1
|
Wang NC, Noll DC, Srinivasan A, Gagnon-Bartsch J, Kim MM, Rao A. Simulated MRI Artifacts: Testing Machine Learning Failure Modes. BME FRONTIERS 2022; 2022:9807590. [PMID: 37850164 PMCID: PMC10521705 DOI: 10.34133/2022/9807590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/08/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. Seven types of MRI artifacts, including acquisition and preprocessing errors, were simulated to test a machine learning brain tumor segmentation model for potential failure modes. Introduction. Real-world medical deployments of machine learning algorithms are less common than the number of medical research papers using machine learning. Part of the gap between the performance of models in research and deployment comes from a lack of hard test cases in the data used to train a model. Methods. These failure modes were simulated for a pretrained brain tumor segmentation model that utilizes standard MRI and used to evaluate the performance of the model under duress. These simulated MRI artifacts consisted of motion, susceptibility induced signal loss, aliasing, field inhomogeneity, sequence mislabeling, sequence misalignment, and skull stripping failures. Results. The artifact with the largest effect was the simplest, sequence mislabeling, though motion, field inhomogeneity, and sequence misalignment also caused significant performance decreases. The model was most susceptible to artifacts affecting the FLAIR (fluid attenuation inversion recovery) sequence. Conclusion. Overall, these simulated artifacts could be used to test other brain MRI models, but this approach could be used across medical imaging applications.
Collapse
Affiliation(s)
- Nicholas C. Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, USA
| | - Douglas C. Noll
- Department of Biomedical Engineering, University of Michigan, USA
- Department of Radiology, University of Michigan, USA
| | - Ashok Srinivasan
- Department of Radiology, Division of Neuroradiology, University of Michigan, USA
- Rogel Cancer Center, University of Michigan, USA
- Frankel Cardiovascular Center, University of Michigan, USA
| | | | - Michelle M. Kim
- Department of Radiation Oncology, University of Michigan, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, USA
- Department of Radiation Oncology, University of Michigan, USA
| |
Collapse
|
2
|
Zhao C, Dewey BE, Pham DL, Calabresi PA, Reich DS, Prince JL. SMORE: A Self-Supervised Anti-Aliasing and Super-Resolution Algorithm for MRI Using Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:805-817. [PMID: 33170776 PMCID: PMC8053388 DOI: 10.1109/tmi.2020.3037187] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
High resolution magnetic resonance (MR) images are desired in many clinical and research applications. Acquiring such images with high signal-to-noise (SNR), however, can require a long scan duration, which is difficult for patient comfort, is more costly, and makes the images susceptible to motion artifacts. A very common practical compromise for both 2D and 3D MR imaging protocols is to acquire volumetric MR images with high in-plane resolution, but lower through-plane resolution. In addition to having poor resolution in one orientation, 2D MRI acquisitions will also have aliasing artifacts, which further degrade the appearance of these images. This paper presents an approach SMORE1 based on convolutional neural networks (CNNs) that restores image quality by improving resolution and reducing aliasing in MR images.2 This approach is self-supervised, which requires no external training data because the high-resolution and low-resolution data that are present in the image itself are used for training. For 3D MRI, the method consists of only one self-supervised super-resolution (SSR) deep CNN that is trained from the volumetric image data. For 2D MRI, there is a self-supervised anti-aliasing (SAA) deep CNN that precedes the SSR CNN, also trained from the volumetric image data. Both methods were evaluated on a broad collection of MR data, including filtered and downsampled images so that quantitative metrics could be computed and compared, and actual acquired low resolution images for which visual and sharpness measures could be computed and compared. The super-resolution method is shown to be visually and quantitatively superior to previously reported methods.
Collapse
|
3
|
Redolfi A, De Francesco S, Palesi F, Galluzzi S, Muscio C, Castellazzi G, Tiraboschi P, Savini G, Nigri A, Bottini G, Bruzzone MG, Ramusino MC, Ferraro S, Gandini Wheeler-Kingshott CAM, Tagliavini F, Frisoni GB, Ryvlin P, Demonet JF, Kherif F, Cappa SF, D'Angelo E. Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts. Front Neurol 2020; 11:1021. [PMID: 33071930 PMCID: PMC7538836 DOI: 10.3389/fneur.2020.01021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: With the shift of research focus to personalized medicine in Alzheimer's Dementia (AD), there is an urgent need for tools that are capable of quantifying a patient's risk using diagnostic biomarkers. The Medical Informatics Platform (MIP) is a distributed e-infrastructure federating large amounts of data coupled with machine-learning (ML) algorithms and statistical models to define the biological signature of the disease. The present study assessed (i) the accuracy of two ML algorithms, i.e., supervised Gradient Boosting (GB) and semi-unsupervised 3C strategy (Categorize, Cluster, Classify-CCC) implemented in the MIP and (ii) their contribution over the standard diagnostic workup. Methods: We examined individuals coming from the MIP installed across 3 Italian memory clinics, including subjects with Normal Cognition (CN, n = 432), Mild Cognitive Impairment (MCI, n = 456), and AD (n = 451). The GB classifier was applied to best discriminate the three diagnostic classes in 1,339 subjects, and the CCC strategy was used to refine the classical disease categories. Four dementia experts provided their diagnostic confidence (DC) of MCI conversion on an independent cohort of 38 patients. DC was based on clinical, neuropsychological, CSF, and structural MRI information and again with addition of the outcome from the MIP tools. Results: The GB algorithm provided a classification accuracy of 85% in a nested 10-fold cross-validation for CN vs. MCI vs. AD discrimination. Accuracy increased to 95% in the holdout validation, with the omission of each Italian clinical cohort out in turn. CCC identified five homogeneous clusters of subjects and 36 biomarkers that represented the disease fingerprint. In the DC assessment, CCC defined six clusters in the MCI population used to train the algorithm and 29 biomarkers to improve patients staging. GB and CCC showed a significant impact, evaluated as +5.99% of increment on physicians' DC. The influence of MIP on DC was rated from "slight" to "significant" in 80% of the cases. Discussion: GB provided fair results in classification of CN, MCI, and AD. CCC identified homogeneous and promising classes of subjects via its semi-unsupervised approach. We measured the effect of the MIP on the physician's DC. Our results pave the way for the establishment of a new paradigm for ML discrimination of patients who will or will not convert to AD, a clinical priority for neurology.
Collapse
Affiliation(s)
- Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia De Francesco
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Laboratory of Alzheimer's Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Samantha Galluzzi
- Laboratory of Alzheimer's Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Muscio
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gloria Castellazzi
- IRCCS Mondino Foundation, Pavia, Italy
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
- Department of Computer, Electrical and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Pietro Tiraboschi
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriella Bottini
- Neuropsychology Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matteo Cotta Ramusino
- IRCCS Mondino Foundation, Pavia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Stefania Ferraro
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
- NMR Research Unit, Queen Square MS Center, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | - Fabrizio Tagliavini
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni B. Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Leenaards Memory Center, Center Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean-François Demonet
- Department of Clinical Neurosciences, Leenaards Memory Center, Center Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- Department of Clinical Neurosciences, Leenaards Memory Center, Center Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Stefano F. Cappa
- IRCCS Mondino Foundation, Pavia, Italy
- University School of Advanced Studies, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Dalca AV, Bouman KL, Freeman WT, Rost NS, Sabuncu MR, Golland P. Medical Image Imputation from Image Collections. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 38:10.1109/TMI.2018.2866692. [PMID: 30136936 PMCID: PMC6393212 DOI: 10.1109/tmi.2018.2866692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present an algorithm for creating high resolution anatomically plausible images consistent with acquired clinical brain MRI scans with large inter-slice spacing. Although large data sets of clinical images contain a wealth of information, time constraints during acquisition result in sparse scans that fail to capture much of the anatomy. These characteristics often render computational analysis impractical as many image analysis algorithms tend to fail when applied to such images. Highly specialized algorithms that explicitly handle sparse slice spacing do not generalize well across problem domains. In contrast, we aim to enable application of existing algorithms that were originally developed for high resolution research scans to significantly undersampled scans. We introduce a generative model that captures fine-scale anatomical structure across subjects in clinical image collections and derive an algorithm for filling in the missing data in scans with large inter-slice spacing. Our experimental results demonstrate that the resulting method outperforms state-of-the-art upsampling super-resolution techniques, and promises to facilitate subsequent analysis not previously possible with scans of this quality. Our implementation is freely available at https://github.com/adalca/papago.
Collapse
Affiliation(s)
- Adrian V. Dalca
- Computer Science and Artificial Intelligence Lab, MIT (main contact: ) and also Martinos Center for Biomedical Imaging, Massachusetts General Hospital, HMS
| | | | | | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital, HMS
| | - Mert R. Sabuncu
- School of Electrical and Computer Engineering, and Meinig School of Biomedical Engineering, Cornell University
| | | |
Collapse
|
5
|
Lakhani P, Prater AB, Hutson RK, Andriole KP, Dreyer KJ, Morey J, Prevedello LM, Clark TJ, Geis JR, Itri JN, Hawkins CM. Machine Learning in Radiology: Applications Beyond Image Interpretation. J Am Coll Radiol 2017; 15:350-359. [PMID: 29158061 DOI: 10.1016/j.jacr.2017.09.044] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022]
Abstract
Much attention has been given to machine learning and its perceived impact in radiology, particularly in light of recent success with image classification in international competitions. However, machine learning is likely to impact radiology outside of image interpretation long before a fully functional "machine radiologist" is implemented in practice. Here, we describe an overview of machine learning, its application to radiology and other domains, and many cases of use that do not involve image interpretation. We hope that better understanding of these potential applications will help radiology practices prepare for the future and realize performance improvement and efficiency gains.
Collapse
Affiliation(s)
- Paras Lakhani
- Department of Radiology, Thomas Jefferson University Hospital, Sidney Kimmel Jefferson Medical College, Philadelphia, Pennsylvania.
| | - Adam B Prater
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - R Kent Hutson
- Radiology Alliance, Colorado Springs, Colorado; Medical Center Radiologists, Virginia Beach, Virginia
| | - Kathy P Andriole
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith J Dreyer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts
| | - Jose Morey
- I.B.M. Watson Research, Yorktown Heights, New York; Department of Radiology, University of Virginia, Charlottesville, Virginia; Medical Center Radiologists, Virginia Beach, Virginia
| | | | - Toshi J Clark
- University of Colorado Medical Center, Denver, Colorado
| | | | - Jason N Itri
- Department of Radiology, University of Virginia, Charlottesville, Virginia
| | - C Matthew Hawkins
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|