1
|
Bordoni B, Walkowski S, Escher A, Ducoux B. The Importance of the Posterolateral Area of the Diaphragm Muscle for Palpation and for the Treatment of Manual Osteopathic Medicine. Complement Med Res 2021; 29:74-82. [PMID: 34237723 DOI: 10.1159/000517507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
The eupneic act in healthy subjects involves a coordinated combination of functional anatomy and neurological activation. Neurologically, a central pattern generator, the components of which are distributed between the brainstem and the spinal cord, are hypothesized to drive the process and are modeled mathematically. A functionally anatomical approach is easier to understand although just as complex. Osteopathic manipulative treatment (OMT) is part of osteopathic medicine, which has many manual techniques to approach the human body, trying to improve the patient's homeostatic response. The principle on which OMT is based is the stimulation of self-healing processes, researching the intrinsic physiological mechanisms of the person, taking into consideration not only the physical aspect, but also the emotional one and the context in which the patient lives. This article reviews how the diaphragm muscle moves, with a brief discussion on anatomy and the respiratory neural network. The goal is to highlight the critical issues of OMT on the correct positioning of the hands on the posterolateral area of the diaphragm around the diaphragm, trying to respect the existing scientific anatomical-physiological data, and laying a solid foundation for improving the data obtainable from future research. The correctness of the position of the operator's hands in this area allows a more effective palpatory perception and, consequently, a probably more incisive result on the respiratory function.
Collapse
Affiliation(s)
- Bruno Bordoni
- Department of Cardiology, Foundation Don Carlo Gnocchi IRCCS, Institute of Hospitalization and Care with Scientific Address, Milan, Italy
| | - Stevan Walkowski
- Osteopathic Manipulative Medicine, Heritage College of Osteopathic Medicine-Dublin, Dublin, Ohio, USA
| | - Allan Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bruno Ducoux
- Osteopathy, Formation Recherche Ostéopathie Prévention (FROP), Bordeaux, France
| |
Collapse
|
2
|
Wu RN, Hung WC, Chen CT, Tsai LP, Lai WS, Min MY, Wong SB. Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader-Willi syndrome. J Neurodev Disord 2020; 12:21. [PMID: 32727346 PMCID: PMC7389383 DOI: 10.1186/s11689-020-09323-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by multiple respiratory, cognitive, endocrine, and behavioral symptoms, such as central apnea, intellectual disabilities, exaggerated stress responses, and temper tantrums. The locus coeruleus noradrenergic system (LC-NE) modulates a diverse range of behaviors, including arousal, learning, pain modulation, and stress-induced negative affective states, which are possibly correlated with the pathogenesis of PWS phenotypes. Therefore, we evaluated the LC-NE neuronal activity of necdin-deficient mice, an animal model of PWS. METHODS Heterozygous necdin-deficient mice (B6.Cg-Ndntm1ky) were bred from wild-type (WT) females to generate WT (+m/+p) and heterozygotes (+m/-p) animals, which were examined of LC-NE neuronal activity, developmental reflexes, and plethysmography. RESULTS On slice electrophysiology, LC-NE neurons of Ndntm1ky mice with necdin deficiency showed significantly decreased spontaneous activities and impaired excitability, which was mediated by enhanced A-type voltage-dependent potassium currents. Ndntm1ky mice also exhibited the neonatal phenotypes of PWS, such as hypotonia and blunt respiratory responses to hypercapnia. CONCLUSIONS LC-NE neuronal firing activity decreased in necdin-deficient mice, suggesting that LC, the primary source of norepinephrine in the central nervous system, is possibly involved in PWS pathogenesis.
Collapse
Affiliation(s)
- Rui-Ni Wu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jiangguo Rd, Xindian Dist, New Taipei City, 23142, Taiwan
| | - Wei-Chen Hung
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ching-Tsuey Chen
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jiangguo Rd, Xindian Dist, New Taipei City, 23142, Taiwan
- School of Medicine, Tzu Chi University, No. 701, Sec 3, Jhongyang Rd, Hualien, 97071, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Shi-Bing Wong
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jiangguo Rd, Xindian Dist, New Taipei City, 23142, Taiwan.
- School of Medicine, Tzu Chi University, No. 701, Sec 3, Jhongyang Rd, Hualien, 97071, Taiwan.
| |
Collapse
|
3
|
Pickett KL, Stein PS, Vincen-Brown MA, Pilarski JQ. Maturation of Breathing-Related Inhibitory Neurotransmission in the Medulla Oblongata of the Embryonic and Perinatal Zebra Finch (Taeniopygia guttata). Dev Neurobiol 2018; 78:1081-1096. [PMID: 30160056 PMCID: PMC6596416 DOI: 10.1002/dneu.22632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 11/05/2022]
Abstract
The medullary portion of the embryonic zebra finch hindbrain was isolated and superfused with physiologically relevant artificial cerebral spinal fluid. This in vitro preparation produced uninterrupted rhythmic episodes of neural activity via cranial nerve IX (glossopharyngeal) from embryonic day 4 (E4) through hatching on E14. Cranial nerve IX carries motor activity to the glottis during the inspiratory phase of breathing, and we focused on the role of synaptic inhibition during the embryonic and perinatal maturation of this branchiomotor outflow. We show that spontaneous neural activity (SNA) is first observed on E4 and temporally transforms as the embryo ages. To start, SNA is dependent on the excitatory actions of GABAA and glycine. As the embryo continues to develop, GABAergic and glycinergic neurotransmission take on a modulatory role, albeit an excitatory one, through E10. After that, data show that GABAergic and glycinergic neurotransmission switches to a phenotype consistent with inhibition, coincident with the onset of functional breathing. We also report that the inhibitory action of GABAergic and glycinergic receptor gating is not necessary for the spontaneous generation of branchiomotor motor rhythms in these birds near hatching. This is the first report focusing on the development of central breathing-related inhibitory neurotransmission in birds during the entire period of embryogenesis.
Collapse
Affiliation(s)
- Kaci L. Pickett
- Department of Biological Sciences, Idaho State University, Pocatello, ID. 83209-8007
| | - Paxton S. Stein
- Department of Biological Sciences, Idaho State University, Pocatello, ID. 83209-8007
| | | | - Jason Q. Pilarski
- Department of Biological Sciences, Idaho State University, Pocatello, ID. 83209-8007
- Department of Dental Sciences, Idaho State University, Pocatello, ID. 83209-8007
| |
Collapse
|