1
|
Kiełbowski K, Skórka P, Plewa P, Bakinowska E, Pawlik A. The Role of Alarmins in the Pathogenesis of Atherosclerosis and Myocardial Infarction. Curr Issues Mol Biol 2024; 46:8995-9015. [PMID: 39194749 DOI: 10.3390/cimb46080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Atherosclerosis is a condition that is associated with lipid accumulation in the arterial intima. Consequently, the enlarging lesion, which is also known as an atherosclerotic plaque, may close the blood vessel lumen, thus leading to organ ischaemia. Furthermore, the plaque may rupture and initiate the formation of a thrombus, which can cause acute ischaemia. Atherosclerosis is a background pathological condition that can eventually lead to major cardiovascular diseases such as acute coronary syndrome or ischaemic stroke. The disorder is associated with an altered profile of alarmins, stress response molecules that are secreted due to cell injury or death and that induce inflammatory responses. High-mobility group box 1 (HMGB1), S100 proteins, interleukin-33, and heat shock proteins (HSPs) also affect the behaviour of endothelial cells and vascular smooth muscle cells (VSMCs). Thus, alarmins control the inflammatory responses of endothelial cells and proliferation of VSMCs, two important processes implicated in the pathogenesis of atherosclerosis. In this review, we will discuss the role of alarmins in the pathophysiology of atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Aglan HA, Ahmed HH, Beherei HH, Abdel-Hady BM, Ekram B, Kishta MS. Generation of cardiomyocytes from stem cells cultured on nanofibrous scaffold: Experimental approach for attenuation of myocardial infarction. Tissue Cell 2024; 89:102461. [PMID: 38991272 DOI: 10.1016/j.tice.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The current study was constructed to fabricate polyamide based nanofibrous scaffolds (NS) and to define the most promising one for the generation of cardiomyocytes from adipose tissue derived mesenchymal stem cells (ADMSCs). This purpose was extended to assess the potentiality of the generated cardiomyocytes in relieving myocardial infarction (MI) in rats. Production and characterization of NSs were carried out. ADMSCs were cultured on NS and induced to differentiate into cardiomyocytes by specific growth factors. Molecular analysis for myocyte-specific enhancer factor 2 C (MEF2C) and alpha sarcomeric actin (α-SCA) expression was done to confirm the differentiation of ADMSCs into cardiomyocytes for further transplantation into MI induced rats. Implantation of cells in MI afflicted rats boosted heart rate, ST height and PR interval and lessened P duration, RR, QTc and QRS intervals. Also, this type of medication minified serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzymes activity as well as serum and cardiac troponin T (Tn-T) levels and upraised serum and cardiac α-SCA and cardiac connexin 43 (CX 43) levels. Microscopic feature of cardiac tissue sections of rats in the treated groups revealed great renovation in the cardiac microarchitecture. Conclusively, this attempt gains insight into a realistic strategy for recovery of MI through systemic employment of in vitro generated cardiomyocytes.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Basma Ekram
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Immune cells are emerging as central cellular components of the heart which communicate with cardiac resident cells during homeostasis, cardiac injury, and remodeling. These findings are contributing to the development and continuous expansion of the new field of cardio-immunology. We review the most recent literature on this topic and discuss ongoing and future efforts to advance this field forward. RECENT FINDINGS Cell-fate mapping, strategy depleting, and reconstituting immune cells in pre-clinical models of cardiac disease, combined with the investigation of the human heart at the single cell level, are contributing immensely to our understanding of the complex intercellular communication between immune and non-immune cells in the heart. While the acute immune response is necessary to initiate inflammation and tissue repair post injury, it becomes detrimental when sustained over time and contributes to adverse cardiac remodeling and pathology. Understanding the specific functions of immune cells in the context of the cardiac environment will provide new opportunities for immunomodulation to induce or tune down inflammation as needed in heart disease.
Collapse
Affiliation(s)
- Maria Antonia Zambrano
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, M&V 701, 02111, Boston, MA, USA
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, M&V 701, 02111, Boston, MA, USA.
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Kumar V, Prabhu SD, Bansal SS. CD4 + T-lymphocytes exhibit biphasic kinetics post-myocardial infarction. Front Cardiovasc Med 2022; 9:992653. [PMID: 36093172 PMCID: PMC9452745 DOI: 10.3389/fcvm.2022.992653] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
CD4+ T-cells facilitate wound healing post-myocardial infarction (MI) but promote left-ventricular (LV) remodeling during ischemic heart failure (HF; 8 weeks post-MI). Therefore, it is critical to understand if sustained CD4+ T-cell activation leads to this pathological response, or if phenotypically different T-cells are activated during MI vs. HF. Using flow cytometry, we found that cardiac CD4+ T-cells exhibit two distinct patterns of transmigration. First pattern consisted of a rapid CD4+ T-cell response with maximal levels seen at 3 days post-MI which return to baseline by 14 days. However, during HF we observed a 2nd phase of activation and CD4+ T-cells were ∼20-fold higher in HF as compared to sham-operated mice. Importantly, these biphasic kinetics were observed with all major T-cell subsets such as Th1, Th2, Th17, and regulatory T-cells suggesting a global change. To determine the role of this 2nd peak of T-cell activation, CD4-iDTR mice were generated and treated with DT every 10 from 28 days post-MI to deplete CD4+ T-cells during chronic HF. While littermate control mice showed increased end-systolic and end-diastolic volumes (ESV and EDV) and decreased ejection fraction (EF) from 4 to 8 weeks post-MI, depletion of CD4+ T-cells in Cre + mice significantly blunted LV remodeling and inhibited progressive increases in the EDV and ESV, and reduction in EF. This suggests that CD4+ T-cell responses occurring during HF are different than those occurring during MI and promote LV remodeling and progressive cardiac dysfunction. Temporal immunomodulation of CD4+ T-cells could be a translatable modality for ischemic HF.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sumanth D. Prabhu
- Division of Cardiology, Department of Medicine, Washington University, St Louis, WA, United States
| | - Shyam S. Bansal
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
5
|
Dolejsi T, Delgobo M, Schuetz T, Tortola L, Heinze KG, Hofmann U, Frantz S, Bauer A, Ruschitzka F, Penninger JM, Campos Ramos G, Haubner BJ. Adult T-cells impair neonatal cardiac regeneration. Eur Heart J 2022; 43:2698-2709. [PMID: 35417553 PMCID: PMC9300388 DOI: 10.1093/eurheartj/ehac153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
AIMS Newborn mice and humans display transient cardiac regenerative potential that rapidly declines postnatally. Patients who survive a myocardial infarction (MI) often develop chronic heart failure due to the heart's poor regeneration capacity. We hypothesized that the cardiac 'regenerative-to-scarring' transition might be driven by the perinatal shifts observed in the circulating T-cell compartment. METHODS AND RESULTS Post-MI immune responses were characterized in 1- (P1) vs. 7-day-old (P7) mice subjected to left anterior descending artery ligation. Myocardial infarction induced robust early inflammatory responses (36 h post-MI) in both age groups, but neonatal hearts exhibited rapid resolution of inflammation and full functional recovery. The perinatal loss of myocardial regenerative capacity was paralleled by a baseline increase in αβ-T cell (CD4+ and CD8+) numbers. Strikingly, P1-infarcted mice reconstituted with adult T-cells shifted to an adult-like healing phenotype, marked by irreversible cardiac functional impairment and increased fibrosis. Infarcted neonatal mice harbouring adult T-cells also had more monocyte-derived macrophage recruitment, as typically seen in adults. At the transcriptome level, infarcted P1 hearts that received isolated adult T-cells showed enriched gene sets linked to fibrosis, inflammation, and interferon-gamma (IFN-γ) signalling. In contrast, newborn mice that received isolated Ifng-/- adult T-cells prior to MI displayed a regenerative phenotype that resembled that of its age-matched untreated controls. CONCLUSION Physiological T-cell development or adoptive transfer of adult IFN-γ-producing T-cells into neonates contributed to impaired cardiac regeneration and promoted irreversible structural and functional cardiac damage. These findings reveal a trade-off between myocardial regenerative potential and the development of T-cell competence.
Collapse
Affiliation(s)
- Theresa Dolejsi
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Murilo Delgobo
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Thomas Schuetz
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Axel Bauer
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr-Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Gustavo Campos Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, D-97078 Würzburg, Germany
| | - Bernhard J Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsrbuck, Anichstraße 35, 6020 Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
6
|
Heinrichs M, Ashour D, Siegel J, Büchner L, Wedekind G, Heinze KG, Arampatzi P, Saliba AE, Cochain C, Hofmann U, Frantz S, Campos Ramos G. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc Res 2021; 117:2664-2676. [PMID: 34048536 DOI: 10.1093/cvr/cvab181] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Recent studies have revealed that B cells and antibodies can influence inflammation and remodelling following a myocardial infarction (MI) and culminating in heart failure-but the mechanisms underlying these observations remain elusive. We therefore conducted in mice a deep phenotyping of the post-MI B-cell responses in infarcted hearts and mediastinal lymph nodes, which drain the myocardium. Thereby, we sought to dissect the mechanisms controlling B-cell mobilization and activity in situ. METHODS AND RESULTS Histological, flow cytometry, and single-cell RNA-sequencing (scRNA-seq) analyses revealed a rapid accumulation of diverse B-cell subsets in infarcted murine hearts, paralleled by mild clonal expansion of germinal centre B cells in the mediastinal lymph nodes. The repertoire of cardiac B cells was largely polyclonal and showed no sign of antigen-driven clonal expansion. Instead, it included a distinct subset exclusively found in the heart, herein termed 'heart-associated B cells' (hB) that expressed high levels of Cd69 as an activation marker, C-C-chemokine receptor type 7 (Ccr7), CXC-chemokine receptor type 5 (Cxcr5), and transforming growth factor beta 1 (Tgfb1). This distinct signature was not shared with any other cell population in the healing myocardium. Moreover, we detected a myocardial gradient of CXC-motif chemokine ligand 13 (CXCL13, the ligand of CXCR5) on Days 1 and 5 post-MI. When compared with wild-type controls, mice treated with a neutralizing CXCL13-specific antibody as well as CXCR5-deficient mice showed reduced post-MI infiltration of B cells and reduced local Tgfb1 expression but no differences in contractile function nor myocardial morphology were observed between groups. CONCLUSION Our study reveals that polyclonal B cells showing no sign of antigen-specificity readily infiltrate the heart after MI via the CXCL13-CXCR5 axis and contribute to local TGF-ß1 production. The local B-cell responses are paralleled by mild antigen-driven germinal centre reactions in the mediastinal lymph nodes that might ultimately lead to the production of specific antibodies.
Collapse
Affiliation(s)
- Margarete Heinrichs
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - DiyaaElDin Ashour
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Johanna Siegel
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Lotte Büchner
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Georg Wedekind
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Centre for Integrative and Translational Bioimaging, University of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
7
|
Abstract
Myocardial infarction (MI) is an irreversible damage of the heart muscle, which often leads to adverse cardiac remodeling and progressive heart failure. After MI, immune cells play a vital role in the clearance of the dying tissue and cardiac remodeling. Post-MI events include the release of danger signals by necrotic cardiomyocytes and the migration of the inflammatory cells, such as dendritic cells, neutrophils, monocytes, and macrophages, into the site of the cardiac injury to digest the cell debris and secrete a variety of inflammatory factors activating the inflammatory response. In this review, we focus on the role of immune cells in the cardiac remodeling after MI and the novel immunotherapies targeting immune cells.
Collapse
|
8
|
Zhang F, Qiao S, Li C, Wu B, Reischl S, Neumann PA. The immunologic changes during different phases of intestinal anastomotic healing. J Clin Lab Anal 2020; 34:e23493. [PMID: 32692419 PMCID: PMC7676198 DOI: 10.1002/jcla.23493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023] Open
Abstract
Intestinal anatomosis is a complex and multicellular process that involving three overlapped phases: exudative phase, proliferative phase, and reparative phase. Undisturbed anastomotic healings are crucial for the recovery of patients after operations but unsuccessful healings are linked with a considerable mortality. This time, we concentrate on the immunologic changes during different phases of intestinal anastomotic healing and select several major immune cells and cytokines of each phase to get a better understanding of these immunologic changes in different phases, which will be significant for more precise therapy strategies in anastomoses.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China.,Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Song Qiao
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Chunqiao Li
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Bo Wu
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Stefan Reischl
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Philipp-Alexander Neumann
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| |
Collapse
|
9
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. The Roles of Noncardiomyocytes in Cardiac Remodeling. Int J Biol Sci 2020; 16:2414-2429. [PMID: 32760209 PMCID: PMC7378633 DOI: 10.7150/ijbs.47180] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac remodeling is a common characteristic of almost all forms of heart disease, including cardiac infarction, valvular diseases, hypertension, arrhythmia, dilated cardiomyopathy and other conditions. It is not merely a simple outcome induced by an increase in the workload of cardiomyocytes (CMs). The remodeling process is accompanied by abnormalities of cardiac structure as well as disturbance of cardiac function, and emerging evidence suggests that a wide range of cells in the heart participate in the initiation and development of cardiac remodeling. Other than CMs, there are numerous noncardiomyocytes (non-CMs) that regulate the process of cardiac remodeling, such as cardiac fibroblasts and immune cells (including macrophages, lymphocytes, neutrophils, and mast cells). In this review, we summarize recent knowledge regarding the definition and significant effects of various non-CMs in the pathogenesis of cardiac remodeling, with a particular emphasis on the involved signaling mechanisms. In addition, we discuss the properties of non-CMs, which serve as targets of many cardiovascular drugs that reduce adverse cardiac remodeling.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
10
|
Wesley M, Moraes A, Rosa ADC, Lott Carvalho J, Shiroma T, Vital T, Dias N, de Carvalho B, do Amaral Rabello D, Borges TKDS, Dallago B, Nitz N, Hagström L, Hecht M. Correlation of Parasite Burden, kDNA Integration, Autoreactive Antibodies, and Cytokine Pattern in the Pathophysiology of Chagas Disease. Front Microbiol 2019; 10:1856. [PMID: 31496999 PMCID: PMC6712995 DOI: 10.3389/fmicb.2019.01856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), is the main parasitic disease in the Western Hemisphere. Unfortunately, its physiopathology is not completely understood, and cardiomegaly development is hard to predict. Trying to explain tissue lesion and the fact that only a percentage of the infected individuals develops clinical manifestations, a variety of mechanisms have been suggested as the provokers of CD, such as parasite persistence and autoimmune responses. However, holistic analysis of how parasite and host-related elements may connect to each other and influence clinical outcome is still scarce in the literature. Here, we investigated murine models of CD caused by three different pathogen strains: Colombian, CL Brener and Y strains, and employed parasitological and immunological tests to determine parasite load, antibody reactivity, and cytokine production during the acute and chronic phases of the disease. Also, we developed a quantitative PCR (qPCR) protocol to quantify T. cruzi kDNA minicircle integration into the mammalian host genome. Finally, we used a correlation analysis to interconnect parasite- and host-related factors over time. Higher parasite load in the heart and in the intestine was significantly associated with IgG raised against host cardiac proteins. Also, increased heart and bone marrow parasitism was associated with a more intense leukocyte infiltration. kDNA integration rates correlated to the levels of IgG antibodies reactive to host cardiac proteins and interferon production, both influencing tissue inflammation. In conclusion, our results shed light into how inflammatory process associates with parasite load, kDNA transfer to the host, autoreactive autoantibody production and cytokine profile. Altogether, our data support the proposal of an updated integrative theory regarding CD pathophysiology.
Collapse
Affiliation(s)
- Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Ana de Cássia Rosa
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília, Brazil.,Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana Shiroma
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tamires Vital
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Bruna de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Doralina do Amaral Rabello
- Laboratory of Molecular Pathology of Cancer, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana Karla Dos Santos Borges
- Laboratory of Cellular and Molecular Immunology, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Bruno Dallago
- Laboratory of Animal Welfare, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
11
|
Rieckmann M, Delgobo M, Gaal C, Büchner L, Steinau P, Reshef D, Gil-Cruz C, Horst ENT, Kircher M, Reiter T, Heinze KG, Niessen HW, Krijnen PA, van der Laan AM, Piek JJ, Koch C, Wester HJ, Lapa C, Bauer WR, Ludewig B, Friedman N, Frantz S, Hofmann U, Ramos GC. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest 2019; 129:4922-4936. [PMID: 31408441 DOI: 10.1172/jci123859] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T cell autoreactivity is a hallmark of autoimmune diseases but can also benefit self-maintenance and foster tissue repair. Herein, we investigated whether heart-specific T cells exert salutary or detrimental effects in the context of myocardial infarction (MI), the leading cause of death worldwide. After screening more than 150 class-II-restricted epitopes, we found that myosin heavy chain alpha (MYHCA) was a dominant cardiac antigen triggering post-MI CD4+ T cell activation in mice. Transferred MYHCA614-629-specific CD4+ T (TCR-M) cells selectively accumulated in the myocardium and mediastinal lymph nodes (med-LN) of infarcted mice, acquired a Treg phenotype with a distinct pro-healing gene expression profile, and mediated cardioprotection. Myocardial Treg cells were also detected in autopsies from patients who suffered a MI. Noninvasive PET/CT imaging using a CXCR4 radioligand revealed enlarged med-LNs with increased cellularity in MI-patients. Notably, the med-LN alterations observed in MI patients correlated with the infarct size and cardiac function. Taken together, the results obtained in our study provide evidence showing that MI-context induces pro-healing T cell autoimmunity in mice and confirms the existence of an analogous heart/med-LN/T cell axis in MI patients.
Collapse
Affiliation(s)
- Max Rieckmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Murilo Delgobo
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Chiara Gaal
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Lotte Büchner
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Steinau
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ellis N Ter Horst
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hans Wm Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Paul Aj Krijnen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Jan J Piek
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte Koch
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University Munich, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Frantz
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Keppner L, Heinrichs M, Rieckmann M, Demengeot J, Frantz S, Hofmann U, Ramos G. Antibodies aggravate the development of ischemic heart failure. Am J Physiol Heart Circ Physiol 2018; 315:H1358-H1367. [PMID: 30095974 DOI: 10.1152/ajpheart.00144.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heart-specific antibodies have been widely associated with myocardial infarction (MI). However, it remains unclear whether autoantibodies mediate disease progression or are a byproduct of cardiac injury. To disambiguate the role of immunoglobulins in MI, we characterized the development of ischemic heart failure in agammaglobulinemic mice (AID-/-μS-/-). Although these animals can produce functional B cells, they cannot synthesize secretory IgM (μS-/-) or perform Ig class switching (AID-/-), leading to complete antibody deficiency. Agammaglobulinemia did not affect overall post-MI survival but resulted in a significant reduction in infarct size. Echocardiographic analyses showed that, compared with wild-type infarcted control mice, AID-/-μS-/- mice exhibited improved cardiac function and reduced remodeling on day 56 post-MI. These differences remained significant even after animals with matched infarct sizes were compared. Infarcted AID-/-μS-/- mice also showed reduced myocardial expression levels of transcripts known to promote adverse remodeling, such as matrix metalloproteinase-9, collagen type I a1, collagen type III a1, and IL-6. An unbiased screening of the heart reactivity potential in the plasma of wild-type MI animals revealed the presence of antibodies that target the myocardial scar and collagenase-sensitive epitopes. Moreover, we found that IgG accumulated within the scar tissues of infarcted mice and remained in close proximity with cells expressing Fcγ receptors (CD16/32), suggesting the existence of an in situ IgG-Fcγ receptor axis. Collectively, our study results confirm that antibodies contribute to ischemic heart failure progression and provide novel insights into the mechanisms underlying this phenomenon. NEW & NOTEWORTHY Our study sheds some light on the long-standing debate over the relevance of autoantibodies in heart failure and might stimulate future research in the field. The observation of extracellular matrix-specific antibodies and the detection of Fcγ receptor-expressing cells within the scar provide novel insights into the mechanisms by which antibodies may contribute to adverse remodeling.
Collapse
Affiliation(s)
- Lea Keppner
- University Hospital Halle, Department of Internal Medicine-III , Halle , Germany
| | - Margarete Heinrichs
- University Hospital Würzburg, Department of Internal Medicine-I , Würzburg , Germany
| | - Max Rieckmann
- University Hospital Halle, Department of Internal Medicine-III , Halle , Germany
| | | | - Stefan Frantz
- University Hospital Halle, Department of Internal Medicine-III , Halle , Germany.,University Hospital Würzburg, Department of Internal Medicine-I , Würzburg , Germany
| | - Ulrich Hofmann
- University Hospital Halle, Department of Internal Medicine-III , Halle , Germany.,University Hospital Würzburg, Department of Internal Medicine-I , Würzburg , Germany
| | - Gustavo Ramos
- University Hospital Halle, Department of Internal Medicine-III , Halle , Germany.,University Hospital Würzburg, Department of Internal Medicine-I , Würzburg , Germany.,Comprehensive Heart Failure Center , Würzburg , Germany
| |
Collapse
|
13
|
Kröpfl JM, Spengler CM, Frobert A, Ajalbert G, Giraud MN. Myocardial infarction does not affect circulating haematopoietic stem and progenitor cell self-renewal ability in a rat model. Exp Physiol 2017; 103:1-8. [PMID: 29094480 DOI: 10.1113/ep086643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although peripheral blood haematopoietic stem and progenitor cells are potentially important in regeneration after acute myocardial infarction, their self-renewal ability in the post-acute phase has not yet been addressed. What is the main finding and its importance? In rat peripheral blood, we show that myocardial infarction does not negatively affect circulating haematopoietic stem and progenitor cell self-renewal ability 2 weeks after acute infarction, which suggests a constant regenerative potential in the myocardial infarction post-acute phase. Given the importance of peripheral blood haematopoietic stem and progenitor cells (HPCs) in post-acute regeneration after acute myocardial infarction (MI), the aim of the present study was to investigate the number and secondary replating capacity/self-renewal ability of HPCs in peripheral blood before and 2 weeks after MI. In female Lewis inbred rats (n = 9), MI was induced by ligation of the left coronary artery, and another nine underwent sham surgery, without ligation, for control purposes. Myocardial infarction was confirmed by troponin I concentrations 24 h after surgery. Peripheral blood was withdrawn and fractional shortening and ejection fraction of the left ventricle were assessed before (day 0) and 14 days after MI or sham surgery (day 14). After mononuclear cell isolation, primary and secondary functional colony-forming unit granulocyte-macrophage (CFU-GM) assays were performed in order to detect the kinetics of functional HPC colony counts and cell self-renewal ability in vitro. The CFU-GM counts and cell self-renewal ability remained unchanged (P > 0.05) in both groups at day 14, without interaction between groups. In the intervention group, higher day 0 CFU-GM counts showed a relationship to lower fractional shortening on day 14 (ρ = -0.82; P < 0.01). Myocardial infarction did not negatively affect circulating HPC self-renewal ability, which suggests a constant regenerative potential in the post-acute phase. A relationship of cardiac contractile function 14 days after MI with circulating CFU-GM counts on day 0 might imply functional colony count as a predictive factor for outcome after infarction.
Collapse
Affiliation(s)
- J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - A Frobert
- Cardiology, University of Fribourg, Fribourg, Switzerland
| | - G Ajalbert
- Cardiology, University of Fribourg, Fribourg, Switzerland
| | - M N Giraud
- Cardiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|