1
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
2
|
Corso M, An X, Jones CY, Gonzalez-Doblas V, Schvartzman MS, Malkowski E, Willats WGT, Hanikenne M, Verbruggen N. Adaptation of Arabidopsis halleri to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. THE NEW PHYTOLOGIST 2021; 230:669-682. [PMID: 33421150 DOI: 10.1111/nph.17173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/22/2020] [Indexed: 05/21/2023]
Abstract
Metallophytes constitute powerful models for the study of metal homeostasis, adaptation to extreme environments and the evolution of naturally selected traits. Arabidopsis halleri is a pseudometallophyte which shows constitutive zinc/cadmium (Zn/Cd) tolerance and Zn hyperaccumulation but high intraspecific variability in Cd accumulation. To examine the molecular basis of the variation in metal tolerance and accumulation, ionome, transcriptome and cell wall glycan array profiles were compared in two genetically close A. halleri populations from metalliferous and nonmetalliferous sites in Northern Italy. The metallicolous population displayed increased tolerance to and reduced hyperaccumulation of Zn, and limited accumulation of Cd, as well as altered metal homeostasis, compared to the nonmetallicolous population. This correlated well with the differential expression of transporter genes involved in trace metal entry and in Cd/Zn vacuolar sequestration in roots. Many cell wall-related genes were also more highly expressed in roots of the metallicolous population. Glycan array and histological staining analyses demonstrated that there were major differences between the two populations in terms of the accumulation of specific root pectin and hemicellulose epitopes. Our results support the idea that both specific cell wall components and regulation of transporter genes play a role in limiting accumulation of metals in A. halleri at contaminated sites.
Collapse
Affiliation(s)
- Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Xinhui An
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Catherine Yvonne Jones
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Verónica Gonzalez-Doblas
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Eugeniusz Malkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne,, NE1 7RU, UK
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Hanikenne M, Esteves SM, Fanara S, Rouached H. Coordinated homeostasis of essential mineral nutrients: a focus on iron. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2136-2153. [PMID: 33175167 DOI: 10.1093/jxb/eraa483] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Sara M Esteves
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Steven Fanara
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Hatem Rouached
- BPMP, Univ. Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Navarrete Gutiérrez DM, Nkrumah PN, van der Ent A, Pollard J, Baker AJM, Navarrete Torralba F, Pons MN, Cuevas Sánchez JA, Gómez Hernández T, Echevarria G. The potential of Blepharidium guatemalense for nickel agromining in Mexico and Central America. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1157-1168. [PMID: 33586537 DOI: 10.1080/15226514.2021.1881039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to assess the potential of the woody nickel hyperaccumulator species Blepharidium guatemalense (Standl.) Standl. for agromining in southeastern Mexico. Pot trials consisting of nickel dosing (0, 20, 50, 100, and 250 mg Ni kg-1), and synthetic and organic fertilization were conducted. Field trials were also undertaken with different harvesting regimes of B. guatemalense. Foliar nickel concentrations increased significantly with rising nickel additions, with a 300-fold increase at 250 mg Ni kg-1 treatment relative to the control. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar nickel concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum nickel yield tree-1 yr-1, with an estimated total nickel yield of 142 kg ha-1 yr-1. Blepharidium guatemalense is a prime candidate for nickel agromining on account of its high foliar Ni concentrations, high bioconcentration (180) and translocation factors (3.3), fast growth rate and high shoot biomass production. Future studies are needed to test the outcomes of the pot trials in the field. Extensive geochemical studies are needed to identify potential viable agromining locations. Novelty Statement Our research team is a pioneer in the discovery of metal hyperaccumulator plants in Mesoamerica with at least 13 species discovered in the last 2 years. This study is the first to assess the potential of nickel agromining (phytomining) in Mexico (and in all the American continent), using one of the strongest nickel hyperaccumulators reported so far. The promising results of this study are the basis for optimal agricultural management of Blepharidium guatemalense.
Collapse
Affiliation(s)
- Dulce Montserrat Navarrete Gutiérrez
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
- Universidad Autónoma Chapingo, Texcoco de Mora, Estado de México, Mexico
| | - Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Antony van der Ent
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Joseph Pollard
- Department of Biology, Furman University, Greenville, SC, USA
| | - Alan J M Baker
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marie-Noëlle Pons
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, Nancy, France
| | | | | | - Guillaume Echevarria
- Laboratoire Sols et Environnement, Université de Lorraine, INRAE, Nancy, France
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Spielmann J, Ahmadi H, Scheepers M, Weber M, Nitsche S, Carnol M, Bosman B, Kroymann J, Motte P, Clemens S, Hanikenne M. The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. PLANT, CELL & ENVIRONMENT 2020; 43:2143-2157. [PMID: 32445418 DOI: 10.1111/pce.13806] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Plants have the ability to colonize highly diverse environments. The zinc and cadmium hyperaccumulator Arabidopsis halleri has adapted to establish populations on soils covering an extreme range of metal availabilities. The A. halleri ZIP6 gene presents several hallmarks of hyperaccumulation candidate genes: it is constitutively highly expressed in roots and shoots and is associated with a zinc accumulation quantitative trait locus. Here, we show that AhZIP6 is duplicated in the A. halleri genome. The two copies are expressed mainly in the vasculature in both A. halleri and Arabidopsis thaliana, indicative of conserved cis regulation, and acquired partial organ specialization. Yeast complementation assays determined that AhZIP6 is a zinc and cadmium transporter. AhZIP6 silencing in A. halleri or expression in A. thaliana alters cadmium tolerance, but has no impact on zinc and cadmium accumulation. AhZIP6-silenced plants display reduced cadmium uptake upon short-term exposure, adding AhZIP6 to the limited number of Cd transporters supported by in planta evidence. Altogether, our data suggest that AhZIP6 is key to fine-tune metal homeostasis in specific cell types. This study additionally highlights the distinct fates of duplicated genes in A. halleri.
Collapse
Affiliation(s)
- Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Hassan Ahmadi
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Maxime Scheepers
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Michael Weber
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Sarah Nitsche
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Liège, Belgium
| | - Juergen Kroymann
- CNRS, AgroParisTech, Ecologie Systématique et Evolution, Université Paris-Saclay, Orsay, France
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Lu Q, Chen S, Li Y, Zheng F, He B, Gu M. Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8719-8731. [PMID: 31912395 DOI: 10.1007/s11356-019-07512-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/23/2019] [Indexed: 05/18/2023]
Abstract
Sedum alfredii Hance is a zinc (Zn) and cadmium (Cd) hyperaccumulator plant. However, the regulatory role of plant hormones in the Zn or Cd uptake and accumulation of S. alfredii remains unclear. In this work, the growth, Cd accumulation, abscisic acid (ABA) synthesis and catabolism, malonaldehyde (MDA) content, and transcriptional level of some Cd stress response genes under ABA and Cd co-treatment were investigated to reveal the impact of ABA on Cd resistance and Cd accumulation of S. alfredii. The results show that 0.2 mg/L ABA and 100 μmol/L Cd co-treatment enhanced Cd accumulation and growth in S. alfredii, whereas lower or higher ABA concentrations weaken or even reverse this effect, which was positively correlated with endogenous ABA content. The increase in endogenous ABA content might be the results of the increasing ABA synthetase activities and decreasing ABA lytic enzyme, which was induced by the application of 0.2 mg/L ABA under 100 μmol/L Cd treatment. Principal component analysis (PCA) indicated that ABA impacted the expression pattern of Cd stress response genes, which coincided with the Cd accumulation pattern in the shoots of S. alfredii. Cross-over analysis of partial least squares-discriminant analysis (PLS-DA) and correlation analysis indicated that HsfA4c, HMA4 expression in roots, and HMA2, HMA3, CAD, NAS expression in shoots were correlated with endogenous ABA, which suggests that endogenous ABA improves Cd resistance of seedlings, switches the root-to-shoot transporter from HMA2 to HMA4, and transports more Cd into apoplasts to promote Cd accumulation in the shoots of S. alfredii. Taken together, ABA plays an essential role not only in Cd resistance but also in Cd transport from root to shoot in S. alfredii under Cd stress.
Collapse
Affiliation(s)
- Qinyu Lu
- Guangxi Key Laboratory of Agri-environment and Agri-products Safety, Guangxi University, Nanning, 530004, China
- Agricultural College, Guangxi University, Nanning, 530004, China
| | - Shimiao Chen
- Guangxi Key Laboratory of Agri-environment and Agri-products Safety, Guangxi University, Nanning, 530004, China
- Agricultural College, Guangxi University, Nanning, 530004, China
| | - Yanyan Li
- Qinzhou Institute of Agricultural Sciences, Qinzhou, 535000, China
| | - Fuhai Zheng
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Bing He
- Guangxi Key Laboratory of Agri-environment and Agri-products Safety, Guangxi University, Nanning, 530004, China.
- Agricultural College, Guangxi University, Nanning, 530004, China.
| | - Minghua Gu
- Guangxi Key Laboratory of Agri-environment and Agri-products Safety, Guangxi University, Nanning, 530004, China.
- Agricultural College, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Ceasar SA, Lekeux G, Motte P, Xiao Z, Galleni M, Hanikenne M. di-Cysteine Residues of the Arabidopsis thaliana HMA4 C-Terminus Are Only Partially Required for Cadmium Transport. FRONTIERS IN PLANT SCIENCE 2020; 11:560. [PMID: 32528485 PMCID: PMC7264368 DOI: 10.3389/fpls.2020.00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is highly toxic to the environment and humans. Plants are capable of absorbing Cd from the soil and of transporting part of this Cd to their shoot tissues. In Arabidopsis, the plasma membrane Heavy Metal ATPase 4 (HMA4) transporter mediates Cd xylem loading for export to shoots, in addition to zinc (Zn). A recent study showed that di-Cys motifs present in the HMA4 C-terminal extension (AtHMA4c) are essential for high-affinity Zn binding and transport in planta. In this study, we have characterized the role of the AtHMA4c di-Cys motifs in Cd transport in planta and in Cd-binding in vitro. In contrast to the case for Zn, the di-Cys motifs seem to be partly dispensable for Cd transport as evidenced by limited variation in Cd accumulation in shoot tissues of hma2hma4 double mutant plants expressing native or di-Cys mutated variants of AtHMA4. Expression analysis of metal homeostasis marker genes, such as AtIRT1, excluded that maintained Cd accumulation in shoot tissues was the result of increased Cd uptake by roots. In vitro Cd-binding assays further revealed that mutating di-Cys motifs in AtHMA4c had a more limited impact on Cd-binding than it has on Zn-binding. The contributions of the AtHMA4 C-terminal domain to metal transport and binding therefore differ for Zn and Cd. Our data suggest that it is possible to identify HMA4 variants that discriminate Zn and Cd for transport.
Collapse
Affiliation(s)
- Stanislaus Antony Ceasar
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- InBioS – Center for Protein Engineering, Biological Macromolecules, University of Liège, Liège, Belgium
| | - Gilles Lekeux
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- InBioS – Center for Protein Engineering, Biological Macromolecules, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Zhiguang Xiao
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Moreno Galleni
- InBioS – Center for Protein Engineering, Biological Macromolecules, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- *Correspondence: Marc Hanikenne,
| |
Collapse
|
8
|
Schvartzman MS, Corso M, Fataftah N, Scheepers M, Nouet C, Bosman B, Carnol M, Motte P, Verbruggen N, Hanikenne M. Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri. THE NEW PHYTOLOGIST 2018; 218:269-282. [PMID: 29292833 DOI: 10.1111/nph.14949] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 05/06/2023]
Abstract
Zinc (Zn) hyperaccumulation and hypertolerance are highly variable traits in Arabidopsis halleri. Metallicolous populations have evolved from nearby nonmetallicolous populations in multiple independent adaptation events. To determine whether these events resulted in similar or divergent adaptive strategies to high soil Zn concentrations, we compared two A. halleri metallicolous populations from distant genetic units in Europe (Poland (PL22) and Italy (I16)). The ionomic (Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)) and transcriptomic (RNA sequencing (RNA-Seq)) responses to growth at 5 and 150 μM Zn were analyzed in root and shoot tissues to examine the contribution of the geographic origin and treatment to variation among populations. These analyses were enabled by the generation of a reference A. halleri transcriptome assembly. The genetic unit accounted for the largest variation in the gene expression profile, whereas the two populations had contrasting Zn accumulation phenotypes and shared little common response to the Zn treatment. The PL22 population displayed an iron deficiency response at high Zn in roots and shoots, which may account for higher Zn accumulation. By contrast, I16, originating from a highly Zn-contaminated soil, strongly responded to control conditions. Our data suggest that distinct mechanisms support adaptation to high Zn in soils among A. halleri metallicolous populations.
Collapse
Affiliation(s)
- M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Massimiliano Corso
- Physiology and Plant Molecular Genetics, Free University of Brussels, Brussels, 1050, Belgium
| | - Nazeer Fataftah
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Maxime Scheepers
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Cécile Nouet
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Bernard Bosman
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology and Evolution, University of Liège, Liège, B-4000, Belgium
| | - Monique Carnol
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology and Evolution, University of Liège, Liège, B-4000, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| | - Nathalie Verbruggen
- Physiology and Plant Molecular Genetics, Free University of Brussels, Brussels, 1050, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, B-4000, Belgium
| |
Collapse
|