1
|
Suzuki-Nagata S, Mase N, Kozuka T, Ng JC, Suzuki T. Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content. Biosci Biotechnol Biochem 2025; 89:638-648. [PMID: 39741394 DOI: 10.1093/bbb/zbae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of E. gracilis under controlled culture conditions. Our research aimed to address this by investigating the role of nanotechnology in using fine to ultra-fine bubble CO2 (FB-CO2)-ranging from micrometer to nanometer size-as feeding material to promote cell harvest of E. gracilis Z in autotrophic culture conditions. Our findings suggest that feeding E. gracilis Z with FB-CO2 increased cell growth and chlorophyll content in autotrophic culture conditions. The promotion effect can be attributed to the provision of non-ionized carbon dioxide to the photosynthetic system, which was further enhanced by the dispersion of FB-CO2 in the culture media under acidic conditions.
Collapse
Affiliation(s)
- Shino Suzuki-Nagata
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Tomoki Kozuka
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Jack C Ng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Tetsuya Suzuki
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
2
|
Tsang ACH, Riedel-Kruse IH. Light-dependent switching between two flagellar beating states selects versatile phototaxis strategies in microswimmers. Proc Natl Acad Sci U S A 2024; 121:e2408082121. [PMID: 39536086 PMCID: PMC11588070 DOI: 10.1073/pnas.2408082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Microorganisms have evolved sophisticated sensor-actuator circuits to perform taxis in response to various environmental stimuli. How any given circuit can select between different taxis responses in noisy vs. saturated stimuli conditions is unclear. Here, we investigate how Euglena gracilis can select between positive vs. negative phototaxis under low vs. high light intensities, respectively. We propose three general selection mechanisms for phototactic microswimmers, and biophysical modeling demonstrates their effectiveness. Perturbation and high-speed imaging experiments show that of these three mechanisms, the "photoresponse inversion mechanism" is implemented in E. gracilis: a fast, light-intensity-dependent switching between two flagellar beat states responsible for swimming and turning causes positive vs. negative phototaxis at low vs. high light intensity via run-and-tumble vs. helical klinotaxis strategies, respectively. This coordinated beat-switching mechanism then also accounts for a larger set of previously reported E. gracilis behaviors; furthermore, it suggests key design principles for other natural as well as synthetic microswimmers.
Collapse
Affiliation(s)
- Alan C. H. Tsang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ85721
- Department of Applied Mathematics, University of Arizona, Tucson, AZ85721
- Department of Physics, University of Arizona, Tucson, AZ85721
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ85721
| |
Collapse
|
3
|
Yuan A, Sui F, Li S, Liu Y, Lu X, Lu Y, Fan Y. Transcriptome analysis of the effects of different carbon dioxide concentrations on paramylon accumulation in Euglena gracilis Z. BIORESOURCE TECHNOLOGY 2024; 393:130114. [PMID: 38013030 DOI: 10.1016/j.biortech.2023.130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Appropriate concentration of carbon dioxide (CO2) will promote algae growth and metabolism. Building upon this finding, the present study investigated the impact of different CO2 concentrations (5% and 20%) on the carbon sequestration capacity of E. gracilis through aeration culturing, employing a combination of physiological analyses and transcriptome analysis. The results demonstrated that under 5% CO2 concentration, the cell density of E. gracilis was 1.79 times higher than that achieved in an air culture condition, and the paramylon content of E. gracilis was found to be 6.18 times higher than that of the air group. Based on transcriptome analysis, the carbon metabolism of E. gracilis was discussed. Significant up-regulation expression of genes associated with carbon synthesis was validated by an increase in paramylon content. This study revealed that under 5% CO2 conditions, E. gracilis exhibited elevated growth rate and enhanced photosynthetic carbon assimilation efficiency.
Collapse
Affiliation(s)
- Anlong Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Fengyang Sui
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Siping Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xinxin Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Yang Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
4
|
Qin S, Wang K, Gao F, Ge B, Cui H, Li W. Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:131. [PMID: 37644516 PMCID: PMC10466707 DOI: 10.1186/s13068-023-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Microalgal biomass represents a sustainable bioresource for various applications, such as food, nutraceuticals, pharmaceuticals, feed, and other bio-based products. For decades, its mass production has attracted widespread attention and interest. The process of microalgal biomass production involves several techniques, mainly cultivation, harvesting, drying, and pollution control. These techniques are often designed and optimized to meet optimal growth conditions for microalgae and to produce high-quality biomass at acceptable cost. Importantly, mass production techniques are important for producing a commercial product in sufficient amounts. However, it should not be overlooked that microalgal biotechnology still faces challenges, in particular the high cost of production, the lack of knowledge about biological contaminants and the challenge of loss of active ingredients during biomass production. These issues involve the research and development of low-cost, standardized, industrial-scale production equipment and the optimization of production processes, as well as the urgent need to increase the research on biological contaminants and microalgal active ingredients. This review systematically examines the global development of microalgal biotechnology for biomass production, with emphasis on the techniques of cultivation, harvesting, drying and control of biological contaminants, and discusses the challenges and strategies to further improve quality and reduce costs. Moreover, the current status of biomass production of some biotechnologically important species has been summarized, and the importance of improving microalgae-related standards for their commercial applications is noted.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China.
| | - Kang Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, Netherlands
- Laboratory of Sustainable Food Processing, ETH Zürich, 8092, Zurich, Switzerland
- Laboratory of Nutrition and Metabolic Epigenetics, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Baosheng Ge
- College of Chemical Engineering and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
| |
Collapse
|
5
|
Bakku RK, Yamamoto Y, Inaba Y, Hiranuma T, Gianino E, Amarianto L, Mahrous W, Suzuki H, Suzuki K. New insights into raceway cultivation of Euglena gracilis under long-term semi-continuous nitrogen starvation. Sci Rep 2023; 13:7123. [PMID: 37130945 PMCID: PMC10154353 DOI: 10.1038/s41598-023-34164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
This study aimed to investigate the physiological responses of Euglena gracilis (E. gracilis) when subjected to semicontinuous N-starvation (N-) for an extended period in open ponds. The results indicated that the growth rates of E. gracilis under the N- condition (11 ± 3.3 g m-2 d-1) were higher by 23% compared to the N-sufficient (N+, 8.9 ± 2.8 g m-2 d-1) condition. Furthermore, the paramylon content of E.gracilis was above 40% (w/w) of dry biomass in N- condition compared to N+ (7%) condition. Interestingly, E. gracilis exhibited similar cell numbers regardless of nitrogen concentrations after a certain time point. Additionally, it demonstrated relatively smaller cell size over time, and unaffected photosynthetic apparatus under N- condition. These findings suggest that there is a tradeoff between cell growth and photosynthesis in E. gracilis, as it adapts to semi-continuous N- conditions without a decrease in its growth rate and paramylon productivity. Notably, to the author's knowledge, this is the only study reporting high biomass and product accumulation by a wild-type E. gracilis strain under N- conditions. This newly identified long-term adaptation ability of E. gracilis may offer a promising direction for the algal industry to achieve high productivity without relying on genetically modified organisms.
Collapse
Affiliation(s)
- Ranjith Kumar Bakku
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan.
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan.
| | - Yoshimasa Yamamoto
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Yu Inaba
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Taro Hiranuma
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Enrico Gianino
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Lawi Amarianto
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Waleed Mahrous
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Hideyuki Suzuki
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan.
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan.
| | - Kengo Suzuki
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
6
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA Panel), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera Gómez M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Ackerl R, Knutsen HK. Safety of paramylon as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e07995. [PMID: 37251502 PMCID: PMC10214223 DOI: 10.2903/j.efsa.2023.7995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on paramylon as a novel food (NF) pursuant to Regulation (EU) 2015/2283. Paramylon is a linear, unbranched beta-1,3-ᴅ-glucan polymer that is isolated from the single-cell microalga Euglena gracilis. The NF consists of at least 95% beta-glucan and minor amounts of protein, fat, ash and moisture. The applicant proposed to use the NF in food supplements, as a food ingredient added to a number of food categories and in foods for total diet replacement for weight control. In 2019, E. gracilis was attributed the qualified presumption of safety (QPS) status with the qualification 'for production purposes only', which includes food products based on microbial biomass of the microalga. Based on the information provided, E. gracilis is not expected to survive the manufacturing process. The submitted toxicity studies did not raise safety concerns. No adverse effects were observed in the subchronic toxicity studies, up to the highest dose tested, i.e. 5,000 mg NF/kg body weight per day. In view of the QPS status of the source of the NF, supported by the manufacturing process, compositional data and lack of toxicity observed in the toxicity studies, the Panel has no safety concerns and concludes that the NF, i.e. paramylon, is safe under the proposed uses and use levels.
Collapse
|
7
|
Ryan C, Cao S, Sekiguchi M, Haraguchi A, Murata A, Nakashima A, Suzuki K, Shibata S. Euglena gracilis-derived β-glucan paramylon entrains the peripheral circadian clocks in mice. Front Nutr 2023; 10:1113118. [PMID: 37051126 PMCID: PMC10084324 DOI: 10.3389/fnut.2023.1113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Paramylon, a β-1,3-glucan storage polysaccharide derived from Euglena gracilis, has various health benefits, such as anti-obesity effects and modulation of immune function. However, whether paramylon intake affects the circadian clock remains unknown. In this study, we examined the effect of paramylon intake on the circadian clock. The results showed that the paramylon intake regulated peripheral clocks in mice. Furthermore, cecal pH and short-chain fatty acid concentrations after paramylon intake were measured. The correlation between changes in the expression of clock-related genes and alterations in the intestinal environment was confirmed. In addition, peripheral clock entrainment by paramylon intake was not observed in antibiotic-treated mice whose gut microbiota was weakened. These findings suggest that the regulation of the circadian clock by paramylon intake was mediated by changes in gut microbiota. In addition, the entraining effect of paramylon intake was also confirmed in mice bred under conditions mimicking social jetlag, which implies that paramylon intake may contribute to recovery from social jetlag. Thus, the appropriate consumption of paramylon may have a beneficial effect on health from a chrono-nutritional perspective.
Collapse
Affiliation(s)
- Conn Ryan
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Siyuan Cao
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Masataka Sekiguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- *Correspondence: Shigenobu Shibata,
| |
Collapse
|
8
|
Kim S, Im H, Yu J, Kim K, Kim M, Lee T. Biofuel production from Euglena: Current status and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2023; 371:128582. [PMID: 36610485 DOI: 10.1016/j.biortech.2023.128582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Keunho Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Schaerer LG, Wu R, Putman LI, Pearce JM, Lu T, Shonnard DR, Ong RG, Techtmann SM. Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food. Trends Biotechnol 2023; 41:184-196. [PMID: 36058768 DOI: 10.1016/j.tibtech.2022.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 01/24/2023]
Abstract
Most polyethylene terephthalate (PET) plastic waste is landfilled or pollutes the environment. Additionally, global food production must increase to support the growing population. This article explores the feasibility of using microorganisms in an industrial system that upcycles PET into edible microbial protein powder to solve both problems simultaneously. Many microorganisms can utilize plastics as feedstock, and the resultant microbial biomass contains fats, nutrients, and proteins similar to those found in human diets. While microbial degradation of PET is promising, biological PET depolymerization is too slow to resolve the global plastic crisis and projected food shortages. Evidence reviewed here suggests that by coupling chemical depolymerization and biological degradation of PET, and using cooperative microbial communities, microbes can efficiently convert PET waste into food.
Collapse
Affiliation(s)
- Laura G Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Ruochen Wu
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Lindsay I Putman
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Joshua M Pearce
- Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - David R Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Rebecca G Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
10
|
Ishikawa M, Nomura T, Tamaki S, Ozasa K, Suzuki T, Toyooka K, Hirota K, Yamada K, Suzuki K, Mochida K. CRISPR/Cas9-mediated generation of non-motile mutants to improve the harvesting efficiency of mass-cultivated Euglena gracilis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2042-2044. [PMID: 35916139 PMCID: PMC9616515 DOI: 10.1111/pbi.13904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Marumi Ishikawa
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
| | - Toshihisa Nomura
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Shun Tamaki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
| | - Kazunari Ozasa
- Advanced Laser Processing Research TeamRIKEN Center for Advanced PhotonicsWakoJapan
| | - Tomoko Suzuki
- Mass Spectrometry and Microscopy Unit, Technology Platform DivisionRIKEN Center for Sustainable Resource ScienceKanagawaJapan
- Center for Gene ResearchNagoya UniversityAichiJapan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, Technology Platform DivisionRIKEN Center for Sustainable Resource ScienceKanagawaJapan
| | - Kikue Hirota
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
| | - Koji Yamada
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
- euglena Co., Ltd.TokyoJapan
| | - Kengo Suzuki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
- euglena Co., Ltd.TokyoJapan
| | - Keiichi Mochida
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for ScienceTechnology and Innovation HubYokohamaJapan
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
- Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
- School of Information and Data SciencesNagasaki UniversityNagasakiJapan
| |
Collapse
|
11
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
12
|
Mixotrophic Cultivation Optimization of Microalga Euglena pisciformis AEW501 for Paramylon Production. Mar Drugs 2022; 20:md20080518. [PMID: 36005522 PMCID: PMC9410504 DOI: 10.3390/md20080518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Euglena, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of Euglena has impeded paramylon exploitation and utilization. This study established an optimal cultivation method of Euglena pisciformis AEW501 for paramylon production under mixotrophic cultivation. The results showed that the optimum mixotrophic conditions were 20 °C, pH 7.0, and 63 μmol photons m-2∙s-1, and the concentrations of sodium acetate and diammonium hydrogen phosphate were 0.98 g L-1 and 0.79 g L-1, respectively. The maximal biomass and paramylon content were 0.72 g L-1 and 71.39% of dry weight. The algal powder contained more than 16 amino acids, 6 vitamins, and 10 unsaturated fatty acids under the optimal cultivation. E. pisciformis paramylon was pure β-1,3-glucan-type polysaccharide (the purity was up to 99.13 ± 0.61%) composed of linear glucose chains linked together by β-1,3-glycosidic bonds. These findings present a valuable basis for the industrial exploitation of paramylon with E. pisciformis AEW501.
Collapse
|
13
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga Euglena gracilis. Angew Chem Int Ed Engl 2022; 61:e202203175. [PMID: 35325497 PMCID: PMC9321709 DOI: 10.1002/anie.202203175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/27/2022]
Abstract
By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.g., euglenatide B exhibiting IC50 values of 4.3 μM in Aspergillus fumigatus and 0.29 μM in MCF-7 breast cancer cells. In an unprecedented convergence of non-ribosomal peptide synthetase and polyketide synthase assembly-line biosynthesis between unicellular species and the metazoan kingdom, euglenatides bear resemblance to nemamides from Caenorhabditis elegans and inhibited both producing organisms E. gracilis and C. elegans. By molecular network analysis, we detected over forty euglenatide-like metabolites in E. gracilis, E. sanguinea and E. mutabilis, suggesting an important biological role for these natural products.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative MedicineCollege of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammam31441Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Jesús Martín
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Fernando Reyes
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Olga Genilloud
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaAvenida del Conocimiento 3418016ArmillaGranadaSpain
| | - Léa Gourbeyre
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Thierry Gefflaut
- Université Clermont AuvergneClermont Auvergne INP, CNRS, Institut Pascal63000Clermont-FerrandFrance
| | - Hanne Carlsson
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Alexei Maklakov
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Ellis O'Neill
- School of ChemistryUniversity of NottinghamNottinghamNG7 2RDUK
| | - Robert A. Field
- Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | | | - Maria O'Connell
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - A. Ganesan
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
14
|
Aldholmi M, Ahmad R, Carretero‐Molina D, Pérez‐Victoria I, Martín J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, Maklakov A, O'Neill E, Field RA, Wilkinson B, O'Connell M, Ganesan A. Euglenatides, Potent Antiproliferative Cyclic Peptides Isolated from the Freshwater Photosynthetic Microalga
Euglena gracilis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammed Aldholmi
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Rizwan Ahmad
- Natural Products and Alternative Medicine College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Daniel Carretero‐Molina
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Olga Genilloud
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Avenida del Conocimiento 34 18016 Armilla Granada Spain
| | - Léa Gourbeyre
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Thierry Gefflaut
- Université Clermont Auvergne Clermont Auvergne INP, CNRS, Institut Pascal 63000 Clermont-Ferrand France
| | - Hanne Carlsson
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Alexei Maklakov
- School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Ellis O'Neill
- School of Chemistry University of Nottingham Nottingham NG7 2RD UK
| | - Robert A. Field
- Manchester Institute of Biotechnology University of Manchester Manchester M1 7DN UK
| | | | - Maria O'Connell
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - A. Ganesan
- School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
15
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
16
|
Upreti D, Ishiguro S, Robben N, Nakashima A, Suzuki K, Comer J, Tamura M. Oral Administration of Water Extract from Euglena gracilis Alters the Intestinal Microbiota and Prevents Lung Carcinoma Growth in Mice. Nutrients 2022; 14:nu14030678. [PMID: 35277036 PMCID: PMC8839094 DOI: 10.3390/nu14030678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
The antitumor effects of a partially purified water extract from Euglena gracilis (EWE) and EWE treated by boiling (bEWE) were evaluated using orthotopic lung cancer syngeneic mouse models with Lewis lung carcinoma (LLC) cells. Daily oral administration of either EWE or bEWE started three weeks prior to the inoculation of LLC cells significantly attenuated tumor growth as compared to the phosphate buffered saline (PBS) control, and the attenuation was further enhanced by bEWE. The intestinal microbiota compositions in both extract-treated groups were more diverse than that in the PBS group. Particularly, a decrease in the ratio of Firmicutes to Bacteroidetes and significant increases in Akkermansia and Muribaculum were observed in two types of EWE-treated groups. Fecal microbiota transplantation (FMT) using bEWE-treated mouse feces attenuated tumor growth to an extent equivalent to bEWE treatment, while tumor growth attenuation by bEWE was abolished by treatment with an antibiotic cocktail. These studies strongly suggest that daily oral administration of partially purified water extracts from Euglena gracilis attenuates lung carcinoma growth via the alteration of the intestinal microbiota.
Collapse
Affiliation(s)
- Deepa Upreti
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (D.U.); (S.I.); (N.R.); (J.C.)
| | - Susumu Ishiguro
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (D.U.); (S.I.); (N.R.); (J.C.)
| | - Nicole Robben
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (D.U.); (S.I.); (N.R.); (J.C.)
| | - Ayaka Nakashima
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan; (A.N.); (K.S.)
| | - Kengo Suzuki
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan; (A.N.); (K.S.)
| | - Jeffrey Comer
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (D.U.); (S.I.); (N.R.); (J.C.)
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (D.U.); (S.I.); (N.R.); (J.C.)
- Correspondence: ; Tel.: +1-(785)-532-4825; Fax: +1-(785)-532-4557
| |
Collapse
|
17
|
Umei M, Akazawa H, Saga-Kamo A, Yagi H, Liu Q, Matsuoka R, Kadowaki H, Shindo A, Nakashima A, Yasuda K, Suzuki K, Komuro I. Oral Administration of Euglena Gracilis Z Alleviates Constipation and Cardiac Dysfunction in a Mouse Model of Isoproterenol-Induced Heart Failure. Circ Rep 2021; 4:83-91. [PMID: 35178484 PMCID: PMC8811226 DOI: 10.1253/circrep.cr-21-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
Background:
Patients with heart failure (HF) often experience gastrointestinal problems such as constipation, diarrhea, and disturbances to drug absorption. In HF, hypoperfusion and congestion cause structural and functional changes in the gut, which, in turn, lead to impaired cardiac function.
Euglena gracilis
Z (hereafter “Euglena”), called
Midorimushi
in Japanese, is a microalga that is used as a food or nutritional supplement. It is unclear whether Euglena is beneficial for bowel habitus and cardiac function in subjects with HF. Methods and Results:
We injected C57BL/6 male mice subcutaneously with isoproterenol (ISO) (20 mg/kg/day) for 7 days to examine bowel movement in HF. Euglena was orally administered to mice on an
ad libitum-feeding to a normal chow containing 2% dietary mixture. ISO induced a decrease in bowel movement and an increase in fecal retention in the cecum, as well as a decrease in left ventricular (LV) contraction. Euglena accelerated intestinal transit, relieved fecal retention, and prevented the alterations in gut pathology in ISO-treated mice. Euglena also suppressed ISO-induced decreases in LV contraction, although it had no significant effect on LV hypertrophy. Conclusions:
The results suggested that oral administration of Euglena alleviated constipation and cardiac dysfunction in a mouse model of ISO-induced HF, and highlight the potential clinical benefit of Euglena in patients with HF in preventing constipation and contractile deterioration.
Collapse
Affiliation(s)
- Masahiko Umei
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Akiko Saga-Kamo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hiroki Yagi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Qing Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Ryo Matsuoka
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hiroshi Kadowaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Akito Shindo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | | | | | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
18
|
Antiviral Activity and Underlying Action Mechanism of Euglena Extract against Influenza Virus. Nutrients 2021; 13:nu13113911. [PMID: 34836165 PMCID: PMC8624635 DOI: 10.3390/nu13113911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
It is difficult to match annual vaccines against the exact influenza strain that is spreading in any given flu season. Owing to the emergence of drug-resistant viral strains, new approaches for treating influenza are needed. Euglena gracilis (hereinafter Euglena), microalga, used as functional foods and supplements, have been shown to alleviate symptoms of influenza virus infection in mice. However, the mechanism underlying the inhibitory action of microalgae against the influenza virus is unknown. Here, we aimed to study the antiviral activity of Euglena extract against the influenza virus and the underlying action mechanism using Madin–Darby canine kidney (MDCK) cells. Euglena extract strongly inhibited infection by all influenza virus strains examined, including those resistant to the anti-influenza drugs oseltamivir and amantadine. A time-of-addition assay revealed that Euglena extract did not affect the cycle of virus replication, and cell pretreatment or prolonged treatment of infected cells reduced the virus titer. Thus, Euglena extract may activate the host cell defense mechanisms, rather than directly acting on the influenza virus. Moreover, various minerals, mainly zinc, in Euglena extract were found to be involved in the antiviral activity of the extract. In conclusion, Euglena extract could be a potent agent for preventing and treating influenza.
Collapse
|
19
|
Kim DH, Kim JY, Oh JJ, Jeon MS, An HS, Jin CR, Choi YE. A strategic approach to apply bacterial substances for increasing metabolite productions of Euglena gracilis in the bioreactor. Appl Microbiol Biotechnol 2021; 105:5395-5406. [PMID: 34173846 DOI: 10.1007/s00253-021-11412-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
Bacterial extracellular polymeric substances (EPS) are promising materials that have a role in enhancing growth, metabolite production, and harvesting efficiency. However, the validity of the EPS effectiveness in scale-up cultivation of microalgae is still unknown. Therefore, in order to verify whether the bacterial metabolites work in the scale-up fermentation of microalgae, we conducted a bioreactor fermentation following the addition of bacterial EPS derived from the marine bacterium, Pseudoalteromonas sp., to Euglena gracilis. Various culture strategies (i.e., batch, glucose fed-batch, and glucose and EPS fed-batch) were conducted to maximize metabolite production of E. gracilis in scale-up cultivation. Consequently, biomass and paramylon concentrations in the continuous glucose and EPS-treated culture were enhanced by 3.0-fold and 4.2-fold (36.1 ± 1.4 g L-1 and 25.6 ± 0.1 g L-1), respectively, compared to the non-treated control (12.0 ± 0.3 g L-1 and 6.1 ± 0.1 g L-1). Also, the supplementation led to the enhanced concentrations of α-tocopherols and total fatty acids by 3.7-fold and 2.8-fold, respectively. The harvesting efficiency was enhanced in EPS-supplemented cultivation due to the flocculation of E. gracilis. To the best of our knowledge, this is the first study that verifies the effect of bacterial EPS in scale-up cultivation of microalgae. Also, our results showed the highest paramylon productivity than any other previous reports. The results obtained in this study showed that the scale-up cultivation of E. gracilis using bacterial EPS has the potential to be used as a platform to guide further increases in scale and in the industrial environment. KEY POINTS: Effect of EPS on Euglena gracilis fermentation was tested in bioreactor scale. EPS supplement was effective for the paramylon, α-tocopherol, and lipid production. EPS supplement induced the flocculation of E. gracilis.
Collapse
Affiliation(s)
- Da Hee Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hye Suck An
- Marine Biology Research Division, National Marine Biodiversity Institute of Korea, Chungcheongnam-do, Seocheon, 33662, Republic of Korea
| | - Cho Rok Jin
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Haraguchi Y, Shimizu T. Three-dimensional tissue fabrication system by co-culture of microalgae and animal cells for production of thicker and healthy cultured food. Biotechnol Lett 2021; 43:1117-1129. [PMID: 33689062 DOI: 10.1007/s10529-021-03106-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES "Cultured food" is focused worldwide as "the third stage in meat production system" after hunting and livestock farming, and a sustainable food production system. In this study, we attempted to fabricate a three-dimensional (3-D) tissue by co-cultivation of animal cells with photosynthetic autotrophic microalgae so as to produce thicker and healthy cultured foods. RESULTS Metabolism and damage of co-cultured tissues fabricated by microalgae, Chlorella vulgaris (C. vulgaris), and C2C12 cells were compared to monoculture tissues fabricated by C2C12 animal cells alone. Although the metabolism of monoculture tissue showed anaerobic respiration (ratio of lactate production to glucose consumption, LG ratio: 2.01 ± 0.15), that of the co-culture tissue partially changed to efficient aerobic respiration (LG ratio: 1.58 ± 0.14). In addition, the amount of ammonia in the culture media decreased markedly by co-cultivation. The release of lactate dehydrogenase from the thicker tissue was one-seventh in the co-cultivation, showing improved tissue damage. The co-cultivation with microalgae improved the culture condition of thicker tissues, resulting in the fabrication/maintenance of 200-400 µm-thickness tissues. The co-cultured tissue fabricated by microalgae and animal cells was not only rich in nutrients but also enabled thicker tissue fabrication without tissue damage as compared to tissue fabricated by animal cells alone. CONCLUSIONS This tissue fabrication system by co-culture of microalgae and animal cells will be a valuable tool for the production of thicker and healthy cultured food.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
21
|
Nakashima A, Sasaki K, Sasaki D, Yasuda K, Suzuki K, Kondo A. The alga Euglena gracilis stimulates Faecalibacterium in the gut and contributes to increased defecation. Sci Rep 2021; 11:1074. [PMID: 33441865 PMCID: PMC7806897 DOI: 10.1038/s41598-020-80306-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The alga Euglena gracilis (E. gracilis) has recently gained attention as a health food, but its effects on human gut microbiota remain unknown. This study aimed to determine the effect of E. gracilis on gut microbiota and defecation due to modulation of microbiota composition in vitro and in vivo. The in vitro model simulating human colonic microbiota revealed that E. gracilis addition stimulated the growth of commensal Faecalibacterium. Further, E. gracilis addition enhanced butyrate production by Faecalibacterium prausnitzii. Paramylon, an insoluble dietary fibre that accumulates in E. gracilis and is the main component of E. gracilis, did not stimulate Faecalibacterium growth in vitro. Daily ingestion of 2 g of E. gracilis for 30 days increased bowel movement frequency as well as stool volume in 28 human participants. Collectively, these findings indicate that E. gracilis components other than paramylon, stimulate the growth of Faecalibacterium to improve digestive health as well as promote defecation by increasing butyrate production.
Collapse
Affiliation(s)
- Ayaka Nakashima
- The Research and Development Department, euglena Co., Ltd., Tokyo, 108-0014, Japan.
| | - Kengo Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Daisuke Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Kosuke Yasuda
- The Research and Development Department, euglena Co., Ltd., Tokyo, 108-0014, Japan
| | - Kengo Suzuki
- The Research and Development Department, euglena Co., Ltd., Tokyo, 108-0014, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
22
|
Application of electrical treatment on Euglena gracilis for increasing paramylon production. Appl Microbiol Biotechnol 2021; 105:1031-1039. [PMID: 33415369 DOI: 10.1007/s00253-020-11033-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Paramylon also called β-1,3-glucan is a value-added product produced from Euglena gracilis. Recently, researchers have developed various strategies for the enhanced paramylon production, among which electrical treatment for microbial stimulation can be an alternative owing to the applicability to large-scale cultivation. In this study, we applied the electrical treatment for enhanced paramylon production and found the proper treatment conditions. Under the treatment with platinum electrodes at 10 mA, the paramylon production of treated cells was significantly increased about 2.5-fold, compared to those of the untreated cells, although the density of cells was maintained due to considerable stress. The size of treated cells became larger, possibly due to the increased level of paramylon production within the cells. Accordingly, the contents of glucose uptake, glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), and uridine diphosphoglucose (UDPG) were shifted to appropriate states for the process of paramylon synthesis under the treatment. The increased level of transcripts encoding glucan synthase-like 2 (EgGSL2) was also confirmed via droplet digital PCR (ddPCR) under the treatment. Overall, this study makes a major contribution to research on electrical stimulation and provides new insights into E. gracilis metabolism like paramylon synthesis. KEY POINTS: • Electrical treatment induced the paramylon production and morphological change of Euglena gracilis. • The glucose uptake of E. gracilis was increased during the electrical treatment, fueling the paramylon synthesis.
Collapse
|
23
|
Nakashima A, Yasuda K, Murata A, Suzuki K, Miura N. Effects of Euglena gracilis Intake on Mood and Autonomic Activity under Mental Workload, and Subjective Sleep Quality: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:nu12113243. [PMID: 33113956 PMCID: PMC7690740 DOI: 10.3390/nu12113243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
While the human body maintains homeostasis by altering the balance in the autonomic nervous, endocrine, and immune systems, a prolonged imbalance in these systems can result in physical and mental symptoms, including a decline in sleep quality and work efficiency. Euglena gracilis (Euglena) is a single-celled microalga with the properties of both plants and animals and contains abundant nutrients, such as vitamins, minerals, amino acids, and fatty acids, which have various beneficial health effects. This study evaluated the effects of Euglena intake on the mood states and stress coping under mental workload tasks, and subjective sleep quality. We assigned men and women aged 20 to 64 years to Euglena and placebo intake groups, and measured indices related to the autonomic nervous system, psychological states, and sleep quality together with the application of workload stress before food intake, and 4, 8, and 12 weeks after commencing intake. Euglena intake regulated the autonomic nervous system under a workload and improved psychological parameters and sleep conditions. These results indicate that the consumption of Euglena may regulate the balance of the autonomic nervous system during stress and may have a favorable effect on psychological status and sleep quality.
Collapse
Affiliation(s)
- Ayaka Nakashima
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
- Correspondence: ; Tel.: +81-3-5442-4907
| | - Kosuke Yasuda
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Ako Murata
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Kengo Suzuki
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Naoki Miura
- Miura Clinic, Medical Corporation Kanonkai, Osaka 530-0044, Japan;
| |
Collapse
|
24
|
Muramatsu S, Atsuji K, Yamada K, Ozasa K, Suzuki H, Takeuchi T, Hashimoto-Marukawa Y, Kazama Y, Abe T, Suzuki K, Iwata O. Isolation and characterization of a motility-defective mutant of Euglena gracilis. PeerJ 2020; 8:e10002. [PMID: 33062431 PMCID: PMC7528813 DOI: 10.7717/peerj.10002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022] Open
Abstract
Euglena gracilis is a green photosynthetic microalga that swims using its flagellum. This species has been used as a model organism for over half a century to study its metabolism and the mechanisms of its behavior. The development of mass-cultivation technology has led to E. gracilis application as a feedstock in various products such as foods. Therefore, breeding of E. gracilis has been attempted to improve the productivity of this feedstock for potential industrial applications. For this purpose, a characteristic that preserves the microalgal energy e.g., reduces motility, should be added to the cultivars. The objective of this study was to verify our hypothesis that E. gracilis locomotion-defective mutants are suitable for industrial applications because they save the energy required for locomotion. To test this hypothesis, we screened for E. gracilis mutants from Fe-ion-irradiated cell suspensions and established a mutant strain,M 3 - ZFeL, which shows defects in flagellum formation and locomotion. The mutant strain exhibits a growth rate comparable to that of the wild type when cultured under autotrophic conditions, but had a slightly slower growth under heterotrophic conditions. It also stores 1.6 times the amount of paramylon, a crystal of β-1,3-glucan, under autotrophic culture conditions, and shows a faster sedimentation compared with that of the wild type, because of the deficiency in mobility and probably the high amount of paramylon accumulation. Such characteristics make E. gracilis mutant cells suitable for cost-effective mass cultivation and harvesting.
Collapse
Affiliation(s)
- Shuki Muramatsu
- Department of Health Science, Showa Women's University, Tokyo, Japan
- euglena Co., Ltd., Tokyo, Japan
| | - Kohei Atsuji
- euglena Co., Ltd., Tokyo, Japan
- Baton Zone Program, RIKEN, Saitama, Japan
| | - Koji Yamada
- euglena Co., Ltd., Tokyo, Japan
- Baton Zone Program, RIKEN, Saitama, Japan
| | - Kazunari Ozasa
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, Saitama, Japan
| | | | | | | | - Yusuke Kazama
- RIKEN Nishina Center, Saitama, Japan
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | | | - Kengo Suzuki
- euglena Co., Ltd., Tokyo, Japan
- Baton Zone Program, RIKEN, Saitama, Japan
| | | |
Collapse
|
25
|
Wu M, Li J, Qin H, Lei A, Zhu H, Hu Z, Wang J. Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca 3(PO 4) 2, Mg 3(PO 4) 2, and derivatives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:98. [PMID: 32514310 PMCID: PMC7260821 DOI: 10.1186/s13068-020-01734-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Microalgae are widely be used in carbon sequestration, food supplements, natural pigments, polyunsaturated fatty acids, biofuel applications, and wastewater treatment. However, the difficulties incurred in algae cell separation and harvesting, and the exorbitant cost required to overcome these challenges, are the primary limitations to large-scale industrial application of microalgae technology. RESULTS Herein, we explore the potential of inducing flocculation by adjusting the pH for pre-concentrating Euglena gracilis. Our results demonstrate that flocculation can be induced by increasing the medium pH to 8.5; however, most of the algae cells were broken by increasing the pH > 10. Magnesium phosphate, calcium phosphate, and their derivatives precipitation jointly led to flocculation, although calcium phosphate and its derivatives precipitation had a greater effect. CONCLUSIONS This study demonstrates that pH treatment-induced flocculation is efficient and feasible for the pre-concentration of E. gracilis under a pilot-scale culture system. Moreover, it also maintained the microalgae cells' integrity, chlorophyll production, and increased paramylon production. These findings provide a theoretical basis for reducing the cost of large-scale E. gracilis harvesting; as well as provide a reference for harvesting other microalgae.
Collapse
Affiliation(s)
- Mingcan Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041 China
| | - Jing Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041 China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
26
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Engel KH, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Ackerl R, Knutsen HK. Safety of dried whole cell Euglena gracilis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2020; 18:e06100. [PMID: 37649492 PMCID: PMC10464689 DOI: 10.2903/j.efsa.2020.6100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of dried whole cell Euglena gracilis as a novel food (NF) pursuant to Regulation (EU) 2015/2283. E. gracilis is a single-cell microalga which occurs widely in nature and is commonly found in freshwater habitats. The NF, the dried biomass of E. gracilis, is produced by fermentation and its major constituent (> 50%) is a β-glucan polysaccharide. The applicant proposed to use the NF in food supplements, in foods for total diet replacement for weight control and as a food ingredient added to a number of food products. The target population proposed by the applicant is the general population, except for food supplements and for foods for total diet replacement for which the target population is the general population from 12 months of age onwards. In 2019, E. gracilis was attributed the qualified presumption of safety (QPS)-status with the qualification 'for production purposes only', which includes food products based on microbial biomass of the microalga. Based on the information provided, E. gracilis is not expected to survive the manufacturing process. The submitted toxicity studies did not raise safety concerns. No adverse effects were observed in the subchronic toxicity study, up to the highest dose tested, i.e. 3,300 mg NF/kg body weight, considered as the no observed adverse effect level (NOAEL). The margins of exposure between this dose and the high (95th percentile) intake estimates, range from 33 for infants to 192 for adults. The Panel considers that in view of the QPS status of the source of the NF, supported by the compositional data and lack of toxicity observed in the 90-day study, the margins of exposure are sufficient. The Panel considers that the NF, i.e. dried whole cell Euglena gracilis, is safe at the proposed uses and use levels.
Collapse
|
27
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017-2019). EFSA J 2020; 18:e05966. [PMID: 32874212 PMCID: PMC7448045 DOI: 10.2903/j.efsa.2020.5966] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The qualified presumption of safety (QPS) was developed to provide a safety pre-assessment within EFSA for microorganisms. Strains belonging to QPS taxonomic units (TUs) still require an assessment based on a specific data package, but QPS status facilitates fast track evaluation. QPS TUs are unambiguously defined biological agents assessed for the body of knowledge, their safety and their end use. Safety concerns are, where possible, to be confirmed at strain or product level, and reflected as 'qualifications'. Qualifications need to be evaluated at strain level by the respective EFSA units. The lowest QPS TU is the species level for bacteria, yeasts and protists/algae, and the family for viruses. The QPS concept is also applicable to genetically modified microorganisms used for production purposes if the recipient strain qualifies for the QPS status, and if the genetic modification does not indicate a concern. Based on the actual body of knowledge and/or an ambiguous taxonomic position, the following TUs were excluded from the QPS assessment: filamentous fungi, oomycetes, streptomycetes, Enterococcus faecium, Escherichia coli and bacteriophages. The list of QPS-recommended biological agents was reviewed and updated in the current opinion and therefore now becomes the valid list. For this update, reports on the safety of previously assessed microorganisms, including bacteria, yeasts and viruses (the latter only when used for plant protection purposes) were reviewed, following an Extensive Literature Search strategy. All TUs previously recommended for 2016 QPS list had their status reconfirmed as well as their qualifications. The TUs related to the new notifications received since the 2016 QPS opinion was periodically evaluated for QPS status in the Statements of the BIOHAZ Panel, and the QPS list was also periodically updated. In total, 14 new TUs received a QPS status between 2017 and 2019: three yeasts, eight bacteria and three algae/protists.
Collapse
|
28
|
Häder D. On the Way to Mars-Flagellated Algae in Bioregenerative Life Support Systems Under Microgravity Conditions. FRONTIERS IN PLANT SCIENCE 2020; 10:1621. [PMID: 31969888 PMCID: PMC6960400 DOI: 10.3389/fpls.2019.01621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
For long-term manned interplanetary missions it is not feasible to carry the necessary oxygen, food, and water to sustain the astronauts. In addition, the CO2 exhaled by the astronauts has to be removed from the cabin air. One alternative is to utilize photosynthetic organisms to uptake the CO2 and produce oxygen. In addition to higher plants, algae are perfect candidates for this purpose. They also serve to absorb wastes and clean the water. Cyanobacteria can be utilized as food supplement. Early ground-based systems include micro-ecological life support system alternative, closed equilibrated biological aquatic system, and the Biomass Production Chamber. The AQUARACK used the unicellular flagellate Euglena which produced the oxygen for fish in a connected compartment. A number of bioregenerative systems (AQUACELLS, OMEGAHAB) have been built for experiments on satellites. A later experiment was based on a 60-ml closed aquatic ecosystem launched on the Shenzhou 8 spacecraft containing several algae and a small snail living in adjacent chambers. Recently the Eu : CROPIS mission has been launched in a small satellite within a Deutschen Zentrum für Luft- und Raumfahrt (DLR) program. In addition to tomato plants, Euglena is included as oxygen producer. One new approach is to recycle urine on a bacterial filter to produce nitrogen fertilizer to grow vegetables.
Collapse
Affiliation(s)
- Donat‑P. Häder
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Kim JY, Oh JJ, Kim DH, Park J, Kim HS, Choi YE. Rapid and Accurate Quantification of Paramylon Produced from Euglena gracilis Using an ssDNA Aptamer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:402-408. [PMID: 31809034 DOI: 10.1021/acs.jafc.9b04588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The functional ingredients of microalgal biomass are receiving substantial recognition as the global demands for health supplements produced from natural sources are on the rise. Paramylon, a conglomerate of β-1,3-glucans, is one of the major valuable sources derived from Euglena gracilis having multiple applications, thus necessitating the development of an efficient quantification method. Here, we employed a DNA aptamer to quantify the amount of paramylon produced by E. gracilis. Paramylon-specific aptamers were isolated by the systematic evolution of ligands by exponential enrichment (SELEX) process. To evaluate the potential aptamers, the binding affinity between aptamer candidates and paramylon granules was confirmed by a confocal laser scanning microscope and the dissociation constants of the selected aptamers were determined by nonlinear regression analysis. The selected DNA aptamer was successfully used for the quantification of paramylon, and the results were compared to those obtained by the standard methods. The new approach was also used for quantification of paramylon from E. gracilis cells cultured to different cell stages and physiologies. It can be concluded that the aptamer-based protocol for the measurement of paramylon proposed in this study is highly accurate and comparatively less time-consuming.
Collapse
Affiliation(s)
- Jee Young Kim
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Da Hee Kim
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Jaewon Park
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Hyun Soo Kim
- Korea Institute of Machinery and Materials , Daegu Research Center for Medical Devices and Rehabilitation , Daegu 42994 , Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| |
Collapse
|
30
|
Nomura T, Inoue K, Uehara‐Yamaguchi Y, Yamada K, Iwata O, Suzuki K, Mochida K. Highly efficient transgene-free targeted mutagenesis and single-stranded oligodeoxynucleotide-mediated precise knock-in in the industrial microalga Euglena gracilis using Cas9 ribonucleoproteins. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2032-2034. [PMID: 31131534 PMCID: PMC6790356 DOI: 10.1111/pbi.13174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 05/26/2023]
Affiliation(s)
- Toshihisa Nomura
- RIKEN Center for Sustainable Resource ScienceTsurumi‐ku, YokohamaJapan
- RIKEN Baton Zone ProgramTsurumi‐ku, YokohamaJapan
| | - Komaki Inoue
- RIKEN Center for Sustainable Resource ScienceTsurumi‐ku, YokohamaJapan
| | | | - Koji Yamada
- RIKEN Baton Zone ProgramTsurumi‐ku, YokohamaJapan
- euglena Co., Ltd.TokyoJapan
| | - Osamu Iwata
- RIKEN Baton Zone ProgramTsurumi‐ku, YokohamaJapan
- euglena Co., Ltd.TokyoJapan
| | - Kengo Suzuki
- RIKEN Baton Zone ProgramTsurumi‐ku, YokohamaJapan
- euglena Co., Ltd.TokyoJapan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource ScienceTsurumi‐ku, YokohamaJapan
- RIKEN Baton Zone ProgramTsurumi‐ku, YokohamaJapan
- Kihara Institute for Biological ResearchYokohama City UniversityTotsuka‐ku, YokohamaJapan
- Graduate School of NanobioscienceYokohama City UniversityTsurumi‐ku, YokohamaJapan
- Institute of Plant Science and ResourcesOkayama UniversityKurashiki, OkayamaJapan
| |
Collapse
|
31
|
Toyama T, Hanaoka T, Yamada K, Suzuki K, Tanaka Y, Morikawa M, Mori K. Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:205. [PMID: 31695747 PMCID: PMC6822413 DOI: 10.1186/s13068-019-1544-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/17/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Euglena gracilis, a unicellular flagellated microalga, is regarded as one of the most promising species as microalgal feedstock for biofuels. Its lipids (mainly wax esters) are suitable for biodiesel and jet fuel. Culture of E. gracilis using wastewater effluent will improve the economics of E. gracilis biofuel production. Enhancement of the productivity of E. gracilis biomass is critical to creating a highly efficient biofuels production system. Certain bacteria have been found to promote microalgal growth by creating a favorable microenvironment. These bacteria have been characterized as microalgae growth-promoting bacteria (MGPB). Co-culture of microalgae with MGPB might offer an effective strategy to enhance microalgal biomass production in wastewater effluent culture systems. However, no MGPB has been identified to enhance the growth of E. gracilis. The objectives of this study were, therefore, to isolate and characterize the MGPB effective for E. gracilis and to demonstrate that the isolated MGPB indeed enhances the production of biomass and lipids by E. gracilis in wastewater effluent culture system. RESULTS A bacterium, Emticicia sp. EG3, which is capable of promoting the growth of microalga E. gracilis, was isolated from an E. gracilis-municipal wastewater effluent culture. Biomass production rate of E. gracilis was enhanced 3.5-fold and 3.1-fold by EG3 in the co-culture system using a medium of heat-sterilized and non-sterilized wastewater effluent, respectively, compared to growth in the same effluent culture but without EG3. Two-step culture system was examined as follows: E. gracilis was cultured with or without EG3 in wastewater effluent in the first step and was further grown in wastewater effluent in the second step. Production yields of biomass and lipids by E. gracilis were enhanced 3.2-fold and 2.9-fold, respectively, in the second step of the system in which E. gracilis was co-cultured with EG3 in the first step. CONCLUSION Emticicia sp. EG3 is the first MGPB for E. gracilis. Growth-promoting bacteria such as EG3 will be promising agents for enhancing E. gracilis biomass/biofuel productivities.
Collapse
Affiliation(s)
- Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| | - Tsubasa Hanaoka
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| | - Koji Yamada
- Euglena Co., Ltd., 5-29-11 Shiba Minato-ku, Tokyo, 108-0014 Japan
- Microalgae Production Control Technology Laboratory, RIKEN, 1-7-22, Suehiro, Tsurumi, Yookohama, Kanagawa 230-0045 Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 5-29-11 Shiba Minato-ku, Tokyo, 108-0014 Japan
- Microalgae Production Control Technology Laboratory, RIKEN, 1-7-22, Suehiro, Tsurumi, Yookohama, Kanagawa 230-0045 Japan
| | - Yasuhiro Tanaka
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo, 060-0810 Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 Japan
| |
Collapse
|
32
|
Kim JY, Oh JJ, Jeon MS, Kim GH, Choi YE. Improvement of Euglena gracilis Paramylon Production through a Cocultivation Strategy with the Indole-3-Acetic Acid-Producing Bacterium Vibrio natriegens. Appl Environ Microbiol 2019; 85:e01548-19. [PMID: 31324633 PMCID: PMC6752030 DOI: 10.1128/aem.01548-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
We investigated the putative effects on the growth and paramylon production of Euglena gracilis of cocultivation with Vibrio natriegensE. gracilis heterotrophically cocultivated with V. natriegens displayed significant increases in biomass productivity and paramylon content. In addition, the effects of the bacterial inoculum density and the timing of inoculation on the growth of E. gracilis were examined, to determine the optimal conditions for cocultivation. With the optimal deployment of V. natriegens, biomass productivity and paramylon content were increased by more than 20% and 35%, respectively, compared to those in axenic E. gracilis cultures. Interestingly, indole-3-acetic acid biosynthesized by V. natriegens was responsible for these enhancements of E. gracilis The morphology of cocultured E. gracilis cells was assessed. Paramylon granules extracted from the cocultivation were significantly larger than those from axenic culture. Our study showed that screening for appropriate bacteria and subsequent cocultivation with E. gracilis represented an effective way to enhance biomass and metabolite production.IMPORTANCEEuglena gracilis has attracted special interest due to its ability to excessively accumulate paramylon. Paramylon is a linear β-1,3-glucan polysaccharide that is the principal polymer for energy storage in E. gracilis The polysaccharide features high bioactive functionality in the immune system. This study explored a new method to enhance the production of paramylon by E. gracilis, through cocultivation with the indole-3-acetic acid-producing bacterium Vibrio natriegens The enhanced production was achieved indirectly with the phytohormone-producing bacteria, instead of direct application of the hormone. The knowledge obtained in this study furthers the understanding of the effects of V. natriegens on the growth and physiology of E. gracilis.
Collapse
Affiliation(s)
- Jee Young Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Jeong-Joo Oh
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Min Seo Jeon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Gyu-Hyeok Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
33
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA J 2019; 17:e05753. [PMID: 32626372 PMCID: PMC7009089 DOI: 10.2903/j.efsa.2019.5753] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA from applications for market authorisation was updated with 47 biological agents, received between October 2018 and March 2019. Of these, 19 already had QPS status, 20 were excluded from the QPS exercise by the previous QPS mandate (11 filamentous fungi) or from further evaluations within the current mandate (9 notifications of Escherichia coli). Sphingomonas elodea, Gluconobacter frateurii, Corynebacterium ammoniagenes, Corynebacterium casei, Burkholderia ubonensis, Phaeodactylum tricornutum, Microbacterium foliorum and Euglena gracilis were evaluated for the first time. Sphingomonas elodea cannot be assessed for a possible QPS recommendation because it is not a valid species. Corynebacterium ammoniagenes and Euglena gracilis can be recommended for the QPS list with the qualification 'for production purposes only'. The following TUs cannot be recommended for the QPS list: Burkholderia ubonensis, due to its potential and confirmed ability to generate biologically active compounds and limited of body of knowledge; Corynebacterium casei, Gluconobacter frateurii and Microbacterium foliorum, due to lack of body of knowledge; Phaeodactylum tricornutum, based on the lack of a safe history of use in the food chain and limited knowledge on its potential production of bioactive compounds with possible toxic effects.
Collapse
|
34
|
Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. Bioproducts From Euglena gracilis: Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:108. [PMID: 31157220 PMCID: PMC6530250 DOI: 10.3389/fbioe.2019.00108] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
In recent years, the versatile phototrophic protist Euglena gracilis has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the β-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from E. gracilis can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of E. gracilis have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making E. gracilis a noteworthy challenger for microalgae such as Chlorella spp. and their products currently on the market.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
35
|
Yamashita K, Yamada K, Suzuki K, Tokunaga E. Noninvasive and safe cell viability assay for Euglena gracilis using natural food pigment. PeerJ 2019; 7:e6636. [PMID: 30976462 PMCID: PMC6451837 DOI: 10.7717/peerj.6636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022] Open
Abstract
Noninvasive and safe cell viability assay is required in many fields such as regenerative medicine, genetic engineering, single-cell analysis, and microbial food culture. In this case, a safe and inexpensive method which is a small load on cells and the environment is preferable without requiring expensive and space-consuming equipment and a technician to operate. We examined eight typical natural food pigments to find Monascus pigment (MP) or anthocyanin pigment (AP) works as a good viability indicator of dye exclusion test (DET) for Euglena gracilis which is an edible photosynthetic green microalga. This is the first report using natural food pigments as cell viability assay. Euglena gracilis stained by MP or AP can be visually judged with a bright field microscope. This was spectrally confirmed by scan-free, non-invasive absorbance spectral imaging A(x, y, λ) microscopy of single live cells and principal component analysis (PCA). To confirm the ability of staining dead cells and examine the load on the cells, these two natural pigments were compared with trypan blue (TB) and methylene blue (MP), which are synthetic dyes conventionally used for DET. As a result, MP and AP had as good ability of staining dead cells treated with microwave as TB and MB and showed faster and more uniform staining for dead cells in benzalkonium chloride than them. The growth curve and the ratio of dead cells in the culture showed that the synthetic dyes inhibit the growth of E. gracilis, but the natural pigments do not. As the cell density increased, however, AP increased the ratio of stained cells, which was prevented by the addition of glucose. MP can stain dead cells in a shorter time than AP, while AP is more stable in color against long-term irradiation of intense light than MP. Due to the low toxicity of these pigments, viability of cells in culture can be monitored with them over a long period.
Collapse
Affiliation(s)
- Kyohei Yamashita
- Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Koji Yamada
- euglena Co., Ltd., Tsurumi-ku, Yokohama-shi, Kanagawa, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., Tsurumi-ku, Yokohama-shi, Kanagawa, Japan
| | - Eiji Tokunaga
- Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
36
|
Yamada K, Nitta T, Atsuji K, Shiroyama M, Inoue K, Higuchi C, Nitta N, Oshiro S, Mochida K, Iwata O, Ohtsu I, Suzuki K. Characterization of sulfur-compound metabolism underlying wax-ester fermentation in Euglena gracilis. Sci Rep 2019; 9:853. [PMID: 30696857 PMCID: PMC6351624 DOI: 10.1038/s41598-018-36600-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/22/2018] [Indexed: 12/03/2022] Open
Abstract
Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis.
Collapse
Affiliation(s)
- Koji Yamada
- euglena Co., Ltd., Tokyo, 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan
| | | | - Kohei Atsuji
- euglena Co., Ltd., Tokyo, 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan
| | - Maeka Shiroyama
- Innovation Medical Research Institute, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Komaki Inoue
- Center for Sustainable Resource Science, RIKEN, Kanagawa, 230-0045, Japan
| | | | | | - Satoshi Oshiro
- Innovation Medical Research Institute, University of Tsukuba, Ibaraki, 305-8577, Japan
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa, 905-2192, Japan
| | - Keiichi Mochida
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan
- Center for Sustainable Resource Science, RIKEN, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, 244-0813, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Osamu Iwata
- euglena Co., Ltd., Tokyo, 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan
| | - Iwao Ohtsu
- euglena Co., Ltd., Tokyo, 108-0014, Japan
- Innovation Medical Research Institute, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., Tokyo, 108-0014, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan.
| |
Collapse
|
37
|
Kawano Y, Suzuki K, Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl Microbiol Biotechnol 2018; 102:8203-8211. [PMID: 30046857 DOI: 10.1007/s00253-018-9246-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/01/2022]
Abstract
To all organisms, sulfur is an essential and important element. The assimilation of inorganic sulfur molecules such as sulfate and thiosulfate into organic sulfur compounds such as L-cysteine and L-methionine (essential amino acid for human) is largely contributed by microorganisms. Of these, special attention is given to thiosulfate (S2O32-) assimilation, because thiosulfate relative to often utilized sulfate (SO42-) as a sulfur source is proposed to be more advantageous in microbial growth and biotechnological applications like L-cysteine fermentative overproduction toward industrial manufacturing. In Escherichia coli as well as other many bacteria, the thiosulfate assimilation pathway is known to depend on O-acetyl-L-serine sulfhydrylase B. Recently, another yet-unidentified CysM-independent thiosulfate pathway was found in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO32-) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S2-) → L-cysteine]. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE). In this mini-review, we introduce updated comprehensive information about sulfur assimilation in microorganisms, including this topic. Also, we introduce recent advances of the application study about L-cysteine overproduction, including the GlpE overexpression.
Collapse
Affiliation(s)
- Yusuke Kawano
- Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Japan
| | - Kengo Suzuki
- Department of Research and Development, Euglena Co., Ltd., Minato-ku, Tokyo, Japan
| | - Iwao Ohtsu
- Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
38
|
Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One 2018; 13:e0195329. [PMID: 29649233 PMCID: PMC5896972 DOI: 10.1371/journal.pone.0195329] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Euglena gracilis, a photosynthetic protist, produces protein, unsaturated fatty acids, wax esters, and a unique β-1,3-glucan called paramylon, along with other valuable compounds. The cell composition of E. gracilis was investigated in this study to understand how light and organic carbon (photo-, mixo- and heterotrophic conditions) affected growth and cell composition (especially lipids). Comparisons were primarily carried out in cultures grown at 23 °C, but the effect of growth at higher temperatures (27 or 30 °C) was also considered. Cell growth Specific growth rates were slightly lower when E. gracilis was grown on glucose in either heterotrophic or mixotrophic conditions than when grown photoautotrophically, although the duration of exponential growth was longer. Temperature determined the rate of exponential growth in all cultures, but not the linear growth rate during light-limited growth in phototrophic conditions. Temperature had less effect on cell composition. Cell composition Although E. gracilis was not expected to store large amounts of paramylon when grown phototrophically, we observed that phototrophic cells could contain up to 50% paramylon. These cells contained up to 33% protein and less than 20% lipophilic compounds, as expected. The biomass contained about 8% fatty acids (measured as fatty acid methyl esters), most of which were unsaturated. The fatty acid content of cells grown in mixotrophic conditions was similar to that observed in phototrophic cells, but was lower in cells grown heterotrophically. Heterotrophic cells contained less unsaturated fatty acids than phototrophic or mixotrophic cells. α-Linolenic acid was present at 5 to 18 mg g-1 dry biomass in cells grown in the presence of light, but at < 0.5 mg g-1 biomass in cells grown in the dark. Eicosapentaenoic and docosahexaenoic acids were detected at 1 to 5 mg g-1 biomass. Light was also important for the production of vitamin E and phytol.
Collapse
Affiliation(s)
- Yanming Wang
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Marilyn G. Wiebe
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
- * E-mail:
| |
Collapse
|
39
|
NAKASHIMA A, YAMADA K, IWATA O, SUGIMOTO R, ATSUJI K, OGAWA T, ISHIBASHI-OHGO N, SUZUKI K. β-Glucan in Foods and Its Physiological Functions. J Nutr Sci Vitaminol (Tokyo) 2018; 64:8-17. [DOI: 10.3177/jnsv.64.8] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Front Microbiol 2017; 8:2009. [PMID: 29081772 PMCID: PMC5645522 DOI: 10.3389/fmicb.2017.02009] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/29/2017] [Indexed: 12/24/2022] Open
Abstract
By 2050, the world would need to produce 1,250 million tonnes of meat and dairy per year to meet global demand for animal-derived protein at current consumption levels. However, growing demand for protein will not be met sustainably by increasing meat and dairy production because of the low efficiency of converting feed to meat and dairy products. New solutions are needed. Single cell protein (SCP), i.e., protein produced in microbial and algal cells, is an option with potential. Much of the recent interest in SCP has focused on the valorisation of side streams by using microorganisms to improve their protein content, which can then be used in animal feed. There is also increased use of mixed populations, rather than pure strains in the production of SCP. In addition, the use of methane as a carbon source for SCP is reaching commercial scales and more protein-rich products are being derived from algae for both food and feed. The following review addresses the latest developments in SCP production from various organisms, giving an overview of commercial exploitation, a review of recent advances in the patent landscape (2001–2016) and a list of industrial players in the SCP field.
Collapse
Affiliation(s)
- Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Marilyn G Wiebe
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|