1
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
2
|
Hemandhar Kumar S, Tapken I, Kuhn D, Claus P, Jung K. bootGSEA: a bootstrap and rank aggregation pipeline for multi-study and multi-omics enrichment analyses. FRONTIERS IN BIOINFORMATICS 2024; 4:1380928. [PMID: 38633435 PMCID: PMC11021641 DOI: 10.3389/fbinf.2024.1380928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: Gene set enrichment analysis (GSEA) subsequent to differential expression analysis is a standard step in transcriptomics and proteomics data analysis. Although many tools for this step are available, the results are often difficult to reproduce because set annotations can change in the databases, that is, new features can be added or existing features can be removed. Finally, such changes in set compositions can have an impact on biological interpretation. Methods: We present bootGSEA, a novel computational pipeline, to study the robustness of GSEA. By repeating GSEA based on bootstrap samples, the variability and robustness of results can be studied. In our pipeline, not all genes or proteins are involved in the different bootstrap replicates of the analyses. Finally, we aggregate the ranks from the bootstrap replicates to obtain a score per gene set that shows whether it gains or loses evidence compared to the ranking of the standard GSEA. Rank aggregation is also used to combine GSEA results from different omics levels or from multiple independent studies at the same omics level. Results: By applying our approach to six independent cancer transcriptomics datasets, we showed that bootstrap GSEA can aid in the selection of more robust enriched gene sets. Additionally, we applied our approach to paired transcriptomics and proteomics data obtained from a mouse model of spinal muscular atrophy (SMA), a neurodegenerative and neurodevelopmental disease associated with multi-system involvement. After obtaining a robust ranking at both omics levels, both ranking lists were combined to aggregate the findings from the transcriptomics and proteomics results. Furthermore, we constructed the new R-package "bootGSEA," which implements the proposed methods and provides graphical views of the findings. Bootstrap-based GSEA was able in the example datasets to identify gene or protein sets that were less robust when the set composition changed during bootstrap analysis. Discussion: The rank aggregation step was useful for combining bootstrap results and making them comparable to the original findings on the single-omics level or for combining findings from multiple different omics levels.
Collapse
Affiliation(s)
- Shamini Hemandhar Kumar
- Institute for Animal Genomics, University of Veterinary Medicine, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Daniela Kuhn
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
- Clinic for Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
- SMATHERIA gGmbH—Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Genomics, University of Veterinary Medicine, Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
3
|
Sharma G, Paganin M, Lauria F, Perenthaler E, Viero G. The SMN-ribosome interplay: a new opportunity for Spinal Muscular Atrophy therapies. Biochem Soc Trans 2024; 52:465-479. [PMID: 38391004 PMCID: PMC10903476 DOI: 10.1042/bst20231116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The underlying cause of Spinal Muscular Atrophy (SMA) is in the reduction of survival motor neuron (SMN) protein levels due to mutations in the SMN1 gene. The specific effects of SMN protein loss and the resulting pathological alterations are not fully understood. Given the crucial roles of the SMN protein in snRNP biogenesis and its interactions with ribosomes and translation-related proteins and mRNAs, a decrease in SMN levels below a specific threshold in SMA is expected to affect translational control of gene expression. This review covers both direct and indirect SMN interactions across various translation-related cellular compartments and processes, spanning from ribosome biogenesis to local translation and beyond. Additionally, it aims to outline deficiencies and alterations in translation observed in SMA models and patients, while also discussing the implications of the relationship between SMN protein and the translation machinery within the context of current and future therapies.
Collapse
|
4
|
Garcia-Vaquero ML, Heim M, Flix B, Pereira M, Palin L, Marques TM, Pinto FR, de Las Rivas J, Voigt A, Besse F, Gama-Carvalho M. Analysis of asymptomatic Drosophila models for ALS and SMA reveals convergent impact on functional protein complexes linked to neuro-muscular degeneration. BMC Genomics 2023; 24:576. [PMID: 37759179 PMCID: PMC10523761 DOI: 10.1186/s12864-023-09562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) share phenotypic and molecular commonalities, including the fact that they can be caused by mutations in ubiquitous proteins involved in RNA metabolism, namely SMN, TDP-43 and FUS. Although this suggests the existence of common disease mechanisms, there is currently no model to explain the resulting motor neuron dysfunction. In this work we generated a parallel set of Drosophila models for adult-onset RNAi and tagged neuronal expression of the fly orthologues of the three human proteins, named Smn, TBPH and Caz, respectively. We profiled nuclear and cytoplasmic bound mRNAs using a RIP-seq approach and characterized the transcriptome of the RNAi models by RNA-seq. To unravel the mechanisms underlying the common functional impact of these proteins on neuronal cells, we devised a computational approach based on the construction of a tissue-specific library of protein functional modules, selected by an overall impact score measuring the estimated extent of perturbation caused by each gene knockdown. RESULTS Transcriptome analysis revealed that the three proteins do not bind to the same RNA molecules and that only a limited set of functionally unrelated transcripts is commonly affected by their knock-down. However, through our integrative approach we were able to identify a concerted effect on protein functional modules, albeit acting through distinct targets. Most strikingly, functional annotation revealed that these modules are involved in critical cellular pathways for motor neurons, including neuromuscular junction function. Furthermore, selected modules were found to be significantly enriched in orthologues of human neuronal disease genes. CONCLUSIONS The results presented here show that SMA and ALS disease-associated genes linked to RNA metabolism functionally converge on neuronal protein complexes, providing a new hypothesis to explain the common motor neuron phenotype. The functional modules identified represent promising biomarkers and therapeutic targets, namely given their alteration in asymptomatic settings.
Collapse
Affiliation(s)
- Marina L Garcia-Vaquero
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
- Department of Medicine and Cytometry General Service-15 Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), CIBERONC, 16 37007, Salamanca, Spain
| | - Marjorie Heim
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Barbara Flix
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Marcelo Pereira
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Lucile Palin
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Tânia M Marques
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Javier de Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007, Salamanca, Spain
| | - Aaron Voigt
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH RWTH Aachen University, 52074, Aachen, Germany
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Margarida Gama-Carvalho
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Lazo PA, Morejón-García P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis 2023; 183:106172. [PMID: 37257665 DOI: 10.1016/j.nbd.2023.106172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Distal hereditary neuropathies and neuro motor diseases are complex neurological phenotypes associated with pathogenic variants in a large number of genes, but in some the origin is unknown. Recently, rare pathogenic variants of the human VRK1 gene have been associated with these neurological phenotypes. All VRK1 pathogenic variants are recessive, and their clinical presentation occurs in either homozygous or compound heterozygous patients. The pathogenic VRK1 gene pathogenic variants are located in three clusters within the protein sequence. The main, and initial, shared clinical phenotype among VRK1 pathogenic variants is a distal progressive loss of motor and/or sensory function, which includes diseases such as spinal muscular atrophy, Charcot-Marie-Tooth, amyotrophic lateral sclerosis and hereditary spastic paraplegia. In most cases, symptoms start early in infancy, or in utero, and are slowly progressive. Additional neurological symptoms vary among non-related patients, probably because of their different VRK1 variants and their genetic background. The underlying common pathogenic mechanism, by its functional impairment, is a likely consequence of the roles that the VRK1 protein plays in the regulation on the stability and assembly of Cajal bodies, which affect RNA maturation and processing, neuronal migration of RNPs along axons, and DNA-damage responses. Alterations of these processes are associated with several neuro sensory or motor syndromes. The clinical heterogeneity of the neurological phenotypes associated with VRK1 is a likely consequence of the protein complexes in which VRK1 is integrated, which include several proteins known to be associated with Cajal bodies and DNA damage responses. Several hereditary distal neurological diseases are a consequence of pathogenic variants in genes that alter these cellular functions. We conclude that VRK1-related distal hereditary neuropathies and motor neuron diseases represent a novel subgroup of Cajal body related neurological syndromes.
Collapse
Affiliation(s)
- Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
6
|
Rossoll W, Singh RN. Commentary: Current Status of Gene Therapy for Spinal Muscular Atrophy. Front Cell Neurosci 2022; 16:916065. [PMID: 35656408 PMCID: PMC9152110 DOI: 10.3389/fncel.2022.916065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Wilfried Rossoll
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Ravindra N. Singh
| |
Collapse
|
7
|
Gupta K, Wen Y, Ninan NS, Raimer AC, Sharp R, Spring A, Sarachan KL, Johnson MC, Van Duyne GD, Matera AG. Assembly of higher-order SMN oligomers is essential for metazoan viability and requires an exposed structural motif present in the YG zipper dimer. Nucleic Acids Res 2021; 49:7644-7664. [PMID: 34181727 PMCID: PMC8287954 DOI: 10.1093/nar/gkab508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ying Wen
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nisha S Ninan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Amanda C Raimer
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ashlyn M Spring
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathryn L Sarachan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Meghan C Johnson
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - A Gregory Matera
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020; 15:2633105520973985. [PMID: 33283185 PMCID: PMC7691903 DOI: 10.1177/2633105520973985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA
is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to
deletion of or mutation in the SMN1 gene. Its nearly identical
copy, SMN2, fails to compensate for the loss of
SMN1 due to predominant skipping of exon 7. Correction of
SMN2 exon 7 splicing by an antisense oligonucleotide (ASO),
nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1)
became the first approved therapy for SMA. Restoration of SMN levels using gene
therapy was the next. Very recently, an orally deliverable small molecule,
risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss
how these therapies are positioned to meet the needs of the broad phenotypic
spectrum of SMA patients.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Lauria F, Bernabò P, Tebaldi T, Groen EJN, Perenthaler E, Maniscalco F, Rossi A, Donzel D, Clamer M, Marchioretto M, Omersa N, Orri J, Dalla Serra M, Anderluh G, Quattrone A, Inga A, Gillingwater TH, Viero G. SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nat Cell Biol 2020; 22:1239-1251. [PMID: 32958857 PMCID: PMC7610479 DOI: 10.1038/s41556-020-00577-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
The contribution of ribosome heterogeneity and ribosome-associated proteins to the molecular control of proteomes in health and disease remains unclear. Here, we demonstrate that survival motor neuron (SMN) protein-the loss of which causes the neuromuscular disease spinal muscular atrophy (SMA)-binds to ribosomes and that this interaction is tissue-dependent. SMN-primed ribosomes are preferentially positioned within the first five codons of a set of mRNAs that are enriched for translational enhancer sequences in the 5' untranslated region (UTR) and rare codons at the beginning of their coding sequence. These SMN-specific mRNAs are associated with neurogenesis, lipid metabolism, ubiquitination, chromatin regulation and translation. Loss of SMN induces ribosome depletion, especially at the beginning of the coding sequence of SMN-specific mRNAs, leading to impairment of proteins that are involved in motor neuron function and stability, including acetylcholinesterase. Thus, SMN plays a crucial role in the regulation of ribosome fluxes along mRNAs encoding proteins that are relevant to SMA pathogenesis.
Collapse
Affiliation(s)
- Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | - Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | - Toma Tebaldi
- Department CIBIO, University of Trento, Trento, Italy
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ewout Joan Nicolaas Groen
- Edinburgh Medical School, Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elena Perenthaler
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Federica Maniscalco
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Deborah Donzel
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | | | | | - Neža Omersa
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Julia Orri
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
- La Fundació Jesuïtes Educació, Barcelona, Spain
| | | | | | | | - Alberto Inga
- Department CIBIO, University of Trento, Trento, Italy
| | - Thomas Henry Gillingwater
- Edinburgh Medical School, Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Martín-Doncel E, Rojas AM, Cantarero L, Lazo PA. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Sci Rep 2019; 9:13381. [PMID: 31527692 PMCID: PMC6746721 DOI: 10.1038/s41598-019-49821-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Very rare polymorphisms in the human VRK1 (vaccinia-related kinase 1) gene have been identified in complex neuromotor phenotypes associated to spinal muscular atrophy (SMA), pontocerebellar hypoplasia (PCH), microcephaly, amyotrophic lateral sclerosis (ALS) and distal motor neuron dysfunctions. The mechanisms by which these VRK1 variant proteins contribute to the pathogenesis of these neurological syndromes are unknown. The syndromes are manifested when both of these rare VRK1 polymorphic alleles are implicated, either in homozygosis or compound heterozygosis. In this report, to identify the common underlying pathogenic mechanism of VRK1 polymorphisms, we have studied all human VRK1 variants identified in these neurological phenotypes from a biochemical point of view by molecular modeling, protein stability and kinase activity assays. Molecular modelling predicted that VRK1 variant proteins are either unstable or have an altered kinase activity. The stability and kinase activity of VRK1 pathogenic variants detected two groups. One composed by variants with a reduced protein stability: R133C, R358X, L195V, G135R and R321C. The other group includes VRK1variants with a reduced kinase activity tested on several substrates: histones H3 and H2AX, p53, c-Jun, coilin and 53BP1, a DNA repair protein. VRK1 variants with reduced kinase activity are H119R, R133C, G135R, V236M, R321C and R358X. The common underlying effect of VRK1 pathogenic variants with reduced protein stability or kinase activity is a functional insufficiency of VRK1 in patients with neuromotor developmental syndromes. The G135 variant cause a defective formation of 53BP1 foci in response to DNA damage, and loss Cajal bodies assembled on coilin.
Collapse
Affiliation(s)
- Elena Martín-Doncel
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Lara Cantarero
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Laboratorio de Neurogenética y Medicina Molecular, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
11
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
12
|
Spring AM, Raimer AC, Hamilton CD, Schillinger MJ, Matera AG. Comprehensive Modeling of Spinal Muscular Atrophy in Drosophila melanogaster. Front Mol Neurosci 2019; 12:113. [PMID: 31156382 PMCID: PMC6532329 DOI: 10.3389/fnmol.2019.00113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that affects motor neurons, primarily in young children. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN functions in the assembly of spliceosomal RNPs and is well conserved in many model systems including mouse, zebrafish, fruit fly, nematode, and fission yeast. Work in Drosophila has focused on the loss of SMN function during larval stages, primarily using null alleles or strong hypomorphs. A systematic analysis of SMA-related phenotypes in the context of moderate alleles that more closely mimic the genetics of SMA has not been performed in the fly, leading to debate over the validity and translational value of this model. We, therefore, examined 14 Drosophila lines expressing SMA patient-derived missense mutations in Smn, with a focus on neuromuscular phenotypes in the adult stage. Animals were evaluated on the basis of organismal viability and longevity, locomotor function, neuromuscular junction structure, and muscle health. In all cases, we observed phenotypes similar to those of SMA patients, including progressive loss of adult motor function. The severity of these defects is variable and forms a broad spectrum across the 14 lines examined, recapitulating the full range of phenotypic severity observed in human SMA. This includes late-onset models of SMA, which have been difficult to produce in other model systems. The results provide direct evidence that SMA-related locomotor decline can be reproduced in the fly and support the use of patient-derived SMN missense mutations as a comprehensive system for modeling SMA.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Amanda C. Raimer
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Christine D. Hamilton
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | | | - A. Gregory Matera
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|