1
|
Steffen K, Laborde Q, Gunasekera S, Payne CD, Rosengren KJ, Riesgo A, Göransson U, Cárdenas P. Barrettides: A Peptide Family Specifically Produced by the Deep-Sea Sponge Geodia barretti. JOURNAL OF NATURAL PRODUCTS 2021; 84:3138-3146. [PMID: 34874154 PMCID: PMC8713285 DOI: 10.1021/acs.jnatprod.1c00938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/16/2023]
Abstract
Natural product discovery by isolation and structure elucidation is a laborious task often requiring ample quantities of biological starting material and frequently resulting in the rediscovery of previously known compounds. However, peptides are a compound class amenable to an alternative genomic, transcriptomic, and in silico discovery route by similarity searches of known peptide sequences against sequencing data. Based on the sequences of barrettides A and B, we identified five new barrettide sequences (barrettides C-G) predicted from the North Atlantic deep-sea demosponge Geodia barretti (Geodiidae). We synthesized, folded, and investigated one of the newly described barrettides, barrettide C (NVVPCFCVEDETSGAKTCIPDNCDASRGTNP, disulfide connectivity I-IV, II-III). Co-elution experiments of synthetic and sponge-derived barrettide C confirmed its native conformation. NMR spectroscopy and the anti-biofouling activity on larval settlement of the bay barnacle Amphibalanus improvisus (IC50 0.64 μM) show that barrettide C is highly similar to barrettides A and B in both structure and function. Several lines of evidence suggest that barrettides are produced by the sponge itself and not one of its microbial symbionts.
Collapse
Affiliation(s)
- Karin Steffen
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Quentin Laborde
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Sunithi Gunasekera
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Colton D. Payne
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - K. Johan Rosengren
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Ana Riesgo
- Department
of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United
Kingdom
- Department
of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales−CSIC, Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ulf Göransson
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Husargatan 3, 751
23 Uppsala, Sweden
| |
Collapse
|
2
|
Cahlíková L, Šafratová M, Hošťálková A, Chlebek J, Hulcová D, Breiterová K, Opletal L. Pharmacognosy and Its Role in the System of Profile Disciplines in Pharmacy. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20945450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The primal discipline from which pharmacy has developed can be considered as pharmacognosy. This review defines pharmacognosy while reflecting on the latest development and discourse about its justifiability in the educational system in pharmaceutical faculties and the history of development of new drugs under the influence of pharmacognosy. The article defines the status quo of the pharmacognosy area, or more precisely its parts (biology, chemistry, production, and technology) and discusses their connections. It underlines the legitimacy of application of natural drugs in therapy, which is undeniable, and proves that whether a new drug was prepared either synthetically or isolated from a natural source is not important. The overview follows the basic requirements of pharmacognosy, especially its methodology (usage of faster and more effective phyto-analytical methods, reverse pharmacology, and reverse pharmacognosy, in silico methods). Pharmacognosy is confronted by three major challenges in the 21st century that can push it significantly forward: ethnopharmacological sources evaluation, evaluation of nutraceuticals, and pharmacognosy of marine organisms. The educational system of universities should correspond to these new demands. However, in some areas the educational system is not prepared to face the challenges of the time. The basic requirement is to adopt a complex attitude to biogenic material and utilize the connections of this complexity in the teaching of modern pharmacy.
Collapse
Affiliation(s)
- Lucie Cahlíková
- ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akad, Heyrovského 1203, Czech Republic
| | - Marcela Šafratová
- ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akad, Heyrovského 1203, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akad, Heyrovského 1203, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akad, Heyrovského 1203, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akad, Heyrovského 1203, Czech Republic
| | - Kateřina Breiterová
- ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akad, Heyrovského 1203, Czech Republic
| | | |
Collapse
|
3
|
Bosseboeuf A, Baron A, Duval E, Gautier A, Sourdaine P, Auvray P. K092A and K092B, Two Peptides Isolated from the Dogfish ( Scyliorhinus canicula L.), with Potential Antineoplastic Activity Against Human Prostate and Breast Cancer Cells. Mar Drugs 2019; 17:md17120672. [PMID: 31795172 PMCID: PMC6950282 DOI: 10.3390/md17120672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
Cancer therapy is currently a major challenge within the research community, especially in reducing the side effects of treatments and to develop new specific strategies against cancers that still have a poor prognosis. In this context, alternative strategies using biotechnologies, such as marine peptides, have been developed based on their promise of effectivity associated with a low toxicity for healthy cells. The purpose of the present paper is to investigate the active mechanism of two peptides that were isolated from the epigonal tissue of the lesser spotted dogfish Scyliorhinus canicula L., identified NFDTDEQALEDVFSKYG (K092A) and EAPPEAAEEDEW (K092B) on the in vitro growth inhibition of ZR-75-1 mammary carcinoma cells and MDA-Pca-2b prostate cancer cells. The effects of the peptides on cell proliferation and cell death mechanisms were studied by the flow cytometry and immunofluorescence microscopy approaches. The results have shown the onset of both K092A- and K092B-induced early cytoskeleton changes, and then cell cycle perturbations followed by non-apoptotic cell death. Moreover, impedance perturbation and plasma membrane perforation in ZR-75-1 K092A-treated cell cultures and autophagy inhibition in MDA-Pca-2b K092B-treated cells have been observed. In conclusion, these two bioactive peptides from dogfish exhibit antineoplastic activity on the human prostate and breast cancer cells in vitro.
Collapse
Affiliation(s)
- Adrien Bosseboeuf
- Normandy University, University of Caen Normandy (UNICAEN), Sorbonne University, French National Museum of Natural History (MNHN), University of Antilles (UA), French National Centre for Scientific Research (CNRS), French National Institute for Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA) Research Unit, Sciences Department, CS14032, 14032 CAEN CEDEX 5, France; (A.B.); (A.G.)
| | - Amandine Baron
- Group CELLIS PHARMA, Parc Technopolitain Atalante Saint Malo, 35400 Saint Malo, France; (A.B.); (E.D.)
| | - Elise Duval
- Group CELLIS PHARMA, Parc Technopolitain Atalante Saint Malo, 35400 Saint Malo, France; (A.B.); (E.D.)
| | - Aude Gautier
- Normandy University, University of Caen Normandy (UNICAEN), Sorbonne University, French National Museum of Natural History (MNHN), University of Antilles (UA), French National Centre for Scientific Research (CNRS), French National Institute for Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA) Research Unit, Sciences Department, CS14032, 14032 CAEN CEDEX 5, France; (A.B.); (A.G.)
| | - Pascal Sourdaine
- Normandy University, University of Caen Normandy (UNICAEN), Sorbonne University, French National Museum of Natural History (MNHN), University of Antilles (UA), French National Centre for Scientific Research (CNRS), French National Institute for Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA) Research Unit, Sciences Department, CS14032, 14032 CAEN CEDEX 5, France; (A.B.); (A.G.)
- Correspondence: (P.S.); (P.A.); Tel.: +332-3156-5687 (P.S.); +332-9919-6970 (P.A.)
| | - Pierrick Auvray
- Group CELLIS PHARMA, Parc Technopolitain Atalante Saint Malo, 35400 Saint Malo, France; (A.B.); (E.D.)
- Correspondence: (P.S.); (P.A.); Tel.: +332-3156-5687 (P.S.); +332-9919-6970 (P.A.)
| |
Collapse
|