1
|
Rosado JA. Reduced Ca 2+ mobilization in neonatal human platelets involves SARAF and pannexin-1. Br J Haematol 2024; 204:755-756. [PMID: 38073055 DOI: 10.1111/bjh.19225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 03/14/2024]
Abstract
Platelets from neonates have been shown to exhibit a reduced response to physiological agonists, such as thrombin; however, the mechanism behind these findings is poorly understood. Berna-Erro et al. now provide differences in SARAF and pannexin-1 expression and function between neonatal and maternal platelets that might shed some light on the underlying mechanism. Commentary on: Berna-Erro. SARAF overexpression impairs thrombin-induced Ca2+ homeostasis in neonatal platelets. Br J Haematol 2024;204:988-1004.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Spain
| |
Collapse
|
2
|
Platelet Proteomics to Understand the Pathophysiology of Immune Thrombocytopenia: Studies in Mouse Models. Blood Adv 2022; 6:3529-3534. [PMID: 35298626 PMCID: PMC9198918 DOI: 10.1182/bloodadvances.2021006438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
The platelet proteome distinguishes platelets from 2 different preclinical ITP mouse models and may be of use in profiling human disease. The platelet proteomes suggest a slow turnover of platelets in chronic ITP and basal degranulation in acute ITP due to hyporesponsiveness.
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by enhanced platelet clearance and defective platelet production. Diagnosis by exclusion and trial-and-error treatment strategies is common practice, and despite the advancement in treatment options, many patients remain refractory. Although the existence of different pathophysiological entities is acknowledged, we are still far from stratifying and understanding ITP. To investigate, we sought to dissect the platelet proteome dynamics in so-called passive and active preclinical ITP mouse models, with which we propose to phenocopy respectively acute/newly diagnosed and persistent/chronic stages of ITP in humans. We obtained the platelet proteome at the thrombocytopenic stage and after platelet count recovery (reached naturally or by IVIg-treatment, depending on the model). Although most of the proteomic alterations were common to both ITP models, there were model-specific protein dynamics that accompanied and explained alterations in platelet aggregation responses, as measured in the passive ITP model. The expression dynamics observed in Syk may explain, extrapolated to humans and pending validation, the increased bleeding tendency of patients with ITP when treated with fostamatinib as third or later– as opposed to second line of treatment. We propose that the platelet proteome may give diagnostic and prognostic insights into ITP and that such studies should be pursued in humans.
Collapse
|
3
|
Gao S, Lei Z, Wu H. Ligustrazine suppresses platelet aggregation through inhibiting the activities of calcium sensors. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shuibo Gao
- Henan University of Chinese Medicine, China
| | - Zhen Lei
- Henan University of Chinese Medicine, China
| | - Hong Wu
- Henan University of Chinese Medicine, China; Henan University of Chinese Medicine, China
| |
Collapse
|
4
|
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin Rev Allergy Immunol 2021; 60:271-292. [PMID: 33405100 PMCID: PMC7985118 DOI: 10.1007/s12016-020-08824-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Calcium is the most abundant mineral in the human body and is central to many physiological processes, including immune system activation and maintenance. Studies continue to reveal the intricacies of calcium signalling within the immune system. Perhaps the most well-understood mechanism of calcium influx into cells is store-operated calcium entry (SOCE), which occurs via calcium release-activated channels (CRACs). SOCE is central to the activation of immune system cells; however, more recent studies have demonstrated the crucial role of other calcium channels, including transient receptor potential (TRP) channels. In this review, we describe the expression and function of TRP channels within the immune system and outline associations with murine models of disease and human conditions. Therefore, highlighting the importance of TRP channels in disease and reviewing potential. The TRP channel family is significant, and its members have a continually growing number of cellular processes. Within the immune system, TRP channels are involved in a diverse range of functions including T and B cell receptor signalling and activation, antigen presentation by dendritic cells, neutrophil and macrophage bactericidal activity, and mast cell degranulation. Not surprisingly, these channels have been linked to many pathological conditions such as inflammatory bowel disease, chronic fatigue syndrome and myalgic encephalomyelitis, atherosclerosis, hypertension and atopy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK. .,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK. .,HCA Senior Clinical Fellow (HPB & Liver Transplant), Wellington Hospital, St Johns Wood, London, UK.
| | - Charlotte R Grant
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Radhika Tandon
- Sheffield Medical School, Beech Hill Road, Sheffield, UK, S10 2RX
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK.,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| |
Collapse
|
5
|
Guo X, Zhang J, Zhu J, Chen QH, Wang R, Gui L. Enhanced store-operated calcium entry in platelets is associated with acute coronary syndrome. Acta Biochim Biophys Sin (Shanghai) 2020; 52:207-210. [PMID: 31942931 DOI: 10.1093/abbs/gmz147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Xin Guo
- Department of Urology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jiayu Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jianhua Zhu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA
| | - Renjun Wang
- Departments of Biotechnology, School of Life Science, Jilin Normal University, Siping 136000, China
| | - Le Gui
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| |
Collapse
|
6
|
Nassef NA. Quercetin improves platelet function and ultrastructure in cholestatic liver injury in rats: Role of ORAI1 gene expression. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, Rosado JA, Smani T. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells. Front Physiol 2018; 9:257. [PMID: 29618985 PMCID: PMC5872157 DOI: 10.3389/fphys.2018.00257] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might also enter through other cationic channels such as Store-Operated Ca2+ Channels (SOCCs), involved in several physiological functions and pathological conditions. The opening of SOCCs is regulated by the filling state of the intracellular Ca2+ store, the sarcoplasmic reticulum, which communicates to the plasma membrane channels through the Stromal Interaction Molecule 1/2 (STIM1/2) protein. In muscle cells, SOCCs can be mainly non-selective cation channels formed by Orai1 and other members of the Transient Receptor Potential-Canonical (TRPC) channels family, as well as highly selective Ca2+ Release-Activated Ca2+ (CRAC) channels, formed exclusively by subunits of Orai proteins likely organized in macromolecular complexes. This review summarizes the current knowledge of the complex role of Store Operated Calcium Entry (SOCE) pathways and related proteins in the function of cardiac, skeletal, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | | | - Alejandro Dominguez-Rodriguez
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | | | - Juan Ribas
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
| | - Antonio Ordoñez
- CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|