1
|
Vittani M, Lee AB, Wang X, Hiraoka Y, Konno A, Knak PG, Kusk P, Nagao M, Asiminas A, Courtin J, Putranto MF, Nasu Y, Tsuno S, Ueda K, Osuga Y, Tsuboi T, Bienvenu T, Terunuma M, Hirai H, Nedergaard M, Tanaka K, Hirase H. Functional and structural profiling of circulation via genetically encoded modular fluorescent probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643859. [PMID: 40166224 PMCID: PMC11956918 DOI: 10.1101/2025.03.18.643859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sustained labeling of fluids is crucial for their investigation in animal models. Here, we introduce a mouse line (Alb-mSc-ST), where blood and interstitial fluid are labeled with the red fluorescent protein mScarlet and SpyTag. The SpyTag-SpyCatcher technology is exploited to monitor circulating fluid properties by biosensors or detect blood-brain barrier disruption. This approach represents a valuable tool for studying vascular structure, permeability and microenvironment in body organs in vivo.
Collapse
Affiliation(s)
- Marta Vittani
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ashley Bomin Lee
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiaowen Wang
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Philip Gade Knak
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Kusk
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Masaki Nagao
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonios Asiminas
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julien Courtin
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Muhammad Fadhli Putranto
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
| | - Yusuke Nasu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Da’an, Taipei 106, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Saki Tsuno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Ken Ueda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuri Osuga
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Thomas Bienvenu
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
- Centre Hospitalier Charles Perrens, 121 rue de la Béchade, 33076 Bordeaux, France
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
2
|
Zeng Y, Fu BM. Angiogenesis and Microvascular Permeability. Cold Spring Harb Perspect Med 2025; 15:a041163. [PMID: 38692737 PMCID: PMC11694756 DOI: 10.1101/cshperspect.a041163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Angiogenesis, the formation of new blood microvessels, is a necessary physiological process for tissue generation and repair. Sufficient blood supply to the tissue is dependent on microvascular density, while the material exchange between the circulating blood and the surrounding tissue is controlled by microvascular permeability. We thus begin this article by reviewing the key signaling factors, particularly vascular endothelial growth factor (VEGF), which regulates both angiogenesis and microvascular permeability. We then review the role of angiogenesis in tissue growth (bone regeneration) and wound healing. Finally, we review angiogenesis as a pathological process in tumorigenesis, intraplaque hemorrhage, cerebral microhemorrhage, pulmonary fibrosis, and hepatic fibrosis. Since the glycocalyx is important for both angiogenesis and microvascular permeability, we highlight the role of the glycocalyx in regulating the interaction between tumor cells and endothelial cells (ECs) and VEGF-containing exosome release and uptake by tumor-associated ECs, all of which contribute to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
3
|
Schmid KF, Zeinali S, Moser SK, Dubey C, Schneider S, Deng H, Haefliger S, Marti TM, Guenat OT. Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model. Front Bioeng Biotechnol 2024; 12:1457884. [PMID: 39439549 PMCID: PMC11493642 DOI: 10.3389/fbioe.2024.1457884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.
Collapse
Affiliation(s)
- Karin F. Schmid
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Susanne K. Moser
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Yang H, Zhao Y, Ren B, Wu Y, Qiu Z, Cheng Y, Qiu B. Poria acid inhibit the growth and metastasis of renal cell carcinoma by inhibiting the PI3K/akt/NF-κb signaling pathway. Heliyon 2024; 10:e31106. [PMID: 38779018 PMCID: PMC11109894 DOI: 10.1016/j.heliyon.2024.e31106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background Poria acid (PAC) is a triterpene compound found in Poria cocos, a traditional Chinese medicine (TCM). The current study aims to explore the therapeutic effects and potential mechanisms of PAC on the migration and proliferation of human renal cell carcinoma (RCC) cells as well as tumor growth in animal model. Methods Cell viability and proliferative capacity of normal renal cells and RCC cells were investigated by MTT assay. In addition, 786-O cells were divided into four groups and treated with different concentrations of PAC (0, 20, 40, and 60 μM) for 48 h. Cell scratch test and cell invasion assay were performed to evaluate the effects of PAC on the invasion and migration of RCC cells, respectively. The effects of PAC on apoptosis of RCC cells and expression levels of PI3K/Akt/NF-kB signaling pathway-related biomarkers were investigated using TUNEL staining and Western blotting methods, respectively. Effects of PAC on the inhibitory activity of RCC tumor in mice were evaluated in a 786-O CDX model. Results The study found that PAC inhibited the viability of RCC cells in a dose-dependent manner, as demonstrated by in vitro cell assays (p < 0.05). However, PAC showed no significant inhibitory effect on normal renal cells (p > 0.05). PAC also significantly inhibited the migration and invasion of RCC via EMT/MMP signaling pathways (p < 0.05). Immunofluorescence and immunoblotting results showed that PAC induced the apoptosis of RCC, which was accompanied by changes in the expression levels of apoptosis-related proteins (p < 0.05). Moreover, PAC significantly downregulated the PI3K/Akt/NF-kB signaling pathway in a concentration-dependent manner (p < 0.05). The effect of PAC on RCC apoptosis was dramatically reversed by 740Y-P (PI3K agonist) (p < 0.05) but significantly enhanced in the presence of LY294002 (PI3K inhibitor) (p < 0.05). The results of in vivo experiment also demonstrated that the antitumor activity of PAC was achieved by affecting the PI3K/Akt/NF-kB signaling pathway. Conclusions PAC can effectively suppress the proliferation, invasion and migration of RCC cells, and exhibit anti-tumor effects in RCC model by inhibiting the PI3K/Akt/NF-kB signaling pathway.
Collapse
Affiliation(s)
- Haotian Yang
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yue Zhao
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Bingnan Ren
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yin Wu
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhihong Qiu
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yan Cheng
- Department of Medical Oncology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Bo Qiu
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| |
Collapse
|
5
|
Qu R, Du W, Li S, Li W, Wei G, Chen Z, Gao H, Shi S, Zou L, Li H. Destruction of vascular endothelial glycocalyx during formation of pre-metastatic niches. Heliyon 2024; 10:e29101. [PMID: 38601565 PMCID: PMC11004892 DOI: 10.1016/j.heliyon.2024.e29101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
A special microenvironment called the "pre-metastatic niche" is thought to help primary tumor cells migrate to new tissues and invade them, in part because the normal barrier function of the vascular endothelium is compromised. While the primary tumor itself can promote the creation of such niches by secreting pro-metastatic factors, the underlying molecular mechanisms are still poorly understood. Here, we show that the injection of primary tumor-secreted pro-metastatic factors from B16F10 melanoma or 4T1 breast cancer cells into healthy mice can induce the destruction of the vascular endothelial glycocalyx, which is a polysaccharide coating on the vascular endothelial lumen that normally inhibits tumor cell passage into and out of the circulation. However, when human umbilical vein endothelial cultures were treated in vitro with these secreted pro-metastatic factors, no significant destruction of the glycocalyx was observed, implying that this destruction requires a complex in vivo microenvironment. The tissue section analysis revealed that secreted pro-metastatic factors could clearly upregulate macrophage-related molecules such as CD11b and tumor necrosis factor-α (TNF-α) in the heart, liver, spleen, lung, and kidney, which is associated with the upregulation and activation of heparanase. In addition, macrophage depletion significantly attenuated the degradation of the vascular endothelial glycocalyx induced by secreted pro-metastatic factors. This indicates that the secreted pro-metastatic factors that destroy the vascular endothelial glycocalyx rely primarily on macrophages. Our findings suggest that the formation of pre-metastatic niches involves degradation of the vascular endothelial glycocalyx, which may hence be a useful target for developing therapies to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Rui Qu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wenxuan Du
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Shuyao Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangfei Wei
- Clinical Medical Research Center, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212004, China
| | - Zhoujiang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sanjun Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
6
|
Wang C, Shen Y, Ma Y. Bifidobacterium infantis-Mediated Herpes Simplex Virus-TK/Ganciclovir Treatment Inhibits Cancer Metastasis in Mouse Model. Int J Mol Sci 2023; 24:11721. [PMID: 37511481 PMCID: PMC10380465 DOI: 10.3390/ijms241411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies have found that Bifidobacterium infantis-mediated herpes simplex virus-TK/ganciclovir (BF-TK/GCV) reduces the expression of VEGF and CD146, implying tumor metastasis inhibition. However, the mechanism by which BF-TK/GCV inhibits tumor metastasis is not fully studied. Here, we comprehensively identified and quantified protein expression profiling for the first time in gastric cancer (GC) cells MKN-45 upon BF-TK/GCV treatment using quantitative proteomics. A total of 159 and 72 differential expression proteins (DEPs) were significantly changed in the BF-TK/GCV/BF-TK and BF-TK/GCV/BF/GCV comparative analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis enriched some metastasis-related pathways such as gap junction and cell adhesion molecules pathways. Moreover, the transwell assay proved that BF-TK/GCV inhibited the invasion and migration of tumor cells. Furthermore, immunohistochemistry (IHC) demonstrated that BF-TK/GCV reduced the expression of HIF-1α, mTOR, NF-κB1-p105, VCAM1, MMP13, CXCL12, ATG16, and CEBPB, which were associated with tumor metastasis. In summary, BF-TK/GCV inhibited tumor metastasis, which deepened and expanded the understanding of the antitumor mechanism of BF-TK/GCV.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
8
|
Zhang D, Yang J, Ye S, Wang Y, Liu C, Zhang Q, Liu R. Combination of Photothermal Therapy with Anti-Inflammation Therapy Attenuates the Inflammation Tumor Microenvironment and Weakens Immunosuppression for Enhancement Antitumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107071. [PMID: 35128798 DOI: 10.1002/smll.202107071] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Photothermal therapy has gained widespread attention in cancer treatment, although its efficacy is suppressed due to the inflammatory response and immunosuppression, resulting in a discounted therapeutic effect. In this contribution, a high-performance NIR absorption organic small chromophore is developed, which is encapsulated into Pluronic F-127 to fabricate NIR absorption organic nanoparticles (TTM NPs) with excellent photothermal conversion efficiency (51.49%) for photothermal therapy. TTM NPs based photothermal therapy are combined with Aspisol, a kind of nonsteroidal anti-inflammatory drug, to weaken the inflammation and immunosuppression tumor microenvironment and enhance the antitumor effect. The results prove that the combination therapy realizes effective thermal elimination of primary tumors, inhibition of distant tumors, and suppression of tumor metastasis. The data show that combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation and maturation, reverse the immunosuppression, facilitate T cell infiltration, and restore antitumor cytotoxic T lymphocyte activity. This study provides a paradigm to extend the development of photothermal therapy.
Collapse
Affiliation(s)
- Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yutong Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuang Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
9
|
Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis. Sci Rep 2021; 11:23231. [PMID: 34853364 PMCID: PMC8636484 DOI: 10.1038/s41598-021-02482-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Homing of circulating tumour cells (CTC) at distant sites represents a critical event in metastasis dissemination. In addition to physical entrapment, probably responsible of the majority of the homing events, the vascular system provides with geometrical factors that govern the flow biomechanics and impact on the fate of the CTC. Here we mathematically explored the distribution of velocities and the corresponding streamlines at the bifurcations of large blood vessel and characterized an area of low-velocity at the carina of bifurcation that favours the residence of CTC. In addition to this fluid physics effect, the adhesive capabilities of the CTC provide with a biological competitive advantage resulting in a marginal but systematic arrest as evidenced by dynamic in vitro recirculation in Y-microchannels and by perfusion in in vivo mice models. Our results also demonstrate that viscosity, as a main determinant of the Reynolds number that define flow biomechanics, may be modulated to limit or impair CTC accumulation at the bifurcation of blood vessels, in agreement with the apparent positive effect observed in the clinical setting by anticoagulants in advanced oncology disease.
Collapse
|
10
|
Tian M, Chen K, Huang J, Chu D, Li J, Huang K, Ma C. Asiatic acid inhibits angiogenesis and vascular permeability through the VEGF/VEGFR2 signaling pathway to inhibit the growth and metastasis of breast cancer in mice. Phytother Res 2021; 35:6389-6400. [PMID: 34541711 DOI: 10.1002/ptr.7292] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 12/28/2022]
Abstract
Anti-angiogenic medicines have been evaluated as anticancer therapies, however, their use remains limited in clinical practice due to associated adverse effects. Asiatic acid (AA) is known to have broad-spectrum anticancer properties, however, its effects on angiogenesis in breast cancer remain to be fully established. In this study, we analyzed the inhibitory effects of AA on angiogenesis using human umbilical vein endothelial cells (HUVECs) cultured in vitro and on the growth and metastasis of a subcutaneous breast cancer 4T1 tumor model and a lung metastasis model in vivo. AA significantly inhibited HUVECs proliferation, migration, and tube formation in vitro. In vivo, AA significantly reduced the microvascular density and blood vascular permeability in breast cancer tumors and inhibited growth and lung metastasis. AA inhibited the expression of vascular endothelial growth factor (VEGF) in HUVECs and subsequently downregulated the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream target proteins including ERK1/2, Src, and FAK. These results indicate that AA significantly inhibits angiogenesis and blood vessel permeability through the VEGF/VEGFR2 signal axis to inhibit the growth and metastasis of breast cancer. Our data strongly demonstrate the potential applications of AA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Miaomiao Tian
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Graduated School of Jinzhou Medical University, Jinzhou, China
| | - Kan Chen
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jianhua Huang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Life Science Institute of Jinzhou Medical University, Jinzhou, China
| | - Dongqing Chu
- Graduated School of Jinzhou Medical University, Jinzhou, China
| | - Jialin Li
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Graduated School of Jinzhou Medical University, Jinzhou, China
| | - Keqiang Huang
- Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chunyu Ma
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
11
|
Guerraty M, Bhargava A, Senarathna J, Mendelson AA, Pathak AP. Advances in translational imaging of the microcirculation. Microcirculation 2021; 28:e12683. [PMID: 33524206 PMCID: PMC8647298 DOI: 10.1111/micc.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution. Collectively, these imaging modalities enable us to characterize the morphological and functional changes in a tissue's microcirculation that are known to accompany the initiation and progression of numerous pathologies. Although there have been significant advances for imaging the microcirculation in preclinical models, this review focuses on developments in the assessment of the microcirculation in patients with optical imaging, NIRS, PET, US, MRI, and CT, to name a few. The goal of this review is to serve as a springboard for exploring the burgeoning role of translational imaging technologies for interrogating the structural and functional status of the microcirculation in humans, and highlight the breadth of current clinical applications. Making the human microcirculation "visible" in vivo to clinicians and researchers alike will facilitate bench-to-bedside discoveries and enhance the diagnosis and management of disease.
Collapse
Affiliation(s)
- Marie Guerraty
- Division of Cardiovascular Medicine, Department of
Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asher A. Mendelson
- Department of Medicine, Section of Critical Care, Rady
Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins
University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Liu H, Zhang L, Ding X, Sui X. LINC00861 inhibits the progression of cervical cancer cells by functioning as a ceRNA for miR‑513b‑5p and regulating the PTEN/AKT/mTOR signaling pathway. Mol Med Rep 2020; 23:24. [PMID: 33179755 PMCID: PMC7673320 DOI: 10.3892/mmr.2020.11662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been discovered to serve important roles in a variety of types of cancer, including cervical cancer. The low expression of lncRNA long intergenic non‑protein coding RNA 861 (LINC00861) is related to poor prognosis in ovarian cancer. However, the effects and underlying mechanisms of LINC00861 in cervical cancer remain largely unknown. The present study aimed to examine the role of LINC00861 in the development and progression of ovarian cancer and its underlying mechanisms. The expression levels of LINC00861 and microRNA (miR)‑513b‑5p were analyzed using reverse transcription‑quantitative PCR analysis. Cell proliferation, migration and invasion were measured by using Cell Counting Kit‑8, colony formation, wound healing and Transwell assays, respectively. A luciferase assay was used to determine whether miR‑513b‑5p targeted LINC00861 and PTEN. The expression of protein was measured by using western blot assay. The results of the present study discovered that LINC00861 expression levels were significantly downregulated in cervical cancer tissues and CaSki and ME‑180 cell lines. Downregulated LINC00861 expression levels were identified to be associated with an advanced‑stage, lymph node metastasis and the poor survival of patients with cervical cancer. Gene Set Enrichment Analysis revealed that the PI3K/AKT/mTOR signaling pathway was significantly enriched in cervical tumors expressing low expression levels of LINC00861 compared with tumors expressing high levels of LINC00861. The overexpression of LINC00861 reduced cervical cancer cell proliferation, migration, invasion and epithelial‑mesenchymal transition (EMT) processes, upregulated PTEN protein expression levels and downregulated phosphorylated (p)‑AKT and p‑mTOR protein expression levels. The regulatory relationship between LINC00861, microRNA (miR)‑513b‑5p and PTEN was validated using a dual luciferase reporter gene assay. PTEN expression levels were significantly downregulated in the miR‑513b‑5p mimic group and significantly upregulated in the miR‑513b‑5p inhibitor group compared with the mimic NC and inhibitor NC in both cell lines. Furthermore, LINC00861 was suggested to serve as a competing endogenous RNA by sponging miR‑513b‑5p and consequently upregulating the expression levels of PTEN in cervical cancer cells. The expression of PTEN, the phosphorylation of Akt and mTOR and and the EMT phenotype were rescued following co‑transfection with LINC00861 and miR‑513b‑5p mimics. In conclusion, the findings of the present study indicated that the LINC00861/miR‑513b‑5p axis may inhibit the progression of cervical cancer cells through the PTEN/AKT/mTOR signaling pathway to suppress the EMT process.
Collapse
Affiliation(s)
- Hui Liu
- Department of Gynaecology and Obstetrics, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264013, P.R. China
| | - Ling Zhang
- Department of Gynaecology and Obstetrics, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China
| | - Xiaoling Ding
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Qingzhou, Qingzhou, Shandong 264000, P.R. China
| | - Xuezuo Sui
- Department of Gynaecology and Obstetrics, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264013, P.R. China
| |
Collapse
|
13
|
Mensah SA, Nersesyan AA, Harding IC, Lee CI, Tan X, Banerjee S, Niedre M, Torchilin VP, Ebong EE. Flow-regulated endothelial glycocalyx determines metastatic cancer cell activity. FASEB J 2020; 34:6166-6184. [PMID: 32167209 DOI: 10.1096/fj.201901920r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/14/2022]
Abstract
Cancer metastasis and secondary tumor initiation largely depend on circulating tumor cell (CTC) and vascular endothelial cell (EC) interactions by incompletely understood mechanisms. Endothelial glycocalyx (GCX) dysfunction may play a significant role in this process. GCX structure depends on vascular flow patterns, which are irregular in tumor environments. This work presents evidence that disturbed flow (DF) induces GCX degradation, leading to CTC homing to the endothelium, a first step in secondary tumor formation. A 2-fold greater attachment of CTCs to human ECs was found to occur under DF conditions, compared to uniform flow (UF) conditions. These results corresponded to an approximately 50% decrease in wheat germ agglutinin (WGA)-labeled components of the GCX under DF conditions, vs UF conditions, with undifferentiated levels of CTC-recruiting E-selectin under DF vs UF conditions. Confirming the role of the GCX, neuraminidase induced the degradation of WGA-labeled GCX under UF cell culture conditions or in Balb/C mice and led to an over 2-fold increase in CTC attachment to ECs or Balb/C mouse lungs, respectively, compared to untreated conditions. These experiments confirm that flow-induced GCX degradation can enable metastatic CTC arrest. This work, therefore, provides new insight into pathways of secondary tumor formation.
Collapse
Affiliation(s)
- Solomon A Mensah
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Alina A Nersesyan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Claire I Lee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Xuefei Tan
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Selina Banerjee
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | | | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Neuroscience Department, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Zhou BX, Li Y. Significance of desmoglein-2 on cell malignant behaviors via mediating MAPK signaling in cervical cancer. Kaohsiung J Med Sci 2020; 36:336-343. [PMID: 31930774 DOI: 10.1002/kjm2.12182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 02/03/2023] Open
Abstract
Desmoglein-2 (DSG2) is an integral component of desmosomes, maintaining cell-cell adhension in multiple cancers. It has been well studied in epithelial cells, cardiomyocytes and primary prostate cancer, colon cancer, skin squamous cell carcinoma, except for cervical cancer. Hence, we performed this study to examine the function of DSG2 in cervical cancer. We used TCGA and Oncomine databases to assess the expression level of DSG2 in cervical cancer cases. Kaplan-Meier method with log-rank test was utilized to plot overall survival (OS) curve. The reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and western blotting were performed to detect the expression of DSG2 in cells. Cell Counting Kit-8 (CCK-8), wound-healing analysis, and transwell assay were carried out to examine proliferation, migration, and invasion of cells. A higher level of DSG2 in cervical cancer was associated with lower OS rate. Knockdown of DSG2 inhibited cervical cancer cell proliferation, migration, and invasion, while DSG2 enhancement promoted cell proliferation, migration, and invasion. Moreover, the proteins expression of p-MEK and p-ERK that are required for mitogen-activated protein kinases (MAPK) pathway were downregulated after reducing DSG2. In conclusion, these findings illustrated the importance of DSG2 in cervical cancer development and cell behaviors by mediating MAPK signaling pathway, suggesting DSG2 maybe a novel therapeutic target in control of cervical cancer.
Collapse
Affiliation(s)
- Bing-Xia Zhou
- Department of Dermatological, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of First Operating Room, Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci 2019; 20:ijms20184411. [PMID: 31500313 PMCID: PMC6769656 DOI: 10.3390/ijms20184411] [Citation(s) in RCA: 697] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam-Golm 14476, Germany.
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2Y9, Canada.
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine (ITERM), School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), New Territories, Hong Kong, China
| | - Ralf-Peter Franke
- Central Institute for Biomedical Technology, Dep. Biomaterials, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany
| |
Collapse
|