
Collapse
Affiliation(s)
- Hector Vargas-Perez
- The Nierika Intercultural Medicine Institute, Ocuilan, México.,Postgrado En Ciencias Cognitivas, Universidad Autonoma Del Estado de Morelos, Cuernavaca, Mexico
| | - Taryn Elizabeth Grieder
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Derek van der Kooy
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Xu Z, Jiang J, Xu S, Xie Z, He P, Jiang S, Xu R. Nerve Growth Factor is a Potential Treated Target in Tg(SOD1*G93A)1Gur Mice. Cell Mol Neurobiol 2022; 42:1035-1046. [PMID: 33236288 PMCID: PMC11441269 DOI: 10.1007/s10571-020-00993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianxiang Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengyuan Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zunchun Xie
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Abdullah CS, Aishwarya R, Alam S, Remex NS, Morshed M, Nitu S, Miriyala S, Panchatcharam M, Hartman B, King J, Alfrad Nobel Bhuiyan M, Traylor J, Kevil CG, Orr AW, Bhuiyan MS. The molecular role of Sigmar1 in regulating mitochondrial function through mitochondrial localization in cardiomyocytes. Mitochondrion 2022; 62:159-175. [PMID: 34902622 PMCID: PMC8790786 DOI: 10.1016/j.mito.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Sigmar1 is a widely expressed molecular chaperone protein in mammalian cell systems. Accumulating research demonstrated the cardioprotective roles of pharmacologic Sigmar1 activation by ligands in preclinical rodent models of cardiac injury. Extensive biochemical and immuno-electron microscopic research demonstrated Sigmar1's sub-cellular localization largely depends on cell and organ types. Despite comprehensive studies, Sigmar1's direct molecular role in cardiomyocytes remains elusive. In the present study, we determined Sigmar1's subcellular localization, transmembrane topology, and function using complementary microscopy, biochemical, and functional assays in cardiomyocytes. Quantum dots in transmission electron microscopy showed Sigmar1 labeled quantum dots on the mitochondrial membranes, lysosomes, and sarcoplasmic reticulum-mitochondrial interface. Subcellular fractionation of heart cell lysates confirmed Sigmar1's localization in purified mitochondria fraction and lysosome fraction. Immunocytochemistry confirmed Sigmar1 colocalization with mitochondrial proteins in isolated adult mouse cardiomyocytes. Sigmar1's mitochondrial localization was further confirmed by Sigmar1 colocalization with Mito-Tracker in isolated mouse heart mitochondria. A series of biochemical experiments, including alkaline extraction and proteinase K treatment of purified heart mitochondria, demonstrated Sigmar1 as an integral mitochondrial membrane protein. Sigmar1's structural requirement for mitochondrial localization was determined by expressing FLAG-tagged Sigmar1 fragments in cells. Full-length Sigmar1 and Sigmar1's C terminal-deletion fragments were able to localize to the mitochondrial membrane, whereas N-terminal deletion fragment was unable to incorporate into the mitochondria. Finally, functional assays using extracellular flux analyzer and high-resolution respirometry showed Sigmar1 siRNA knockdown significantly altered mitochondrial respiration in cardiomyocytes. Overall, we found that Sigmar1 localizes to mitochondrial membranes and is indispensable for maintaining mitochondrial respiratory homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | | | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| |
Collapse
|
9
|
Connection Lost, MAM: Errors in ER-Mitochondria Connections in Neurodegenerative Diseases. Brain Sci 2021; 11:brainsci11111437. [PMID: 34827436 PMCID: PMC8615542 DOI: 10.3390/brainsci11111437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria associated membranes (MAMs), as the name suggests, are the membranes that physically and biochemically connect mitochondria with endoplasmic reticulum. MAMs not only structurally but also functionally connect these two important organelles within the cell which were previously thought to exist independently. There are multiple points of communication between ER-mitochondria and MAMs play an important role in both ER and mitochondria functions such as Ca2+ homeostasis, proteostasis, mitochondrial bioenergetics, movement, and mitophagy. The number of disease-related proteins and genes being associated with MAMs has been continually on the rise since its discovery. There is an overwhelming overlap between the biochemical functions of MAMs and processes affected in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Thus, MAMs have received well-deserving and much delayed attention as modulators for ER-mitochondria communication and function. This review briefly discusses the recent progress made in this now fast developing field full of promise for very exciting future therapeutic discoveries.
Collapse
|
10
|
Zhong S, Jeong JH, Huang C, Chen X, Dickinson SI, Dhillon J, Yang L, Luo JL. Targeting INMT and interrupting its methylation pathway for the treatment of castration resistant prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:307. [PMID: 34587977 PMCID: PMC8482636 DOI: 10.1186/s13046-021-02109-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023]
Abstract
Background Castration-resistant prostate cancer (CRPC) is associated with a very poor prognosis, and the treatment of which remains a serious clinical challenge. Methods RNA-seq, qPCR, western blot and immunohistochemistry were employed to identify and confirm the high expression of indolethylamine N-methyltransferase (INMT) in CRPC and the clinical relevance. Chip assay was used to identify Histone-Lysine N-Methyltransferase (SMYD3) as a major epigenetic regulator of INMT. LC-MS/MS were used to identify new substrates of INMT methylation in CRPC tissues. Gene knockdown/overexpression, MTT and mouse cancer models were used to examine the role of INMT as well as the anticancer efficacy of INMT inhibitor N,N-dimethyltryptamine (DMT), the SMYD3 inhibitor BCl-12, the selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC), and the newly identified endogenous INMT substrate Bis(7)-tacrine. Results We found that the expression of INMT was highly increased in CRPC and was correlated with poor prognosis of clinical prostate cancer (PCa). INMT promoted PCa castration resistance via detoxification of anticancer metabolites. Knockdown of INMT or treatment with INMT inhibitor N,N-dimethyltryptamine (DMT) significantly suppressed CRPC development. Histone-Lysine N-Methyltransferase SMYD3 was a major epigenetic regulator of INMT expression, treatment with SMYD3 inhibitor BCl-121 suppressed INMT expression and inhibits CRPC development. Importantly, INMT knockdown significantly increased the anticancer effect of the exogenous selenium compounds methaneseleninic acid (MSA) and Se-(Methyl)selenocysteine hydrochloride (MSC) as well as the endogenous metabolite Bis(7)-tacrine. Conclusions Our study suggests that INMT drives PCa castration resistance through detoxification of anticancer metabolites, targeting INMT or its regulator SMYD3 or/and its methylation metabolites represents an effective therapeutic avenue for CRPC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02109-z.
Collapse
Affiliation(s)
- Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Changhao Huang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Xueyan Chen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center, 2902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Li Yang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Jun-Li Luo
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
11
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
12
|
Cumming P, Scheidegger M, Dornbierer D, Palner M, Quednow BB, Martin-Soelch C. Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans. Molecules 2021; 26:2451. [PMID: 33922330 PMCID: PMC8122807 DOI: 10.3390/molecules26092451] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Hallucinogens are a loosely defined group of compounds including LSD, N,N-dimethyltryptamines, mescaline, psilocybin/psilocin, and 2,5-dimethoxy-4-methamphetamine (DOM), which can evoke intense visual and emotional experiences. We are witnessing a renaissance of research interest in hallucinogens, driven by increasing awareness of their psychotherapeutic potential. As such, we now present a narrative review of the literature on hallucinogen binding in vitro and ex vivo, and the various molecular imaging studies with positron emission tomography (PET) or single photon emission computer tomography (SPECT). In general, molecular imaging can depict the uptake and binding distribution of labelled hallucinogenic compounds or their congeners in the brain, as was shown in an early PET study with N1-([11C]-methyl)-2-bromo-LSD ([11C]-MBL); displacement with the non-radioactive competitor ketanserin confirmed that the majority of [11C]-MBL specific binding was to serotonin 5-HT2A receptors. However, interactions at serotonin 5HT1A and other classes of receptors and pleotropic effects on second messenger pathways may contribute to the particular experiential phenomenologies of LSD and other hallucinogenic compounds. Other salient aspects of hallucinogen action include permeability to the blood-brain barrier, the rates of metabolism and elimination, and the formation of active metabolites. Despite the maturation of radiochemistry and molecular imaging in recent years, there has been only a handful of PET or SPECT studies of radiolabeled hallucinogens, most recently using the 5-HT2A/2C agonist N-(2[11CH3O]-methoxybenzyl)-2,5-dimethoxy- 4-bromophenethylamine ([11C]Cimbi-36). In addition to PET studies of target engagement at neuroreceptors and transporters, there is a small number of studies on the effects of hallucinogenic compounds on cerebral perfusion ([15O]-water) or metabolism ([18F]-fluorodeoxyglucose/FDG). There remains considerable scope for basic imaging research on the sites of interaction of hallucinogens and their cerebrometabolic effects; we expect that hybrid imaging with PET in conjunction with functional magnetic resonance imaging (fMRI) should provide especially useful for the next phase of this research.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
| | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
| | - Mikael Palner
- Odense Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark;
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, CH-8058 Zurich, Switzerland
| | | |
Collapse
|
13
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
14
|
Tian J, He Y, Deuther-Conrad W, Fu H, Xie F, Zhang Y, Wang T, Zhang X, Zhang J, Brust P, Huang Y, Jia H. Synthesis and evaluation of new 1-oxa-8-azaspiro[4.5]decane derivatives as candidate radioligands for sigma-1 receptors. Bioorg Med Chem 2020; 28:115560. [PMID: 32616183 DOI: 10.1016/j.bmc.2020.115560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023]
Abstract
We report the design, synthesis, and evaluation of a series of 1-oxa-8-azaspiro[4.5]decane and 1,5-dioxa-9-azaspiro[5.5]undecane derivatives as selective σ1 receptor ligands. All seven ligands exhibited nanomolar affinity for σ1 receptors (Ki(σ1) = 0.47 - 12.1 nM) and moderate selectivity over σ2 receptors (Ki(σ2)/ Ki(σ1) = 2 - 44). Compound 8, with the best selectivity among these ligands, was selected for radiolabeling and further evaluation. Radioligand [18F]8 was prepared via nucleophilic 18F-substitution of the corresponding tosylate precursor, with an overall isolated radiochemical yield of 12-35%, a radiochemical purity of greater than 99%, and molar activity of 94 - 121 GBq/μmol. Biodistribution studies of [18F]8 in mice demonstrated high initial brain uptake at 2 min. Pretreatment with SA4503 resulted in significantly reduced brain-to-blood ratio (70% - 75% at 30 min). Ex vivo autoradiography in ICR mice demonstrated high accumulation of the radiotracer in σ1 receptor-rich brain areas. These findings suggest that [18F]8 could be a lead compound for further structural modifications to develop potential brain imaging agents for σ1 receptors.
Collapse
Affiliation(s)
- Jiale Tian
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Zhang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Zhang
- Nuclear Medicine Department, Chinese PLA General Hospital, Beijing 100853, China.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
15
|
Analysis of Sigma-1 Receptor Binding Ability Under Emotional Stress and Upon Administration of the Anxiolytic Afobazole. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Torres B, Tyler JS, Satyshur KA, Ruoho AE. Human indole(ethyl)amine-N-methyltransferase (hINMT) catalyzed methylation of tryptamine, dimethylsulfide and dimethylselenide is enhanced under reducing conditions - A comparison between 254C and 254F, two common hINMT variants. PLoS One 2019; 14:e0219664. [PMID: 31310642 PMCID: PMC6634407 DOI: 10.1371/journal.pone.0219664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 06/28/2019] [Indexed: 11/18/2022] Open
Abstract
Phenylalanine and cysteine comprise common miss-sense variants (i.e., single nucleotide polymorphisms [SNPs]) at amino acid position 254 of the human indole(ethyl)amine-N-methyltransferase (hINMT). The phenylalanine variant, which occurs in linkage disequilibrium with two 3’ UTR SNPs, has been reported to associate with elevated urine levels of trimethylselenonium (TMSe), the Se-methylated product of volatile dimethylselenide. hINMT allozymes expressing either cysteine (254C) or phenylalanine (254F) at position 254 were compared for enzyme activity (i.e., Km and Vmax) towards the INMT substrates tryptamine, dimethylsulfide (DMS) and dimethylselenide (DMSe) in vitro. The SNP 254C had a higher Vmax for DMS and tryptamine in the presence of reducing agent than in its absence. Conversely, Vmax for 254F was insensitive to the presence or absence of reducing agent for these substrates. SNP 254F showed a lower Km for tryptamine in the absence of reducing agent than 254C. No statistically significant difference in Vmax or Km was observed between 254C and 254F allozymes in the presence of reducing agent for DMSe, The Km values for DMSe methylation were about 10-fold (254C) or 6-fold (254F) more favorable than for tryptamine methylation with reducing agent present. These findings indicated that: 1) That phenylalanine at position 254 renders hINMT methylation of substrates DMS and tryptamine insensitive to a non reducing environment. 2) That human INMT harbors significant thioether-S-methyltransferase (TEMT) activity with a higher affinity for DMSe than tryptamine, 3) The reduction of a 44C/254C disulfide bond in hINMT that increases Vmax is proposed.
Collapse
Affiliation(s)
- Brian Torres
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James S. Tyler
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kenneth A. Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Arnold E. Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wang J, Zhao J, Cui X, Mysona BA, Navneet S, Saul A, Ahuja M, Lambert N, Gazaryan IG, Thomas B, Bollinger KE, Smith SB. The molecular chaperone sigma 1 receptor mediates rescue of retinal cone photoreceptor cells via modulation of NRF2. Free Radic Biol Med 2019; 134:604-616. [PMID: 30743048 PMCID: PMC6619428 DOI: 10.1016/j.freeradbiomed.2019.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 01/11/2023]
Abstract
Sigma 1 receptor (Sig1R), a putative molecular chaperone, has emerged as a novel therapeutic target for retinal degenerative disease. Earlier studies showed that activation of Sig1R via the high-affinity ligand (+)-pentazocine ((+)-PTZ) induced profound rescue of cone photoreceptor cells in the rd10 mouse model of retinitis pigmentosa; however the mechanism of rescue is unknown. Improved cone function in (+)-PTZ-treated mice was accompanied by reduced oxidative stress and normalization of levels of NRF2, a transcription factor that activates antioxidant response elements (AREs) of hundreds of cytoprotective genes. Here, we tested the hypothesis that modulation of NRF2 is central to Sig1R-mediated cone rescue. Activation of Sig1R in 661W cone cells using (+)-PTZ induced dose-dependent increases in NRF2-ARE binding activity and NRF2 gene/protein expression, whereas silencing Sig1R significantly decreased NRF2 protein levels and increased oxidative stress, although (+)-PTZ did not disrupt NRF2-KEAP1 binding. In vivo studies were conducted to investigate whether, in the absence of NRF2, activation of Sig1R rescues cones. (+)-PTZ was administered systemically for several weeks to rd10/nrf2+/+ and rd10/nrf2-/- mice. Through post-natal day 42, cone function was significant in rd10/nrf2+/+, but minimal in rd10/nrf2-/- mice as indicated by electroretinographic recordings using natural noise stimuli, optical coherence tomography and retinal histological analyses. Immunodetection of cones was limited in (+)-PTZ-treated rd10/nrf2-/-, though considerable in (+)-PTZ-treated rd10/nrf2+/+mice. The data suggest that Sig1R-mediated cone rescue requires NRF2 and provide evidence for a previously-unrecognized relationship between these proteins.
Collapse
Affiliation(s)
- J Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - J Zhao
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - X Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - B A Mysona
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - S Navneet
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - A Saul
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - M Ahuja
- Department of Pharmacology/Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - N Lambert
- Department of Pharmacology/Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - I G Gazaryan
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, USA
| | - B Thomas
- Department of Pharmacology/Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - K E Bollinger
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - S B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
18
|
|
19
|
Abdullah CS, Alam S, Aishwarya R, Miriyala S, Panchatcharam M, Bhuiyan MAN, Peretik JM, Orr AW, James J, Osinska H, Robbins J, Lorenz JN, Bhuiyan MS. Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics. J Am Heart Assoc 2018; 7:e009775. [PMID: 30371279 PMCID: PMC6474981 DOI: 10.1161/jaha.118.009775] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Background The Sigma 1 receptor (Sigmar1) functions as an interorganelle signaling molecule and elicits cytoprotective functions. The presence of Sigmar1 in the heart was first reported on the basis of a ligand-binding assay, and all studies to date have been limited to pharmacological approaches using less-selective ligands for Sigmar1. However, the physiological function of cardiac Sigmar1 remains unknown. We investigated the physiological function of Sigmar1 in regulating cardiac hemodynamics using the Sigmar1 knockout mouse (Sigmar1-/-). Methods and Results Sigmar1-/- hearts at 3 to 4 months of age showed significantly increased contractility as assessed by left ventricular catheterization with stimulation by increasing doses of a β1-adrenoceptor agonist. Noninvasive echocardiographic measurements were also used to measure cardiac function over time, and the data showed the development of cardiac contractile dysfunction in Sigmar1 -/- hearts as the animals aged. Histochemistry demonstrated significant cardiac fibrosis, collagen deposition, and increased periostin in the Sigmar1 -/- hearts compared with wild-type hearts. Ultrastructural analysis of Sigmar1-/- cardiomyocytes revealed an irregularly shaped, highly fused mitochondrial network with abnormal cristae. Mitochondrial size was larger in Sigmar1-/- hearts, resulting in decreased numbers of mitochondria per microscopic field. In addition, Sigmar1-/- hearts showed altered expression of mitochondrial dynamics regulatory proteins. Real-time oxygen consumption rates in isolated mitochondria showed reduced respiratory function in Sigmar1-/- hearts compared with wild-type hearts. Conclusions We demonstrate a potential function of Sigmar1 in regulating normal mitochondrial organization and size in the heart. Sigmar1 loss of function led to mitochondrial dysfunction, abnormal mitochondrial architecture, and adverse cardiac remodeling, culminating in cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Chowdhury S. Abdullah
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Shafiul Alam
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Richa Aishwarya
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | | | - Jonette M. Peretik
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - A. Wayne Orr
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Jeanne James
- Division of Pediatric CardiologyMedical College of WisconsinMilwaukeeWI
| | - Hanna Osinska
- Division of Molecular Cardiovascular BiologyCincinnati Children's HospitalCincinnatiOH
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular BiologyCincinnati Children's HospitalCincinnatiOH
| | - John N. Lorenz
- Department of Molecular and Cellular PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
20
|
Imaging sigma receptors in the brain: New opportunities for diagnosis of Alzheimer's disease and therapeutic development. Neurosci Lett 2018; 691:3-10. [PMID: 30040970 DOI: 10.1016/j.neulet.2018.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The sigma-1 (σ1) receptor is a chaperone protein located on the mitochondria-associated membrane of the endoplasmic reticulum, while the sigma-2 receptor (σ2) is an endoplasmic reticulum-resident membrane protein. Recent evidence indicates that both of these receptors figure prominently in the pathophysiology of Alzheimer's disease (AD) and thus are targets for the development of novel, disease-modifying therapeutic strategies. Radioligand-based molecular imaging technique such as positron emission tomography (PET) imaging is a powerful tool for the investigation of protein target expression and function in living subjects. In this review, we survey the development of PET radioligands for the σ1 or σ2 receptors and assess their potential for human imaging applications. The availability of PET imaging with σ1 or σ2 receptor-specific radioligands in humans will allow the investigation of these receptors in vivo and lead to further understanding of their respective roles in AD pathogenesis and progression. Moreover, PET imaging can be used in target occupancy studies to assess target engagement and correlate receptor occupancy and therapeutic response of σ1 receptor agonists and σ2 receptor antagonists currently in clinical trials. It is expected that neuroimaging of σ1 and σ2 receptors in the brain will shed new light on AD pathophysiology and may provide us with new biomarkers for diagnosis of AD and efficacy monitoring of emerging AD therapeutic strategies.
Collapse
|
21
|
Arena E, Dichiara M, Floresta G, Parenti C, Marrazzo A, Pittalà V, Amata E, Prezzavento O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med Chem 2018; 10:231-256. [PMID: 29185346 DOI: 10.4155/fmc-2017-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sigma-1 (σ1) receptor has been identified as a chaperone protein that interacts with other proteins, such as N-methyl-D-aspartate (NMDA) and opioid receptors, modulating their activity. σ1 receptor antagonists have been developed to obtain useful compounds for the treatment of psychoses, pain, drug abuse and cancer. Some interesting compounds such as E-5842 (5) and MS-377 (24), haloperidol and piperazine derivatives, respectively, were endowed with high affinity for σ1 receptors (Ki σ1 = 4 and 73 nM; Ki σ2 = 220 and 6900, respectively). They were developed for the treatment of psychotic disorders and 5 also underwent Phase II clinical trials suggesting interesting potential therapeutic applications. Here, σ1 receptor antagonists have been grouped based on chemical structure and reviewed according to structure-activity relationship and potential therapeutic role.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|