1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Xu AY, Blanco MA, Castellanos MM, Meuse CW, Mattison K, Karageorgos I, Hatch HW, Shen VK, Curtis JE. Role of Domain-Domain Interactions on the Self-Association and Physical Stability of Monoclonal Antibodies: Effect of pH and Salt. J Phys Chem B 2023; 127:8344-8357. [PMID: 37751332 PMCID: PMC10561141 DOI: 10.1021/acs.jpcb.3c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Monoclonal antibodies (mAbs) make up a major class of biotherapeutics with a wide range of clinical applications. Their physical stability can be affected by various environmental factors. For instance, an acidic pH can be encountered during different stages of the mAb manufacturing process, including purification and storage. Therefore, understanding the behavior of flexible mAb molecules in acidic solution environments will benefit the development of stable mAb products. This study used small-angle X-ray scattering (SAXS) and complementary biophysical characterization techniques to investigate the conformational flexibility and protein-protein interactions (PPI) of a model mAb molecule under near-neutral and acidic conditions. The study also characterized the interactions between Fab and Fc fragments under the same buffer conditions to identify domain-domain interactions. The results suggest that solution pH significantly influences mAb flexibility and thus could help mAbs remain physically stable by maximizing local electrostatic repulsions when mAbs become crowded in solution. Under acidic buffer conditions, both Fab and Fc contribute to the repulsive PPI observed among the full mAb at a low ionic strength. However, as ionic strength increases, hydrophobic interactions lead to the self-association of Fc fragments and, subsequently, could affect the aggregation state of the mAb.
Collapse
Affiliation(s)
- Amy Y. Xu
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Marco A. Blanco
- Discovery
Pharmaceutical Sciences, Merck Research
Laboratories, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Maria Monica Castellanos
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Curtis W. Meuse
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kevin Mattison
- Malvern
Panalytical, Westborough, Massachusetts 01581, United States
| | - Ioannis Karageorgos
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- Biomolecular
Measurement Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Harold W. Hatch
- Chemical
Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent K. Shen
- Chemical
Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Joseph E. Curtis
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|