1
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
2
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
3
|
Mahmood S, Lozano Gonzalez M, Tummalapalli S, Eberhard J, Ly J, Hoffman CS, Kelly MP, Gordon J, Colussi D, Childers W, Rotella DP. First Optimization of Novel, Potent, Selective PDE11A4 Inhibitors for Age-Related Cognitive Decline. J Med Chem 2023; 66:14597-14608. [PMID: 37862143 PMCID: PMC10641827 DOI: 10.1021/acs.jmedchem.3c01088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/22/2023]
Abstract
Phosphodiesterase 11A4 (PDE11A4) is a dual-acting cyclic nucleotide hydrolase expressed in neurons in the CA1, subiculum, amygdalostriatal transition area and amygdalohippocampal area of the extended hippocampal formation. PDE11A4 is the only PDE enzyme to emanate solely from hippocampal formation, a key brain region for the formation of long-term memory. PDE11A4 expression increases in the hippocampal formation of both humans and rodents as they age. Interestingly, PDE11A knockout mice do not show age-related deficits in associative memory and show no gross histopathology. This suggests that inhibition of PDE11A4 might serve as a therapeutic option for age-related cognitive decline. A novel, yeast-based high throughput screen previously identified moderately potent, selective PDE11A4 inhibitors, and this work describes initial efforts that improved potency more than 10-fold and improved some pharmaceutical properties of one of these scaffolds, leading to selective, cell-penetrant PDE11A4 inhibitors, one of which is 10-fold more potent compared to tadalafil in cell-based activity.
Collapse
Affiliation(s)
- Shams
ul Mahmood
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Mariana Lozano Gonzalez
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Sreedhar Tummalapalli
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Jeremy Eberhard
- Biology
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Judy Ly
- Biology
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Charles S. Hoffman
- Biology
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Michy P. Kelly
- Department
of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - John Gordon
- Moulder
Center for Drug Discovery Research, Temple
University, Philadelphia, Pennsylvania 19140, United States
| | - Dennis Colussi
- Moulder
Center for Drug Discovery Research, Temple
University, Philadelphia, Pennsylvania 19140, United States
| | - Wayne Childers
- Moulder
Center for Drug Discovery Research, Temple
University, Philadelphia, Pennsylvania 19140, United States
| | - David P. Rotella
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
4
|
Pilarzyk K, Porcher L, Capell WR, Burbano SD, Davis J, Fisher JL, Gorny N, Petrolle S, Kelly MP. Conserved age-related increases in hippocampal PDE11A4 cause unexpected proteinopathies and cognitive decline of social associative memories. Aging Cell 2022; 21:e13687. [PMID: 36073342 PMCID: PMC9577960 DOI: 10.1111/acel.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
In humans, associative memories are more susceptible to age-related cognitive decline (ARCD) than are recognition memories. Reduced cAMP/cGMP signaling in the hippocampus may contribute to ARCD. Here, we found that both aging and traumatic brain injury-associated dementia increased the expression of the cAMP/cGMP-degrading enzyme phosphodiesterase 11A (PDE11A) in the human hippocampus. Further, age-related increases in hippocampal PDE11A4 mRNA and protein were conserved in mice, as was the increased vulnerability of associative versus recognition memories to ARCD. Interestingly, mouse PDE11A4 protein in the aged ventral hippocampus (VHIPP) ectopically accumulated in the membrane fraction and filamentous structures we term "ghost axons." These age-related increases in expression were driven by reduced exoribonuclease-mediated degradation of PDE11A mRNA and increased PDE11A4-pS117/pS124, the latter of which also drove the punctate accumulation of PDE11A4. In contrast, PDE11A4-pS162 caused dispersal. Importantly, preventing age-related increases in PDE11 expression via genetic deletion protected mice from ARCD of short-term and remote long-term associative memory (aLTM) in the social transmission of food preference assay, albeit at the expense of recent aLTM. Further, mimicking age-related overexpression of PDE11A4 in CA1 of old KO mice caused aging-like impairments in CREB function and remote social-but not non-social-LTMs. RNA sequencing and phosphoproteomic analyses of VHIPP identified cGMP-PKG-as opposed to cAMP-PKA-as well as circadian entrainment, glutamatergic/cholinergic synapses, calcium signaling, oxytocin, and retrograde endocannabinoid signaling as mechanisms by which PDE11A deletion protects against ARCD. Together, these data suggest that PDE11A4 proteinopathies acutely impair signaling in the aged brain and contribute to ARCD of social memories.
Collapse
Affiliation(s)
- Katy Pilarzyk
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Latarsha Porcher
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - William R. Capell
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Steven D. Burbano
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jeff Davis
- Instrument Resource FacilityUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Janet L. Fisher
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Nicole Gorny
- Department of Anatomy & NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Siena Petrolle
- Department of Anatomy & NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Michy P. Kelly
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- Department of Anatomy & NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Center for Research on AgingUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Kong G, Lee H, Vo TTT, Juang U, Kwon SH, Park J, Park J, Kim SH. Functional characteristics and research trends of PDE11A in human diseases (Review). Mol Med Rep 2022; 26:298. [PMID: 35929507 PMCID: PMC9434997 DOI: 10.3892/mmr.2022.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
cAMP and cGMP are important secondary messengers involved in cell regulation and metabolism driven by the G protein-coupled receptor. cAMP is converted via adenylyl cyclase (AC) and activates protein kinase A to phosphorylate intracellular proteins that mediate specific responses. cAMP signaling serves a role at multiple steps in tumorigenesis. The level of cAMP is increased in association with cancer cell formation through activation of AC-stimulatory G protein by mutation. Phosphodiesterases (PDEs) hydrolyze cAMP and cGMP to AMP and GMP. PDEs are composed of 11 families, and each can hydrolyze cAMP and cGMP or both cAMP and cGMP. PDEs perform various roles depending on their location and expression site, and are involved in several diseases, including male erectile dysfunction, pulmonary hypertension, Alzheimer's disease and schizophrenia. PDE11A is the 11th member of the PDE family and is characterized by four splice variants with varying tissue expression and N-terminal regulatory regions. Among tissues, the expression of PDE11A was highest in the prostate, and it was also expressed in hepatic skeletal muscle, pituitary, pancreas and kidney. PDE11A is the first PDE associated with an adrenocortical tumor associated genetic condition. In several studies, three PDE11A mutations have been reported in patients with Cushing syndrome with primary pigmented nodular adrenocortical disease or isolated micronodular adrenocortical disease without other genetic defects. It has been reported that an increase in PDE11A expression affects the proliferation of glioblastoma and worsens patient prognosis. The present mini-review summarizes the location of PDE11A expression, the impact of structural differences and disease relevance.
Collapse
Affiliation(s)
- Gyeyeong Kong
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Thuy-Trang T Vo
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisoo Park
- Mitos Research Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
6
|
Liu D, Bai J, Chen Q, Tan R, An Z, Xiao J, Qu Y, Xu Y. Brain metastases: It takes two factors for a primary cancer to metastasize to brain. Front Oncol 2022; 12:1003715. [PMID: 36248975 PMCID: PMC9554149 DOI: 10.3389/fonc.2022.1003715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis of a cancer is a malignant disease with high mortality, but the cause and the molecular mechanism remain largely unknown. Using the samples of primary tumors of 22 cancer types in the TCGA database, we have performed a computational study of their transcriptomic data to investigate the drivers of brain metastases at the basic physics and chemistry level. Our main discoveries are: (i) the physical characteristics, namely electric charge, molecular weight, and the hydrophobicity of the extracellular structures of the expressed transmembrane proteins largely affect a primary cancer cell’s ability to cross the blood-brain barrier; and (ii) brain metastasis may require specific functions provided by the activated enzymes in the metastasizing primary cancer cells for survival in the brain micro-environment. Both predictions are supported by published experimental studies. Based on these findings, we have built a classifier to predict if a given primary cancer may have brain metastasis, achieving the accuracy level at AUC = 0.92 on large test sets.
Collapse
Affiliation(s)
- Dingyun Liu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jun Bai
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Qian Chen
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Renbo Tan
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zheng An
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States
| | - Jun Xiao
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yingwei Qu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Ying Xu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States
- *Correspondence: Ying Xu,
| |
Collapse
|
7
|
Pilarzyk K, Farmer R, Porcher L, Kelly MP. The Role of PDE11A4 in Social Isolation-Induced Changes in Intracellular Signaling and Neuroinflammation. Front Pharmacol 2021; 12:749628. [PMID: 34887755 PMCID: PMC8650591 DOI: 10.3389/fphar.2021.749628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 11A (PDE11A), an enzyme that degrades cyclic nucleotides (cAMP and cGMP), is the only PDE whose mRNA expression in brain is restricted to the hippocampal formation. Previously, we showed that chronic social isolation changes subsequent social behaviors in adult mice by reducing expression of PDE11A4 in the membrane fraction of the ventral hippocampus (VHIPP). Here we seek extend these findings by determining 1) if isolation-induced decreases in PDE11A4 require chronic social isolation or if they occur acutely and are sustained long-term, 2) if isolation-induced decreases occur uniquely in adults (i.e., not adolescents), and 3) how the loss of PDE11 signaling may increase neuroinflammation. Both acute and chronic social isolation decrease PDE11A4 expression in adult but not adolescent mice. This decrease in PDE11A4 is specific to the membrane compartment of the VHIPP, as it occurs neither in the soluble nor nuclear fractions of the VHIPP nor in any compartment of the dorsal HIPP. The effect of social isolation on membrane PDE11A4 is also selective in that PDE2A and PDE10A expression remain unchanged. Isolation-induced decreases in PDE11A4 expression appear to be functional as social isolation elicited changes in PDE11A-relevant signal transduction cascades (i.e., decreased pCamKIIα and pS6-235/236) and behavior (i.e., increased remote long-term memory for social odor recognition). Interestingly, we found that isolation-induced decreases in membrane PDE11A4 correlated with increased expression of interleukin-6 (IL-6) in the soluble fraction, suggesting pro-inflammatory signaling for this cytokine. This effect on IL-6 is consistent with the fact that PDE11A deletion increased microglia activation, although it left astrocytes unchanged. Together, these data suggest that isolation-induced decreases in PDE11A4 may alter subsequent social behavior via increased neuroinflammatory processes in adult mice.
Collapse
Affiliation(s)
- Katy Pilarzyk
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Reagan Farmer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Latarsha Porcher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Michy P Kelly
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Aging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
García-Díaz C, Gil-Miravet I, Albert-Gasco H, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat. Front Neuroanat 2021; 15:674649. [PMID: 34239421 PMCID: PMC8258164 DOI: 10.3389/fnana.2021.674649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial learning and memory processes depend on anatomical and functional interactions between the hippocampus and the entorhinal cortex. A key neurophysiological component of these processes is hippocampal theta rhythm, which can be driven from subcortical areas including the pontine nucleus incertus (NI). The NI contains the largest population of neurons that produce and presumably release the neuropeptide, relaxin-3, which acts via the G i/o -protein-coupled receptor, relaxin-family peptide 3 receptor (RXFP3). NI activation induces general arousal including hippocampal theta, and inactivation induces impairment of spatial memory acquisition or retrieval. The primary aim of this study was to map the NI/relaxin-3 innervation of the parahippocampal cortex (PHC), including the medial and lateral entorhinal cortex, endopiriform cortex, perirhinal, postrhinal, and ectorhinal cortex, the amygdalohippocampal transition area and posteromedial cortical amygdala. Retrograde tracer injections were placed in different parts of the medial and lateral entorhinal cortex, which produced prominent retrograde labeling in the ipsilateral NI and some labeling in the contralateral NI. Anterograde tracer injections into the NI and immunostaining for relaxin-3 produced fiber labeling in deep layers of all parahippocampal areas and some dispersed fibers in superficial layers. Double-labeling studies revealed that both hippocampal projecting and calcium-binding protein-positive (presumed GABAergic) neurons received a relaxin-3 NI innervation. Some of these fibers also displayed synaptophysin (Syn) immunoreactivity, consistent with the presence of the peptide at synapses; and relaxin-3-positive fibers containing Syn bouton-like staining were frequently observed in contact with hippocampal-projecting or calcium-binding protein-positive neuronal somata and more distal elements. Finally, in situ hybridization studies revealed that entorhinal neurons in the superficial layers, and to a lesser extent in deep layers, contain RXFP3 mRNA. Together, our data support functional actions of the NI/relaxin-3-parahippocampal innervation on processes related to memory, spatial navigation and contextual analysis.
Collapse
Affiliation(s)
- Cristina García-Díaz
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Hector Albert-Gasco
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
9
|
Qin W, Zhou A, Zuo X, Jia L, Li F, Wang Q, Li Y, Wei Y, Jin H, Cruchaga C, Benitez BA, Jia J. Exome sequencing revealed PDE11A as a novel candidate gene for early-onset Alzheimer's disease. Hum Mol Genet 2021; 30:811-822. [PMID: 33835157 PMCID: PMC8161517 DOI: 10.1093/hmg/ddab090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
To identify novel risk genes and better understand the molecular pathway underlying Alzheimer's disease (AD), whole-exome sequencing was performed in 215 early-onset AD (EOAD) patients and 255 unrelated healthy controls of Han Chinese ethnicity. Subsequent validation, computational annotation and in vitro functional studies were performed to evaluate the role of candidate variants in EOAD. We identified two rare missense variants in the phosphodiesterase 11A (PDE11A) gene in individuals with EOAD. Both variants are located in evolutionarily highly conserved amino acids, are predicted to alter the protein conformation and are classified as pathogenic. Furthermore, we found significantly decreased protein levels of PDE11A in brain samples of AD patients. Expression of PDE11A variants and knockdown experiments with specific short hairpin RNA (shRNA) for PDE11A both resulted in an increase of AD-associated Tau hyperphosphorylation at multiple epitopes in vitro. PDE11A variants or PDE11A shRNA also caused increased cyclic adenosine monophosphate (cAMP) levels, protein kinase A (PKA) activation and cAMP response element-binding protein phosphorylation. In addition, pretreatment with a PKA inhibitor (H89) suppressed PDE11A variant-induced Tau phosphorylation formation. This study offers insight into the involvement of Tau phosphorylation via the cAMP/PKA pathway in EOAD pathogenesis and provides a potential new target for intervention.
Collapse
Affiliation(s)
- Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Xiumei Zuo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO 63110, USA
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO 63110, USA
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Capital Medical University, Beijing 10053, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 10053, China
- Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 10053, China
- To whom correspondence should be addressed at: Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing 100053, P.R. China. Tel: 0086 10 83199449; Fax: 0086 10 83128678; ,
| |
Collapse
|
10
|
Levy I, Szarek E, Maria AG, Starrost M, De La Luz Sierra M, Faucz FR, Stratakis CA. A phosphodiesterase 11 (Pde11a) knockout mouse expressed functional but reduced Pde11a: Phenotype and impact on adrenocortical function. Mol Cell Endocrinol 2021; 520:111071. [PMID: 33127481 PMCID: PMC7771190 DOI: 10.1016/j.mce.2020.111071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023]
Abstract
Phosphodiesterases catalyze the hydrolysis of cyclic nucleotides and maintain physiologic levels of intracellular concentrations of cyclic adenosine and guanosine mono-phosphate (cAMP and cGMP, respectively). Increased cAMP signaling has been associated with adrenocortical tumors and Cushing syndrome. Genetic defects in phosphodiesterase 11A (PDE11A) may lead to increased cAMP signaling and have been found to predispose to the development of adrenocortical, prostate, and testicular tumors. A previously reported Pde11a knockout (Pde11a-/-) mouse line was studied and found to express PDE11A mRNA and protein still, albeit at reduced levels; functional studies in various tissues showed increased cAMP levels and reduced PDE11A activity. Since patients with PDE11A defects and Cushing syndrome have PDE11A haploinsufficiency, it was particularly pertinent to study this hypomorphic mouse line. Indeed, Pde11a-/- mice failed to suppress corticosterone secretion in response to low dose dexamethasone, and in addition exhibited adrenal subcapsular hyperplasia with predominant fetal-like features in the inner adrenal cortex, mimicking other mouse models of increased cAMP signaling in the adrenal cortex. We conclude that a previously reported Pde11a-/- mouse showed continuing expression and function of PDE11A in most tissues. Nevertheless, Pde11a partial inactivation in mice led to an adrenocortical phenotype that was consistent with what we see in patients with PDE11A haploinsufficiency.
Collapse
Affiliation(s)
- Isaac Levy
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA; Endocrine and Diabetes Unit. Edmond and Lily Safra Children's Hospital, Tel-Hashomer. Ramat Gan. Sackler School of Medicine, Ramat-aviv, Israel
| | - Eva Szarek
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Andrea Gutierrez Maria
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Matthew Starrost
- Division of Veterinary Resources, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Maria De La Luz Sierra
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fabio R Faucz
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26:4570-4582. [PMID: 33414502 PMCID: PMC8589663 DOI: 10.1038/s41380-020-00997-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.
Collapse
Affiliation(s)
- Sébastien Delhaye
- grid.429194.30000 0004 0638 0649Université Côte d’Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560, Valbonne, France.
| |
Collapse
|
12
|
Jankowska A, Wesołowska A, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands Targeting Phosphodiesterase as the Future Strategy for the Symptomatic and Disease-Modifying Treatment of Alzheimer’s Disease. Curr Med Chem 2020; 27:5351-5373. [DOI: 10.2174/0929867326666190620095623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by cognitive
impairments such as memory loss, decline in language skills, and disorientation that affects
over 46 million people worldwide. Patients with AD also suffer from behavioral and psychological
symptoms of dementia that deteriorate their quality of life and lead to premature death. Currently
available drugs provide modest symptomatic relief but do not reduce pathological hallmarks (senile
plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of dementia.
A large body of evidence indicates that impaired signaling pathways of cyclic-3′,5′-
Adenosine Monophosphate (cAMP) and cyclic-3′,5′-guanosine Monophosphate (cGMP) may contribute
to the development and progression of AD. In addition, Phosphodiesterase (PDE) inhibitors,
commonly known as cAMP and/or cGMP modulators, were found to be involved in the phosphorylation
of tau; aggregation of amyloid beta; neuroinflammation; and regulation of cognition, mood,
and emotion processing. The purpose of this review was to update the most recent reports on the
development of novel multifunctional ligands targeting PDE as potential drugs for both symptomatic
and disease-modifying therapy of AD. This review collected the chemical structures of representative
multifunctional ligands, results of experimental in vitro and in vivo pharmacological studies,
and current opinions regarding the potential utility of these compounds for the comprehensive
therapy of AD. Finally, the multiparameter predictions of drugability of the representative compounds
were calculated and discussed.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
13
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
14
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
15
|
Li Z, Farias FHG, Dube U, Del-Aguila JL, Mihindukulasuriya KA, Fernandez MV, Ibanez L, Budde JP, Wang F, Lake AM, Deming Y, Perez J, Yang C, Bahena JA, Qin W, Bradley JL, Davenport R, Bergmann K, Morris JC, Perrin RJ, Benitez BA, Dougherty JD, Harari O, Cruchaga C. The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol 2020; 139:45-61. [PMID: 31456032 PMCID: PMC6942643 DOI: 10.1007/s00401-019-02066-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Apart from amyloid β deposition and tau neurofibrillary tangles, Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and astrocytosis in the cerebral cortex. The goal of this study is to investigate genetic factors associated with the neuronal proportion in health and disease. To identify cell-autonomous genetic variants associated with neuronal proportion in cortical tissues, we inferred cellular population structure from bulk RNA-Seq derived from 1536 individuals. We identified the variant rs1990621 located in the TMEM106B gene region as significantly associated with neuronal proportion (p value = 6.40 × 10-07) and replicated this finding in an independent dataset (p value = 7.41 × 10-04) surpassing the genome-wide threshold in the meta-analysis (p value = 9.42 × 10-09). This variant is in high LD with the TMEM106B non-synonymous variant p.T185S (rs3173615; r2 = 0.98) which was previously identified as a protective variant for frontotemporal lobar degeneration (FTLD). We stratified the samples by disease status, and discovered that this variant modulates neuronal proportion not only in AD cases, but also several neurodegenerative diseases and in elderly cognitively healthy controls. Furthermore, we did not find a significant association in younger controls or schizophrenia patients, suggesting that this variant might increase neuronal survival or confer resilience to the neurodegenerative process. The single variant and gene-based analyses also identified an overall genetic association between neuronal proportion, AD and FTLD risk. These results suggest that common pathways are implicated in these neurodegenerative diseases, that implicate neuronal survival. In summary, we identified a protective variant in the TMEM106B gene that may have a neuronal protection effect against general aging, independent of disease status, which could help elucidate the relationship between aging and neuronal survival in the presence or absence of neurodegenerative disorders. Our findings suggest that TMEM106B could be a potential target for neuronal protection therapies to ameliorate cognitive and functional deficits.
Collapse
Affiliation(s)
- Zeran Li
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiana H G Farias
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Umber Dube
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathie A Mihindukulasuriya
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fengxian Wang
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison M Lake
- Vanderbilt University Medical Scientist Training Program, Nashville, TN, USA
| | - Yuetiva Deming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James Perez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge A Bahena
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Qin
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Joseph L Bradley
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Davenport
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph D Dougherty
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
| | - Oscar Harari
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, BJC Institute of Heath, Washington University School of Medicine, 425 S. Euclid Ave., Box 8134, St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
17
|
Jones SE, van Hees VT, Mazzotti DR, Marques-Vidal P, Sabia S, van der Spek A, Dashti HS, Engmann J, Kocevska D, Tyrrell J, Beaumont RN, Hillsdon M, Ruth KS, Tuke MA, Yaghootkar H, Sharp SA, Ji Y, Harrison JW, Freathy RM, Murray A, Luik AI, Amin N, Lane JM, Saxena R, Rutter MK, Tiemeier H, Kutalik Z, Kumari M, Frayling TM, Weedon MN, Gehrman PR, Wood AR. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nat Commun 2019; 10:1585. [PMID: 30952852 PMCID: PMC6451011 DOI: 10.1038/s41467-019-09576-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/14/2019] [Indexed: 01/16/2023] Open
Abstract
Sleep is an essential human function but its regulation is poorly understood. Using accelerometer data from 85,670 UK Biobank participants, we perform a genome-wide association study of 8 derived sleep traits representing sleep quality, quantity and timing, and validate our findings in 5,819 individuals. We identify 47 genetic associations at P < 5 × 10-8, of which 20 reach a stricter threshold of P < 8 × 10-10. These include 26 novel associations with measures of sleep quality and 10 with nocturnal sleep duration. The majority of identified variants associate with a single sleep trait, except for variants previously associated with restless legs syndrome. For sleep duration we identify a missense variant (p.Tyr727Cys) in PDE11A as the likely causal variant. As a group, sleep quality loci are enriched for serotonin processing genes. Although accelerometer-derived measures of sleep are imperfect and may be affected by restless legs syndrome, these findings provide new biological insights into sleep compared to previous efforts based on self-report sleep measures.
Collapse
Affiliation(s)
- Samuel E Jones
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | | | - Diego R Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Séverine Sabia
- Research Department of Epidemiology and Public Health, University College London, London, WC1E 6BT, UK
- INSERM, U1153, Epidemiology of Ageing and Neurodegenerative diseases, Université de Paris, Paris, 75010, France
| | - Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jorgen Engmann
- UCL Institute of Cardiovascular Science, Research department of Population Science and Experimental Medicine, Centre for Translational Genomics, 222 Euston Road, London, NW1 2DA, UK
| | - Desana Kocevska
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Jessica Tyrrell
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Robin N Beaumont
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Melvyn Hillsdon
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Marcus A Tuke
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Seth A Sharp
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Yingjie Ji
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Jamie W Harrison
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Rachel M Freathy
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Anna Murray
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02111, USA
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PL, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, 193 Hathersage Road, Manchester, M13 0JE, UK
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, 1010, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Meena Kumari
- ISER, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Michael N Weedon
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK.
| | - Philip R Gehrman
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK.
| |
Collapse
|