1
|
Chagas PS, Garcia CB, Leopoldino AM. Genomic Insights into Oral Cancer Highlight Mutant SIGMAR1 as a Critical Target to Overcome Chemoresistance. Biochem Genet 2025:10.1007/s10528-025-11108-0. [PMID: 40257692 DOI: 10.1007/s10528-025-11108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Oral cancer (OC) is a highly aggressive malignancy characterized by uncontrolled cell proliferation in the oral cavity. Recent studies have highlighted the role of Sigma-1 receptor (SIGMAR1) mutations in cancer progression, disrupting cellular homeostasis, altering gene and protein expression, and promoting drug resistance. However, its role in OC remains scarce. This study investigated SIGMAR1 mutations, expression profiles, and their potential link to drug resistance in OC. Using 2008 OC samples from the TCGA Pan-Cancer Atlas, we identified SIGMAR1 genetic alterations in 4% of cases, including missense mutations, deletions, and amplifications. In the HN13 OC cell line, Sanger sequencing revealed a novel heterozygous Asp-to-Gly (c.585C > G) missense mutation. Quantitative RT-PCR and Western blot analyses showed SIGMAR1 overexpression in HN13 cells compared to non-tumor oral keratinocytes (NOK-SI). Silencing SIGMAR1 increased HN13 cell sensitivity to cisplatin, indicating its role in drug resistance. This study is the first to report the c.585C > G mutation in SIGMAR1 and demonstrate its contribution to cisplatin resistance, a major chemotherapy challenge to OC treatment. These findings highlight SIGMAR1's critical role in OC pathogenesis and its potential as a therapeutic target to overcome chemoresistance. The results also pave the way for future research into RNA-based therapies and precision oncology interventions.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
2
|
Chagas PS, Garcia CB, Chagas HIS, Yeudall WA, Yu JC, Baban B, Leopoldino AM. Suppression of SIGMAR1 hinders oral cancer cell growth via modulation of mitochondrial Ca 2+ dynamics. Mol Biol Rep 2025; 52:220. [PMID: 39934454 DOI: 10.1007/s11033-025-10336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Oral cancer is the most common malignancy of the oral cavity and facial region, affecting the mucosal and epithelial surfaces in the mouth and lips. Unfortunately, OC is often associated with a high mortality rate and limited treatment options for patients. METHODS AND RESULTS Herein, we used in silico analysis and in vitro assays to investigate the impact of the Sigma-1 receptor (SIGMAR1) in OC progression by evaluating mitochondrial function, calcium signaling and clonogenic growth. First, the data from the TCGA pan-cancer analysis revealed that SIGMAR1 was overexpressed in OC versus healthy tissue and related to a worse survival rate. Furthermore, we demonstrated that SIGMAR1 silencing led to an increase in mitochondrial membrane potential, a reduction in cellular ATP levels, inhibition of Ca²⁺ influx, and a significant decrease in the clonogenic growth of OC cells. CONCLUSIONS Based on these findings, we suggest that SIGMAR1 may influence mitochondrial membrane potential and energy production by modulating Ca2+ uptake, which is critically important to cellular survival. In addition, SIGMAR1 knockdown may offer a potential strategy to be further explored as treatment for OC.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, SP, Brazil.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA.
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, SP, Brazil
| | - Henrique Izumi Shimaoka Chagas
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - W Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 30912, Augusta, GA, USA
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, 14040-903, SP, Brazil
| |
Collapse
|
3
|
Chagas PS, Garcia CB, Sousa LO, da Silva G, de Sousa GR, Marcelino RC, de Matos LL, Kowalski LP, Salles É, Wang L, Baban B, Leopoldino AM. SIGMAR1 Knockdown Enhances Oral Cancer Cell Chemosensitivity to Cisplatin via Decreased PD-L1 Expression. Int J Mol Sci 2024; 25:11856. [PMID: 39595926 PMCID: PMC11594079 DOI: 10.3390/ijms252211856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging evidence suggests that aberrant expression levels of Sigma1 (SIGMAR1, also known as sigma-1 receptor) have been implicated in the progression of various diseases, including cancer. However, its significance in oral cancer (OC) has not been thoroughly explored. To advance in this field, the present study aimed to investigate the impact of SIGMAR1 knockdown in oral cancer cells. To do so, we included in this study our cohort of human OC samples and OC cell lines, which were utilized for experimental verification through several in vitro assays. Our findings revealed that SIGMAR1 overexpression was associated with poor survival rates and positively correlated with PD-L1 overexpression in human oral cancer samples. Furthermore, SIGMAR1 inhibition led to a decrease in PD-L1 expression and sensitized oral cancer cells to cisplatin treatment by enhancing apoptosis. These results suggest that SIGMAR1 knockdown may present a promising strategy worthy of further exploration in the management of oral cancer.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (C.B.G.); (L.O.S.); (G.d.S.); (G.R.d.S.); (A.M.L.)
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.S.); (L.W.); (B.B.)
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (C.B.G.); (L.O.S.); (G.d.S.); (G.R.d.S.); (A.M.L.)
| | - Lucas Oliveira Sousa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (C.B.G.); (L.O.S.); (G.d.S.); (G.R.d.S.); (A.M.L.)
| | - Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (C.B.G.); (L.O.S.); (G.d.S.); (G.R.d.S.); (A.M.L.)
| | - Graziella Ribeiro de Sousa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (C.B.G.); (L.O.S.); (G.d.S.); (G.R.d.S.); (A.M.L.)
| | - Rodolfo Cabral Marcelino
- Laboratory of Molecular Modeling and Computer Simulation/MolMod-CS, Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil;
| | - Leandro Luongo de Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, University of São Paulo Medical School (ICESP HCFMUSP), São Paulo 01246-000, SP, Brazil;
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, SP, Brazil
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil;
- Head and Neck Surgery Department, A. C. Camargo Cancer Center, São Paulo 01525-001, SP, Brazil
| | - Évila Salles
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.S.); (L.W.); (B.B.)
| | - Lei Wang
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.S.); (L.W.); (B.B.)
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.S.); (L.W.); (B.B.)
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (C.B.G.); (L.O.S.); (G.d.S.); (G.R.d.S.); (A.M.L.)
| |
Collapse
|
4
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
5
|
Zhao F, Yang T, Zhou L, Li R, Liu J, Zhao J, Jia R. Sig1R activates extracellular matrix-induced bladder cancer cell proliferation and angiogenesis by combing β-integrin. Aging (Albany NY) 2023; 15:204721. [PMID: 37199665 DOI: 10.18632/aging.204721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
The extracellular matrix (ECM) regulates many biological functions involved in tumorigenesis and tumor development; however, the underlying mechanism remains unknown. Sigma 1 receptor (Sig1R), a stress-activated chaperone, regulates the crosstalk between the ECM and tumor cells and is related to the malignant characteristics of several tumors. However, the link between Sig1R overexpression and ECM during malignancy has not been established in bladder cancer (BC). Here, we analyzed the interaction of Sig1R and β-integrin in BC cells and its role in ECM-mediated cell proliferation and angiogenesis. We found that Sig1R forms a complex with β-integrin to promote ECM-mediated BC cell proliferation and angiogenesis, which enhances the aggressiveness of the tumor cells. This leads to poor survival. Our research revealed that Sig1R mediates the cross-talk between BC cells and their ECM microenvironment, thereby driving the progression of BC. Promisingly, targeting an ion channel function through Sig1R inhibition may serve as a potential approach for BC treatment.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
6
|
Proteogenomic landscape and clinical characterization of GH-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumors. Commun Biol 2022; 5:1304. [PMID: 36435867 PMCID: PMC9701206 DOI: 10.1038/s42003-022-04272-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The clinical characteristics of growth hormone (GH)-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumors (GHomas/somatotroph PitNETs) vary across patients. In this study, we aimed to integrate the genetic alterations, protein expression profiles, transcriptomes, and clinical characteristics of GHomas/somatotroph PitNETs to identify molecules associated with acromegaly characteristics. Targeted capture sequencing and copy number analysis of 36 genes and nontargeted proteomics analysis were performed on fresh-frozen samples from 121 sporadic GHomas/somatotroph PitNETs. Targeted capture sequencing revealed GNAS as the only driver gene, as previously reported. Classification by consensus clustering using both RNA sequencing and proteomics revealed many similarities between the proteome and the transcriptome. Gene ontology analysis was performed for differentially expressed proteins between wild-type and mutant GNAS samples identified by nontargeted proteomics and involved in G protein-coupled receptor (GPCR) pathways. The results suggested that GNAS mutations impact endocrinological features in acromegaly through GPCR pathway induction. ATP2A2 and ARID5B correlated with the GH change rate in the octreotide loading test, and WWC3, SERINC1, and ZFAND3 correlated with the tumor volume change rate after somatostatin analog treatment. These results identified a biological connection between GNAS mutations and the clinical and biochemical characteristics of acromegaly, revealing molecules associated with acromegaly that may affect medical treatment efficacy.
Collapse
|
7
|
Wang T, Zhang Y, Zhang X, Chen L, Zheng MQ, Zhang J, Brust P, Deuther-Conrad W, Huang Y, Jia H. Synthesis and characterization of the two enantiomers of a chiral sigma-1 receptor radioligand: (S)-(+)- and (R)-(-)-[18F]FBFP. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Wu NH, Ye Y, Wan BB, Yu YD, Liu C, Chen QJ. Emerging Benefits: Pathophysiological Functions and Target Drugs of the Sigma-1 Receptor in Neurodegenerative Diseases. Mol Neurobiol 2021; 58:5649-5666. [PMID: 34383254 DOI: 10.1007/s12035-021-02524-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
The sigma-1 receptor (Sig-1R) is encoded by the SIGMAR1 gene and is a nonopioid transmembrane receptor located in the mitochondrial-associated endoplasmic reticulum membrane (MAM). It helps to locate endoplasmic reticulum calcium channels, regulates calcium homeostasis, and acts as a molecular chaperone to control cell fate and participate in signal transduction. It plays an important role in protecting neurons through a variety of signaling pathways and participates in the regulation of cognition and motor behavior closely related to neurodegenerative diseases. Based on its neuroprotective effects, Sig-1R has now become a breakthrough target for alleviating Alzheimer's disease and other neurodegenerative diseases. This article reviews the most cutting-edge research on the function of Sig-1R under normal or pathologic conditions and target drugs of the sigma-1 receptor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ning-Hua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
- Basic Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yu Ye
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Bin-Bin Wan
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yuan-Dong Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Qing-Jie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
9
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
10
|
Potier-Cartereau M, Raoul W, Weber G, Mahéo K, Rapetti-Mauss R, Gueguinou M, Buscaglia P, Goupille C, Le Goux N, Abdoul-Azize S, Lecomte T, Fromont G, Chantome A, Mignen O, Soriani O, Vandier C. Potassium and Calcium Channel Complexes as Novel Targets for Cancer Research. Rev Physiol Biochem Pharmacol 2020; 183:157-176. [PMID: 32767122 DOI: 10.1007/112_2020_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intracellular Ca2+ concentration is mainly controlled by Ca2+ channels. These channels form complexes with K+ channels, which function to amplify Ca2+ flux. In cancer cells, voltage-gated/voltage-dependent Ca2+ channels and non-voltage-gated/voltage-independent Ca2+ channels have been reported to interact with K+ channels such as Ca2+-activated K+ channels and voltage-gated K+ channels. These channels are activated by an increase in cytosolic Ca2+ concentration or by membrane depolarization, which induces membrane hyperpolarization, increasing the driving force for Ca2+ flux. These complexes, composed of K+ and Ca2+ channels, are regulated by several molecules including lipids (ether lipids and cholesterol), proteins (e.g. STIM), receptors (e.g. S1R/SIGMAR1), and peptides (e.g. LL-37) and can be targeted by monoclonal antibodies, making them novel targets for cancer research.
Collapse
Affiliation(s)
| | - William Raoul
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | - Gunther Weber
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | - Karine Mahéo
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | | | | | - Paul Buscaglia
- LBAI UMR 1227, University of Brest, INSERM, Brest, France
| | - Caroline Goupille
- N2C UMR 1069, University of Tours, INSERM, CHRU de Tours, Tours, France
| | - Nelig Le Goux
- LBAI UMR 1227, University of Brest, INSERM, Brest, France
| | | | - Thierry Lecomte
- EA 7501 GICC, University of Tours, CHRU de Tours, Department of Hepato-Gastroenterology and Digestive Oncology, Tours, France
| | - Gaëlle Fromont
- N2C UMR 1069, University of Tours, INSERM, CHRU de Tours, Department of Pathology, Tours, France
| | | | - Olivier Mignen
- LBAI UMR 1227, University of Brest, INSERM, Brest, France
| | - Olivier Soriani
- iBV, INSERM, CNRS, University of the Côte d'Azur, Nice, France
| | | |
Collapse
|
11
|
Toussaint M, Deuther-Conrad W, Kranz M, Fischer S, Ludwig FA, Juratli TA, Patt M, Wünsch B, Schackert G, Sabri O, Brust P. Sigma-1 Receptor Positron Emission Tomography: A New Molecular Imaging Approach Using ( S)-(-)-[ 18F]Fluspidine in Glioblastoma. Molecules 2020; 25:E2170. [PMID: 32384802 PMCID: PMC7248975 DOI: 10.3390/molecules25092170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most devastating primary brain tumour characterised by infiltrative growth and resistance to therapies. According to recent research, the sigma-1 receptor (sig1R), an endoplasmic reticulum chaperone protein, is involved in signaling pathways assumed to control the proliferation of cancer cells and thus could serve as candidate for molecular characterisation of GBM. To test this hypothesis, we used the clinically applied sig1R-ligand (S)-(-)-[18F]fluspidine in imaging studies in an orthotopic mouse model of GBM (U87-MG) as well as in human GBM tissue. A tumour-specific overexpression of sig1R in the U87-MG model was revealed in vitro by autoradiography. The binding parameters demonstrated target-selective binding according to identical KD values in the tumour area and the contralateral side, but a higher density of sig1R in the tumour. Different kinetic profiles were observed in both areas, with a slower washout in the tumour tissue compared to the contralateral side. The translational relevance of sig1R imaging in oncology is reflected by the autoradiographic detection of tumour-specific expression of sig1R in samples obtained from patients with glioblastoma. Thus, the herein presented data support further research on sig1R in neuro-oncology.
Collapse
Affiliation(s)
- Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research site Leipzig, 04318 Leipzig, Germany; (W.D.-C.); (M.K.); (S.F.); (F.-A.L.); (P.B.)
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research site Leipzig, 04318 Leipzig, Germany; (W.D.-C.); (M.K.); (S.F.); (F.-A.L.); (P.B.)
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research site Leipzig, 04318 Leipzig, Germany; (W.D.-C.); (M.K.); (S.F.); (F.-A.L.); (P.B.)
- PET Imaging Center, University Hospital of North Norway (UNN), 9009 Tromsø, Norway
- Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, 9009 Tromsø, Norway
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research site Leipzig, 04318 Leipzig, Germany; (W.D.-C.); (M.K.); (S.F.); (F.-A.L.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research site Leipzig, 04318 Leipzig, Germany; (W.D.-C.); (M.K.); (S.F.); (F.-A.L.); (P.B.)
| | - Tareq A. Juratli
- Department of Neurosurgery, Technische Universität Dresden (TUD), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (T.A.J.); (G.S.)
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, 04318 Leipzig, Germany; (M.P.); (O.S.)
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany;
| | - Gabriele Schackert
- Department of Neurosurgery, Technische Universität Dresden (TUD), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (T.A.J.); (G.S.)
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, 04318 Leipzig, Germany; (M.P.); (O.S.)
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research site Leipzig, 04318 Leipzig, Germany; (W.D.-C.); (M.K.); (S.F.); (F.-A.L.); (P.B.)
| |
Collapse
|
12
|
Soriani O, Kourrich S. The Sigma-1 Receptor: When Adaptive Regulation of Cell Electrical Activity Contributes to Stimulant Addiction and Cancer. Front Neurosci 2019; 13:1186. [PMID: 31780884 PMCID: PMC6861184 DOI: 10.3389/fnins.2019.01186] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells’ electrical activity and calcium homeostasis—a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R’s role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.
Collapse
Affiliation(s)
| | - Saïd Kourrich
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Aydar E, Palmer C. Effect of Sigma-1 Receptors on Voltage-Gated Sodium Ion Channels in Colon Cancer Cell Line SW620. Bioelectricity 2019; 1:158-168. [PMID: 34471818 DOI: 10.1089/bioe.2019.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Voltage-gated sodium channels (VGSCs) play pivotal roles in the metastatic process in several cancers, including breast and colon cancers. Sigma-1 receptors are known to interact and form complexes with a number of ion channels aiding the delivery of the channel protein to the plasma membrane. Drugs that bind the Sigma-1 receptor are hypothesized to affect this process and reduce the delivery of the channel protein to the plasma membrane, in turn reducing the metastatic potential of the cells. Methods: Human colon cancer cell line SW620 was utilized as a model to investigate the interaction between the neonatal VGSC (nNav1.5) and the Sigma-1 receptor. This was accomplished using drugs that bind the Sigma-1 receptor, Sigma-1 receptor silencing, and antibodies that bind and block the nNav1.5 channel. Results: Sigma-1 receptor drugs SKF10047 and dimethyl tryptamine were found to alter (reduce) the adhesion of these cells by 46-54% at a 20 μM drug concentration. In a similar manner, gene silencing of the Sigma-1 receptor had a similar effect in reducing the adhesion of these cells to collagen-coated plates by 30%. The Sigma-1 receptor was found to be in a complex with nNav1.5 in SW620 cells, and Sigma-1 drugs or gene silencing of the Sigma-1 receptor results in a reduction of the surface expression of nNav1.5 by ∼50%. Culture of SW620 cells under hypoxic conditions resulted in upregulation of the Sigma-1 receptor and nNav1.5. In addition, surface expression of nNav1.5 protein increased under hypoxic culture conditions and this was inhibited by the application of SKF10047. Conclusions: It is proposed that in colon cancer cells, upregulated Sigma-1 receptor expression in hypoxia led to increased nNav1.5 protein expression at the plasma membrane and resulted in the cells switching to a more invasive state.
Collapse
Affiliation(s)
- Ebru Aydar
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Christopher Palmer
- School of Health Sciences, London Metropolitan University, London, United Kingdom
| |
Collapse
|
14
|
Yano H, Bonifazi A, Xu M, Guthrie DA, Schneck SN, Abramyan AM, Fant AD, Hong WC, Newman AH, Shi L. Pharmacological profiling of sigma 1 receptor ligands by novel receptor homomer assays. Neuropharmacology 2018; 133:264-275. [PMID: 29407216 PMCID: PMC5858991 DOI: 10.1016/j.neuropharm.2018.01.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/06/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The sigma 1 receptor (σ1R) is a structurally unique transmembrane protein that functions as a molecular chaperone in the endoplasmic reticulum (ER), and has been implicated in cancer, neuropathic pain, and psychostimulant abuse. Despite physiological and pharmacological significance, mechanistic underpinnings of structure-function relationships of σ1R are poorly understood, and molecular interactions of selective ligands with σ1R have not been elucidated. The recent crystallographic determination of σ1R as a homo-trimer provides the foundation for mechanistic elucidation at the molecular level. Here we report novel bioluminescence resonance energy transfer (BRET) assays that enable analyses of ligand-induced multimerization of σ1R and its interaction with BiP. Haloperidol, PD144418, and 4-PPBP enhanced σ1R homomer BRET signals in a dose dependent manner, suggesting their significant effects in stabilizing σ1R multimerization, whereas (+)-pentazocine and several other ligands do not. In non-denaturing gels, (+)-pentazocine significantly decreased whereas haloperidol increased the fraction of σ1R multimers, consistent with the results from the homomer BRET assay. Further, BRET assays examining heteromeric σ1R-BiP interaction revealed that (+)-pentazocine and haloperidol induced opposite trends of signals. From molecular modeling and simulations of σ1R in complex with the tested ligands, we identified initial clues that may lead to the differed responses of σ1R upon binding of structurally diverse ligands. By combining multiple in vitro pharmacological and in silico molecular biophysical methods, we propose a novel integrative approach to analyze σ1R-ligand binding and its impact on interaction of σ1R with client proteins.
Collapse
Affiliation(s)
- Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Stephanie N Schneck
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Ara M Abramyan
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Andrew D Fant
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - W Conrad Hong
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|