1
|
Xu Y, Chen Y, Zhang K, Chen M, Duan R, Ren Y. Investigating the effects of TRPV4 and Ca v1.2 channels in 3D culture for promoting the differentiation of BMSCs at various stages. Exp Cell Res 2025; 447:114515. [PMID: 40073957 DOI: 10.1016/j.yexcr.2025.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.2 calcium ion channels have been reported to play significant roles in the cartilage differentiation of BMSCs. However, there is no study on whether the effects of these two ion channels vary in different periods of BMSC differentiation, especially in 3D culture. In this article, we clarified the role of TRPV4 and Cav1.2 signaling pathways in the early and late stages of BMSCs cartilage differentiation during 3D culture in hyaluronic acid hydrogel with specific mechanical properties. This research can provide new ideas for further accelerating the stimulation of BMSCs cartilage differentiation and formulating cartilage repair strategies in vivo.
Collapse
Affiliation(s)
- Yuanqing Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Yuhang Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Kun Zhang
- Xuzhou Stomatological Hospital, Xuzhou, 221007, China
| | - Minmin Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Ying Ren
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China.
| |
Collapse
|
2
|
Ponce A, Ogazon del Toro A, Jimenez L, Roldan ML, Shoshani L. Osmotically Sensitive TREK Channels in Rat Articular Chondrocytes: Expression and Functional Role. Int J Mol Sci 2024; 25:7848. [PMID: 39063089 PMCID: PMC11277475 DOI: 10.3390/ijms25147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Articular chondrocytes are the primary cells responsible for maintaining the integrity and functionality of articular cartilage, which is essential for smooth joint movement. A key aspect of their role involves mechanosensitive ion channels, which allow chondrocytes to detect and respond to mechanical forces encountered during joint activity; nonetheless, the variety of mechanosensitive ion channels involved in this process has not been fully resolved so far. Because some members of the two-pore domain potassium (K2P) channel family have been described as mechanosensors in other cell types, in this study, we investigate whether articular chondrocytes express such channels. RT-PCR analysis reveals the presence of TREK-1 and TREK-2 channels in these cells. Subsequent protein expression assessments, including Western blotting and immunohistochemistry, confirm the presence of TREK-1 in articular cartilage samples. Furthermore, whole-cell patch clamp assays demonstrate that freshly isolated chondrocytes exhibit currents attributable to TREK-1 channels, as evidenced by activation by arachidonic acid (AA) and ml335 and further inhibition by spadin. Additionally, exposure to hypo-osmolar shock activates currents, which can be attributed to the presence of TREK-1 channels, as indicated by their inhibition with spadin. Therefore, these findings highlight the expression of TREK channels in rat articular chondrocytes and suggest their potential involvement in regulating the integrity of cartilage extracellular matrix.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Ciudad de México 07360, Mexico; (A.O.d.T.); (L.J.); (M.L.R.); (L.S.)
| | | | | | | | | |
Collapse
|
3
|
Khatib NS, Monsen J, Ahmed S, Huang Y, Hoey DA, Nowlan NC. Mechanoregulatory role of TRPV4 in prenatal skeletal development. SCIENCE ADVANCES 2023; 9:eade2155. [PMID: 36696489 PMCID: PMC9876556 DOI: 10.1126/sciadv.ade2155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Biophysical cues are essential for guiding skeletal development, but the mechanisms underlying the mechanical regulation of cartilage and bone formation are unknown. TRPV4 is a mechanically sensitive ion channel involved in cartilage and bone cell mechanosensing, mutations of which lead to skeletal developmental pathologies. We tested the hypothesis that loading-driven prenatal skeletal development is dependent on TRPV4 activity. We first establish that mechanically stimulating mouse embryo hindlimbs cultured ex vivo stimulates knee cartilage growth, morphogenesis, and expression of TRPV4, which localizes to areas of high biophysical stimuli. We then demonstrate that loading-driven joint cartilage growth and shape are dependent on TRPV4 activity, mediated via control of cell proliferation and matrix biosynthesis, indicating a mechanism by which mechanical loading could direct growth and morphogenesis during joint formation. We conclude that mechanoregulatory pathways initiated by TRPV4 guide skeletal development; therefore, TRPV4 is a valuable target for the development of skeletal regenerative and repair strategies.
Collapse
Affiliation(s)
- Nidal S. Khatib
- Department of Bioengineering, Imperial College London, London, UK
| | - James Monsen
- Department of Bioengineering, Imperial College London, London, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | - Yuming Huang
- Department of Bioengineering, Imperial College London, London, UK
| | - David A. Hoey
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
5
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
6
|
Zamri MHB, Ujihara Y, Nakamura M, Mofrad MRK, Sugita S. Decoding the Effect of Hydrostatic Pressure on TRPV1 Lower-Gate Conformation by Molecular-Dynamics Simulation. Int J Mol Sci 2022; 23:ijms23137366. [PMID: 35806371 PMCID: PMC9266826 DOI: 10.3390/ijms23137366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
In response to hydrostatic pressure, the cation channel transient receptor potential vanilloid 1 (TRPV1) is essential in signaling pathways linked to glaucoma. When activated, TRPV1 undergoes a gating transition from a closed to an open state that allows the influx of Ca2+ ions. However, the gating mechanism of TRPV1 in response to hydrostatic pressure at the molecular level is still lacking. To understand the effect of hydrostatic pressure on the activation of TRPV1, we conducted molecular-dynamics (MD) simulations on TRPV1 under different hydrostatic pressure configurations, with and without a cell membrane. The TRPV1 membrane-embedded model is more stable than the TPRV1-only model, indicating the importance of including the cell membrane in MD simulation. Under elevated pressure at 27.6 mmHg, we observed a more dynamic and outward motion of the TRPV1 domains in the lower-gate area than in the simulation under normal pressure at 12.6 mmHg. While a complete closed-to-open-gate transition was not evident in the limited course of our MD simulations, an increase in the channel radius at the lower gate was observed at 27.6 mmHg versus that at 12.6 mmHg. These findings provide novel information regarding the effect of hydrostatic pressure on TRPV1 channels.
Collapse
Affiliation(s)
- Muhammad Harith Bin Zamri
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Graduate School of Engineering, Nagoya 466-8555, Japan
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA;
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, School of Engineering, Nagoya 466-8555, Japan; (M.H.B.Z.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Correspondence: ; Tel.: +81-52-735-7125
| |
Collapse
|
7
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
8
|
Gilloteaux J, Bouchat J, Bielarz V, Brion JP, Nicaise C. A primary cilium in oligodendrocytes: a fine structure signal of repairs in thalamic Osmotic Demyelination Syndrome (ODS). Ultrastruct Pathol 2021; 45:128-157. [PMID: 34154511 DOI: 10.1080/01913123.2021.1891161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A murine osmotic demyelination syndrome (ODS) model of the central nervous system included the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei. Morphologic comparisons between treatments have revealed oligodendrocyte changes and, already 12 hours following the osmolality restoration, some heavily contrasted oligodendrocytes formed a unique intracellular primary cilium. This unique structure, found in vivo, in mature CNS oligodendrocytes, could account for a local awakening of some of the developmental proteome as it can be expressed in oligodendrocyte precursor cells. This resilience accompanied the emergence of arl13b protein expression along with restoration of nerve cell body axon hillocks shown in a previous issue of this journal. Additionally, the return of several thalamic oligodendrocyte fine features (nucleus, organelles) was shown 36 h later, including some mitosis. Those cell restorations and recognized translational activities comforted that local repairs could again take place, due to oligodendrocyte resilience after ODS instead or added to a postulated immigration of oligodendrocyte precursor cells distant from the sites of myelinolysis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium.,Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at UNN, School of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Joanna Bouchat
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Valery Bielarz
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| |
Collapse
|
9
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
10
|
Al-Azzam N, Teegala LR, Pokhrel S, Ghebreigziabher S, Chachkovskyy T, Thodeti S, Gavilanes I, Covington K, Thodeti CK, Paruchuri S. Transient Receptor Potential Vanilloid channel regulates fibroblast differentiation and airway remodeling by modulating redox signals through NADPH Oxidase 4. Sci Rep 2020; 10:9827. [PMID: 32555397 PMCID: PMC7299963 DOI: 10.1038/s41598-020-66617-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Asthma is characterized by pathological airway remodeling resulting from persistent myofibroblast activation. Although transforming growth factor beta 1 (TGFβ1), mechanical signals, and reactive oxygen species (ROS) are implicated in fibroblast differentiation, their integration is still elusive. We identified that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel mediates lung fibroblast (LF) differentiation and D. farinae-induced airway remodeling via a novel TRPV4-NADPH Oxidase 4 (NOX4) interaction. NOX4-mediated ROS production is essential for TGFβ1-induced LF differentiation via myocardin-related transcription factor-A (MRTF-A) and plasminogen activator inhibitor 1 (PAI-1). Importantly, TRPV4 inhibition prevented TGFβ1-induced NOX4 expression and ROS production. Both TRPV4 and NOX4 are activated by phosphatidylinositol 3-kinase (PI3K) downstream of TGFβ1, and signals from both TRPV4 and Rac are necessary for NOX4 upregulation. Notably, NOX4 expression is higher in fibroblasts derived from asthmatic patients (disease human LF; DHLF) in comparison to non-asthmatics (normal human LF; NHLF). Further, NOX4 expression is up-regulated in the lungs of D.farinae-treated wild type mice (WT) relative to saline-treated WT, which was attenuated in TRPV4 knockout (KO) mice. Our findings suggest that TRPV4 integrates TGFβ1 and ROS signaling through NOX4 and, TRPV4-NOX4 interaction is amenable to target lung remodeling during asthma.
Collapse
Affiliation(s)
- Nosayba Al-Azzam
- Department of Chemistry, University of Akron, Akron, OH, US.,Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Sabita Pokhrel
- Department of Chemistry, University of Akron, Akron, OH, US
| | | | | | - Sathwika Thodeti
- Department of Chemistry, University of Akron, Akron, OH, US.,Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, US
| | | | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, US
| | | |
Collapse
|
11
|
Chen Y, Gao J, Li L, Sellitto C, Mathias RT, Donaldson PJ, White TW. The Ciliary Muscle and Zonules of Zinn Modulate Lens Intracellular Hydrostatic Pressure Through Transient Receptor Potential Vanilloid Channels. Invest Ophthalmol Vis Sci 2020; 60:4416-4424. [PMID: 31639828 PMCID: PMC6808041 DOI: 10.1167/iovs.19-27794] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Lenses have an intracellular hydrostatic pressure gradient to drive fluid from central fiber cells to surface epithelial cells. Pressure is regulated by a feedback control system that relies on transient receptor potential vanilloid (TRPV)1 and TRPV4 channels. The ciliary muscle transmits tension to the lens through the zonules of Zinn. Here, we have examined if ciliary muscle tension influenced the lens intracellular hydrostatic pressure gradient. Methods We measured the ciliary body position and intracellular hydrostatic pressures in mouse lenses while pharmacologically causing relaxation or contraction of the ciliary muscle. We also used inhibitors of TRPV1 and TRPV4, in addition to phosphoinositide 3-kinase (PI3K) p110α knockout mice and immunostaining of phosphorylated protein kinase B (Akt), to determine how changes in ciliary muscle tension resulted in altered hydrostatic pressure. Results Ciliary muscle relaxation increased the distance between the ciliary body and the lens and caused a decrease in intracellular hydrostatic pressure that was dependent on intact zonules and could be blocked by inhibition of TRPV4. Ciliary contraction moved the ciliary body toward the lens and caused an increase in intracellular hydrostatic pressure and Akt phosphorylation that required intact zonules and was blocked by either inhibition of TRPV1 or genetic deletion of the p110α catalytic subunit of PI3K. Conclusions These results show that the hydrostatic pressure gradient within the lens was influenced by the tension exerted on the lens by the ciliary muscle through the zonules of Zinn. Modulation of the gradient of intracellular hydrostatic pressure in the lens could alter the water content, and the gradient of refractive index.
Collapse
Affiliation(s)
- Yadi Chen
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Junyuan Gao
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Leping Li
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Caterina Sellitto
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Richard T Mathias
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas W White
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| |
Collapse
|
12
|
Uzieliene I, Bernotas P, Mobasheri A, Bernotiene E. The Role of Physical Stimuli on Calcium Channels in Chondrogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19102998. [PMID: 30275359 PMCID: PMC6212952 DOI: 10.3390/ijms19102998] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSC) are becoming increasingly popular in tissue engineering. They are the most frequently used stem cell source for clinical applications due to their high potential to differentiate into several lineages. Cartilage is known for its low capacity for self-maintenance and currently there are no efficient methods to improve cartilage repair. Chondrogenic differentiation of hMSC isolated from different tissues is widely employed due to a high clinical demand for the improvement of cartilage regeneration. Calcium channels that are regulated by physical stimuli seem to play a pivotal role in chondrogenic differentiation of MSCs. These channels increase intracellular calcium concentration, which leads to the initiation of the relevant cellular processes that are required for differentiation. This review will focus on the impact of different physical stimuli, including electrical, electromagnetic/magnetic and mechanical on various calcium channels and calcium signaling mechanisms during chondrogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| |
Collapse
|
13
|
Morgan JT, Stewart WG, McKee RA, Gleghorn JP. The mechanosensitive ion channel TRPV4 is a regulator of lung development and pulmonary vasculature stabilization. Cell Mol Bioeng 2018; 11:309-320. [PMID: 30713588 DOI: 10.1007/s12195-018-0538-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction – Clinical observations and animal models suggest a critical role for the dynamic regulation of transmural pressure and peristaltic airway smooth muscle contractions for proper lung development. However, it is currently unclear how such mechanical signals are transduced into molecular and transcriptional changes at the cell level. To connect these physical findings to a mechanotransduction mechanism, we identified a known mechanosensor, TRPV4, as a component of this pathway. Methods – Embryonic mouse lung explants were cultured on membranes and in submersion culture to modulate explant transmural pressure. Time-lapse imaging was used to capture active changes in lung biology, and whole-mount images were used to visualize the organization of the epithelial, smooth muscle, and vascular compartments. TRPV4 activity was modulated by pharmacological agonism and inhibition. Results – TRPV4 expression is present in the murine lung with strong localization to the epithelium and major pulmonary blood vessels. TRPV4 agonism and inhibition resulted in hyper- and hypoplastic airway branching, smooth muscle differentiation, and lung growth, respectively. Smooth muscle contractions also doubled in frequency with agonism and were reduced by 60% with inhibition demonstrating a functional role consistent with levels of smooth muscle differentiation. Activation of TRPV4 increased the vascular capillary density around the distal airways, and inhibition resulted in a near complete loss of the vasculature. Conclusions – These studies have identified TRPV4 as a potential mechanosensor involved in transducing mechanical forces on the airways to molecular and transcriptional events that regulate the morphogenesis of the three essential tissue compartments in the lung.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Present Address: Department of Bioengineering, University of California, Riverside, CA USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Robert A McKee
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
- Department of Biological Sciences, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
14
|
Kanugula AK, Adapala RK, Midha P, Cappelli HC, Meszaros JG, Paruchuri S, Chilian WM, Thodeti CK. Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4. FASEB J 2018; 33:195-203. [PMID: 29957061 DOI: 10.1096/fj.201800509r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
VEGF signaling via VEGF receptor-2 (VEGFR2) is a major regulator of endothelial cell (EC) functions, including angiogenesis. Although most studies of angiogenesis focus on soluble VEGF signaling, mechanical signaling also plays a critical role. Here, we examined the consequence of disruption of mechanical signaling on soluble signaling pathways. Specifically, we observed that small interfering RNA (siRNA) knockdown of a mechanosensitive ion channel, transient receptor potential vanilloid 4 (TRPV4), significantly reduced perinuclear (Golgi) VEGFR2 in human ECs with a concomitant increase in phosphorylation at Y1175 and membrane translocation. TRPV4 knockout (KO) ECs exhibited increased plasma membrane localization of phospho-VEGFR2 compared with normal ECs. The knockdown also increased phospho-VEGFR2 in whole cell lysates and membrane fractions compared with control siRNA-treated cells. siRNA knockdown of TRPV4 enhanced nuclear localization of mechanosensitive transcription factors, yes-associated protein/transcriptional coactivator with PDZ-binding motif via rho kinase, which were shown to increase VEGFR2 trafficking to the plasma membrane. Furthermore, TRPV4 deletion/knockdown enhanced VEGF-mediated migration in vitro and increased expression of VEGFR2 in vivo in the vasculature of TRPV4 KO tumors compared with wild-type tumors. Our results thus show that TRPV4 channels regulate VEGFR2 trafficking and activation to identify novel cross-talk between mechanical (TRPV4) and soluble (VEGF) signaling that controls EC migration and angiogenesis.-Kanugula, A. K., Adapala, R. K., Midha, P., Cappelli, H. C., Meszaros, J. G., Paruchuri, S., Chilian, W. M., Thodeti, C. K., Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4.
Collapse
Affiliation(s)
- Anantha K Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ravi K Adapala
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA; and
| | - Priya Midha
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Holly C Cappelli
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA; and
| | - J Gary Meszaros
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA; and
| | | | - William M Chilian
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA; and
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.,School of Biomedical Sciences, Kent State University, Kent, Ohio, USA; and
| |
Collapse
|
15
|
Thoppil RJ, Cappelli HC, Adapala RK, Kanugula AK, Paruchuri S, Thodeti CK. TRPV4 channels regulate tumor angiogenesis via modulation of Rho/Rho kinase pathway. Oncotarget 2017; 7:25849-61. [PMID: 27029071 PMCID: PMC5041949 DOI: 10.18632/oncotarget.8405] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 01/08/2023] Open
Abstract
Targeting angiogenesis is considered a promising therapy for cancer. Besides curtailing soluble factor mediated tumor angiogenesis, understanding the unexplored regulation of angiogenesis by mechanical cues may lead to the identification of novel therapeutic targets. We have recently shown that expression and activity of mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) is suppressed in tumor endothelial cells and restoring TRPV4 expression or activation induces vascular normalization and improves cancer therapy. However, the molecular mechanism(s) by which TRPV4 modulates angiogenesis are still in their infancy. To explore how TRPV4 regulates angiogenesis, we have employed TRPV4 null endothelial cells (TRPV4KO EC) and TRPV4KO mice. We found that absence of TRPV4 (TRPV4KO EC) resulted in a significant increase in proliferation, migration, and abnormal tube formation in vitro when compared to WT EC. Concomitantly, sprouting angiogenesis ex vivo and vascular growth in vivo was enhanced in TRPV4KO mice. Mechanistically, we observed that loss of TRPV4 leads to a significant increase in basal Rho activity in TRPV4KO EC that corresponded to their aberrant mechanosensitivity on varying stiffness ECM gels. Importantly, pharmacological inhibition of the Rho/Rho kinase pathway by Y-27632 normalized abnormal mechanosensitivity and angiogenesis exhibited by TRPV4KO EC in vitro. Finally, Y-27632 treatment increased pericyte coverage and in conjunction with Cisplatin, significantly reduced tumor growth in TRPV4KO mice. Taken together, these data suggest that TRPV4 regulates angiogenesis endogenously via modulation of EC mechanosensitivity through the Rho/Rho kinase pathway and can serve as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Roslin J Thoppil
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, OH 44272, Rootstown, USA.,School of Biomedical Sciences, Kent State University, OH 44240, Kent, USA
| | - Holly C Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, OH 44272, Rootstown, USA.,School of Biomedical Sciences, Kent State University, OH 44240, Kent, USA
| | - Ravi K Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, OH 44272, Rootstown, USA.,School of Biomedical Sciences, Kent State University, OH 44240, Kent, USA
| | - Anantha K Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, OH 44272, Rootstown, USA
| | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, OH 44272, Rootstown, USA.,School of Biomedical Sciences, Kent State University, OH 44240, Kent, USA
| |
Collapse
|
16
|
Gombedza F, Kondeti V, Al-Azzam N, Koppes S, Duah E, Patil P, Hexter M, Phillips D, Thodeti CK, Paruchuri S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation. FASEB J 2017; 31:1556-1570. [PMID: 28073835 DOI: 10.1096/fj.201601045r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
Contributions of mechanical signals to airway remodeling during asthma are poorly understood. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, has been implicated in cardiac and pulmonary fibrosis; however, its role in asthma remains elusive. Employing a Dermatophagoides farinae-induced asthma model, we report here that TRPV4-knockout mice were protected from D. farinae-induced airway remodeling. Furthermore, lung fibroblasts that were isolated from TRPV4-knockout mice showed diminished differentiation potential compared with wild-type mice. Fibroblasts from asthmatic lung exhibited increased TRPV4 activity and enhanced differentiation potential compared with normal human lung fibroblasts. Of interest, TGF-β1 treatment enhanced TRPV4 activation in a PI3K-dependent manner in normal human lung fibroblasts in vitro Mechanistically, TRPV4 modulated matrix remodeling in the lung via 2 distinct but dependent pathways: one enhances matrix deposition by fibrotic gene activation, whereas the other slows down matrix degradation by increased plasminogen activator inhibitor 1. Of importance, both pathways are regulated by Rho/myocardin-related transcription factor-A and contribute to fibroblast differentiation and matrix remodeling in the lung. Thus, our results support a unique role for TRPV4 in D. farinae-induced airway remodeling and warrant further studies in humans for it to be used as a novel therapeutic target in the treatment of asthma.-Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., Hexter, M., Phillips, D., Thodeti, C. K., Paruchuri, S. Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation.
Collapse
Affiliation(s)
- Farai Gombedza
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Vinay Kondeti
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Nosayba Al-Azzam
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Stephanie Koppes
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Ernest Duah
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Prachi Patil
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Madison Hexter
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Daniel Phillips
- Department of Chemistry, University of Akron, Akron, Ohio, USA; and
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
17
|
Bhimaraj A, Uribe C, Suarez EE. Physiological impact of continuous flow on end-organ function: clinical implications in the current era of left ventricular assist devices. Methodist Debakey Cardiovasc J 2015; 11:12-7. [PMID: 25793024 DOI: 10.14797/mdcj-11-1-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The clinical era of continuous-flow left ventricular assist devices has debunked many myths about the dire need of a pulse for human existence. While this therapy has been documented to provide a clear survival benefit in end-stage heart failure patients, we are now faced with certain morbidity challenges that as of yet have no easy mechanistic physiological explanation. The effect of physiological changes on end-organ function in patients supported by continuous-flow ventricular assist devices may offer insight into some of these morbidities. We therefore present a review of current evidence documenting the impact of continuous flow on end-organ function.
Collapse
Affiliation(s)
- Arvind Bhimaraj
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Cesar Uribe
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Erick E Suarez
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
18
|
Cabral PD, Capurro C, Garvin JL. TRPV4 mediates flow-induced increases in intracellular Ca in medullary thick ascending limbs. Acta Physiol (Oxf) 2015; 214:319-28. [PMID: 25980432 DOI: 10.1111/apha.12528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED Medullary thick ascending limbs (mTAL) regulate Na balance and therefore blood pressure. We previously showed that cell swelling and luminal flow activates the mechanosensitive channel TRPV4 in mTAL. AIM We hypothesized that TRPV4 mediates flow-induced increases in intracellular Ca (Cai) in rat mTALs. METHODS We performed ratiometric measurements of Cai in perfused mTALs. RESULTS Increasing luminal flow from 0 to 20 nL min(-1) caused Cai to peak 231 ± 29 nmol L(-1) above basal concentrations (n = 18). The general TRPV inhibitor ruthenium red at 15 and 50 μmol L(-1) reduced peak Cai by 41 ± 9 (P < 0.01; n = 5) and 77 ± 10% (P < 0.02; n = 6). The selective TRPV4 inhibitor RN1734 at 10 and 50 μmol L(-1) reduced peak Cai by 46 ± 11 (P < 0.01; n = 7) and 76 ± 5% (P < 0.02; n = 5) respectively. To specifically target TRPV4, mTALs were transduced with adenoviruses expressing TRPV4 small hairpin (sh) RNA. In non-transduced control mTALs, luminal flow generated a peak increase in Cai of 111 ± 21 nmol L(-1) (n = 8). In TRPV4shRNA-transduced mTALs, the Cai peak was reduced to 56 ± 8 nmol L(-1) (P < 0.03, n = 9). Removing extracellular Ca completely abolished flow-induced increases in Cai. Increasing luminal flow in the presence of hexokinase 20 (U mL(-1) ) to scavenge extracellular ATP did not modify significantly the increases in Cai induced by luminal flow. Finally, we studied the effect of the TRPV4 selective agonist GSK1016790A on Cai. In the absence of luminal flow, GSK1016790A (10 nmol L(-1) ) increased Cai from 60 ± 11 nmol L(-1) to 262 ± 71 nmol L(-1) (P < 0.05; n = 7). CONCLUSION We conclude that flow-induced increases in Cai are mediated primarily by TRPV4 in the rat mTAL.
Collapse
Affiliation(s)
- P. D. Cabral
- Department of Physiology and Biophysics; Case Western Reserve University; Cleveland OH USA
- Facultad de Medicina; IFIBIO-HOUSSAY; UBA-CONICET; Departamento de Ciencias Fisiológicas; Ciudad Autónoma de Buenos Aires; Universidad de Buenos Aires; Buenos Aires Argentina
| | - C. Capurro
- Facultad de Medicina; IFIBIO-HOUSSAY; UBA-CONICET; Departamento de Ciencias Fisiológicas; Ciudad Autónoma de Buenos Aires; Universidad de Buenos Aires; Buenos Aires Argentina
| | - J. L. Garvin
- Department of Physiology and Biophysics; Case Western Reserve University; Cleveland OH USA
| |
Collapse
|
19
|
Kamardin NN. Putative structural-functional evolution of osphradial sensory surface in aquatic prosobranchian molluscs. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s002209301406009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abstract
The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration due to Ca(2+) cytotoxicity. In vertebrate retina, mice knockout studies suggest that TRPC6 and TRPC7 mediate a PLCβ4-activated transducer current in intrinsically photosensitive retinal ganglion cells, expressing melanopsin. TRPA1 has been implicated as a "photo-sensing" TRP channel in human melanocytes and light-sensitive neurons in the body wall of Drosophila.
Collapse
|
21
|
Mechanosensitive properties in the endothelium and their roles in the regulation of endothelial function. J Cardiovasc Pharmacol 2013; 61:461-70. [PMID: 23429585 DOI: 10.1097/fjc.0b013e31828c0933] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Vascular endothelial cells (ECs) line the luminal surface of blood vessels, which are exposed constantly to mechanical stimuli, such as fluid shear stress, cyclic strain, and blood pressure. In recent years, more and more evidence indicates that ECs sense these mechanical stimuli and subsequently convert mechanical stimuli into intracellular signals. The properties of ECs that sense the mechanical stimuli are defined as mechanosensors. There are a variety of mechanosensors that have been identified in ECs. These mechanosensors play an important role in regulating the function of the endothelium and vascular function, including blood pressure. This review focuses on the mechanosensors that have been identified in ECs and on the roles that mechanosensors play in the regulation of endothelium function, and in the regulation of vascular function.
Collapse
|
22
|
Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 2013; 305:H1698-708. [PMID: 24097425 DOI: 10.1152/ajpheart.00377.2013] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertension in the elderly substantially increases the risk of stroke and vascular cognitive impairment in part due to an impaired functional adaptation of aged cerebral arteries to high blood pressure. To elucidate the mechanisms underlying impaired autoregulatory protection in aging, hypertension was induced in young (3 mo) and aged (24 mo) C57BL/6 mice by chronic infusion of angiotensin II and pressure-induced changes in smooth muscle cell (SMC) intracellular Ca(2+) concentration ([Ca(2+)]i) and myogenic constriction of middle cerebral arteries (MCA) were assessed. In MCAs from young hypertensive mice, pressure-induced increases in vascular SMC [Ca(2+)]i and myogenic tone were increased, and these adaptive responses were inhibited by the cytochrome P-450 ω-hydroxylase inhibitor HET0016 and the transient receptor potential (TRP) channel blocker SKF96365. Administration of 20- hydroxyeicosatetraenoic acid (HETE) increased SMC [Ca(2+)]i and constricted MCAs, and these responses were inhibited by SKF96365. MCAs from aged hypertensive mice did not show adaptive increases in pressure-induced calcium signal and myogenic tone and responses to HET0016 and SKF96365 were blunted. Inhibition of large-conductance Ca(2+)-activated K(+) (BK) channels by iberiotoxin enhanced SMC [Ca(2+)]i and myogenic constriction in MCAs of young normotensive animals, whereas it was without effect in MCAs of young hypertensive mice. Iberiotoxin did not restore myogenic adaptation in MCAs of aged hypertensive mice. Thus functional maladaptation of aged cerebral arteries to hypertension is due to the dysregulation of pressure-induced 20-HETE and TRP channel-mediated SMC calcium signaling, whereas overactivation of BK channels is unlikely to play a role in this phenomenon.
Collapse
Affiliation(s)
- Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands. Cell Tissue Res 2013; 354:507-19. [DOI: 10.1007/s00441-013-1691-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/26/2013] [Indexed: 01/27/2023]
|
24
|
Eijkelkamp N, Quick K, Wood JN. Transient Receptor Potential Channels and Mechanosensation. Annu Rev Neurosci 2013; 36:519-46. [DOI: 10.1146/annurev-neuro-062012-170412] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Kathryn Quick
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| |
Collapse
|
25
|
Büch T, Schäfer E, Steinritz D, Dietrich A, Gudermann T. Chemosensory TRP Channels in the Respiratory Tract: Role in Toxic Lung Injury and Potential as “Sweet Spots” for Targeted Therapies. Rev Physiol Biochem Pharmacol 2013; 165:31-65. [DOI: 10.1007/112_2012_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
26
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
27
|
Hatano N, Suzuki H, Itoh Y, Muraki K. TRPV4 partially participates in proliferation of human brain capillary endothelial cells. Life Sci 2013; 92:317-24. [PMID: 23333822 DOI: 10.1016/j.lfs.2013.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 01/24/2023]
Abstract
AIMS The vanilloid type 4 transient receptor potential channel (TRPV4) is a potential environmental sensor to multiple stimuli in many types of cells. In this study, we show that TRPV4 activated by 4α-phorbol 12,13-didecanoate (4αPDD) and hypo-osmotic stimulation (HOS) is a regulator of intracellular calcium ([Ca(2+)](i)) in human brain capillary endothelial cells (HBCEs), and its activation can partially regulate cell proliferation of HBCEs. MAIN METHODS The expression of TRPV4 in HBCEs was analyzed at the mRNA and protein levels. The function of TRPV4 in HBCEs was evaluated using a TRPV4 agonist, 4αPDD, and HOS while measuring [Ca(2+)](i) and membrane currents. KEY FINDINGS Analysis of the mRNA transcripts of the TRPV subfamily revealed that TRPV2 and TRPV4 were expressed in HBCEs. Immunoreactivity to the TRPV4 protein was also detected in HBCEs, which were positively stained by von Willebrand factor and CD31. When 4αPDD was applied, [Ca(2+)](i) in HBCEs was elevated in a concentration-dependent manner. In addition, exposure of HBCEs to HOS at 228mOsm induced an elevation of [Ca(2+)](i). Application of 4αPDD also activated non-selective cation currents (NSCCs). Pretreatment of HBCEs with short interference RNA targeting TRPV4 (siRNA) significantly reduced the 4αPDD-induced elevation of [Ca(2+)](i). When HBCEs were treated for 24h with concentrations of 4αPDD between 0.3 and 3 μM, the cell proliferation was potentiated in a concentration-dependent manner. The potentiation was partially inhibited in HBCEs treated with siRNA. SIGNIFICANCE These data suggest that endogenous TRPV4, which functions as a regulator of [Ca(2+)](i) in HBCEs, partially controls cell proliferation.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | | | | | | |
Collapse
|
28
|
Jin M, Berrout J, Chen L, O'Neil RG. Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels. Cell Calcium 2011; 51:131-9. [PMID: 22204737 DOI: 10.1016/j.ceca.2011.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/11/2011] [Accepted: 11/29/2011] [Indexed: 12/16/2022]
Abstract
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.
Collapse
Affiliation(s)
- Min Jin
- Dept. of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG, Thodeti CK. PKCα mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 2011; 301:H757-65. [PMID: 21705673 DOI: 10.1152/ajpheart.00142.2011] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress activate TRPV4-mediated calcium influx in endothelial cells (EC). In addition to the mechanical forces, acetylcholine (ACh) was shown to activate TRPV4-mediated calcium influx in endothelial cells, which is important for nitric oxide-dependent vasodilation. However, the molecular mechanism through which ACh activates TRPV4 is not known. Here, we show that ACh-induced calcium influx and endothelial nitric oxide synthase (eNOS) phosphorylation but not calcium release from intracellular stores is inhibited by a specific TRPV4 antagonist, AB-159908. Importantly, activation of store-operated calcium influx was not altered in the TRPV4 null EC, suggesting that TRPV4-dependent calcium influx is mediated through a receptor-operated pathway. Furthermore, we found that ACh treatment activated protein kinase C (PKC) α, and inhibition of PKCα activity by the specific inhibitor Go-6976, or expression of a kinase-dead mutant of PKCα but not PKCε or downregulation of PKCα expression by chronic 12-O-tetradecanoylphorbol-13-acetate treatment, completely abolished ACh-induced calcium influx. Finally, we found that ACh-induced vasodilation was inhibited by the PKCα inhibitor Go-6976 in small mesenteric arteries from wild-type mice, but not in TRPV4 null mice. Taken together, these findings demonstrate, for the first time, that a specific isoform of PKC, PKCα, mediates agonist-induced receptor-mediated TRPV4 activation in endothelial cells.
Collapse
Affiliation(s)
- Ravi K Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Amato V, Viña E, Calavia MG, Guerrera MC, Laurà R, Navarro M, De Carlos F, Cobo J, Germanà A, Vega JA. TRPV4 in the sensory organs of adult zebrafish. Microsc Res Tech 2011; 75:89-96. [PMID: 21678526 DOI: 10.1002/jemt.21029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/13/2011] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT-PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish.
Collapse
Affiliation(s)
- V Amato
- Dipartimento di MORBIFIPA, Sezione di Morfología, Università degli Studi di Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Liu C, Chen L, Chen L. Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain 2011; 7:27. [PMID: 21496300 PMCID: PMC3094255 DOI: 10.1186/1744-8069-7-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/16/2011] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play an important role in the control of membrane excitability. We previously reported that the excitability of nociceptor was increased by hypotonic stimulation. The present study tested the effect of hypotonicity on tetrodotoxin-sensitive sodium current (TTX-S current) in cultured trigeminal ganglion (TG) neurons. Our data show that after hypotonic treatment, TTX-S current was increased. In the presence of hypotonicity, voltage-dependent activation curve shifted to the hyperpolarizing direction, while the voltage-dependent inactivation curve was not affected. Transient Receptor Potential Vanilloid 4 receptor (TRPV4) activator increased TTX-S current and hypotonicity-induced increase was markedly attenuated by TRPV4 receptor blockers. We also demonstrate that inhibition of PKC attenuated hypotonicity-induced inhibition, whereas PKA system was not involved in hypotonic-response. We conclude that hypotonic stimulation enhances TTX-S current, which contributes to hypotonicity-induced nociception. TRPV4 receptor and PKC intracellular pathway are involved in the increase of TTX-S current by hypotonicity.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | | | | | | |
Collapse
|
32
|
Joseph EK, Levine JD. Mu and delta opioid receptors on nociceptors attenuate mechanical hyperalgesia in rat. Neuroscience 2010; 171:344-50. [PMID: 20736053 DOI: 10.1016/j.neuroscience.2010.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/15/2022]
Abstract
Sensitization to mechanical stimuli is important in most pain syndromes. We evaluated the populations of nociceptors mediating mechanical hyperalgesia and those mediating mu-opioid receptor (MOR) and delta-opioid receptor (DOR) agonist-induced inhibition of hyperalgesia, in the rat. We found that: (1) intradermal injection of both the endogenous ligand for the Ret receptor, glia-derived growth factor (GDNF), and the ligand for the tropomyosin receptor kinase A (TrkA) receptor, nerve growth factor (NGF)-which are present on distinct populations of nociceptors-both produce mechanical hyperalgesia; (2) DOR agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC) but not MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibit GDNF-induced hyperalgesia; (3) both DAMGO and SNC inhibit NGF hyperalgesia, even in rats pretreated with isolectin B4 (IB4)-saporin, a toxin that destroys IB4-binding neurons; (4) co-administration of low doses of DAMGO and SNC produce enhanced analgesia, and; (5) repeated administration of DAMGO produces cross-tolerance to the analgesic effect of SNC. These findings demonstrate that, most nociceptors have a role in mechanical hyperalgesia, only the DOR agonist inhibits GDNF hyperalgesia, and MOR and DOR are co-localized on a functionally important population of TrkA-positive nociceptors.
Collapse
Affiliation(s)
- E K Joseph
- Division of Neuroscience, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
33
|
Abstract
Cutaneous thermosensation plays an important role in thermal regulation and detection of potentially harmful thermal stimuli. Multiple classes of primary afferents are responsive to thermal stimuli. Afferent nerve fibers mediating the sensation of non-painful warmth or cold seem adapted to convey thermal information over a particular temperature range. In contrast, nociceptive afferents are often activated by both, painful cold and heat stimuli. The transduction mechanisms engaged by thermal stimuli have only recently been discovered. Transient receptor potential (TRP) ion channels that can be activated by temperatures over specific ranges potentially provide the molecular basis for thermosensation. However, non-TRP mechanisms are also likely to contribute to the transduction of thermal stimuli. This review summarizes findings regarding the transduction proteins and the primary afferents activated by innocuous and noxious cold and heat.
Collapse
Affiliation(s)
- Raf J Schepers
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
34
|
Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5:17-26. [PMID: 19570510 DOI: 10.1016/j.stem.2009.06.016] [Citation(s) in RCA: 1372] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A diverse array of environmental factors contributes to the overall control of stem cell activity. In particular, new data continue to mount on the influence of the extracellular matrix (ECM) on stem cell fate through physical interactions with cells, such as the control of cell geometry, ECM geometry/topography at the nanoscale, ECM mechanical properties, and the transmission of mechanical or other biophysical factors to the cell. Here, we review some of the physical processes by which cues from the ECM can influence stem cell fate, with particular relevance to the use of stem cells in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Johansson EL, Ternesten-Hasséus E, Millqvist E. Down-regulation of cough sensitivity after eucapnic dry air provocation in chronic idiopathic cough. Pulm Pharmacol Ther 2009; 22:543-7. [PMID: 19646543 DOI: 10.1016/j.pupt.2009.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 12/17/2022]
Abstract
Down-regulation of cough sensitivity in humans is rarely discussed in terms other than pharmacological treatment of cough or hypersensitive cough reflex. Chronic cough and increased cough sensitivity could be due to a number of airway and other diseases. When such conditions are excluded, there still remains a group of patients with no evident medical explanation for persistent coughing; such patients are often described as having "chronic idiopathic cough". The aim of this study was to use a standardized eucapnic dry air provocation among patients with chronic idiopathic cough in order to study physiological parameters and measure their possible influence on capsaicin cough sensitivity. Fourteen female patients with chronic idiopathic cough and ten healthy controls underwent a capsaicin inhalation provocation on two occasions. In all patients, irritating environmental factors were known to induce cough and airway symptoms. One of the two capsaicin provocations was preceded by a eucapnic dry air provocation. Number of coughs, spirometry, respiratory rate, pulse rate, end-tidal CO(2), and oxygen saturation by pulse oximetry (PSaO(2)) were registered and compared. The patients showed increased capsaicin sensitivity compared with the control subjects. This sensitivity was decreased when the capsaicin test was preceded by a eucapnic dry air provocation. Before the dry air provocation and after the capsaicin provocations, end-tidal CO(2) was decreased among the patients in comparison with the controls. After dry air provocation, spirometry values remained unchanged. The results suggest that in patients with chronic idiopathic cough, physiological down-regulation of the cough sensitivity is possible with a eucapnic dry air provocation.
Collapse
Affiliation(s)
- Ewa-Lena Johansson
- Asthma and Allergy Research Group, Department of Respiratory Medicine and Allergology, The Sahlgrenska Academy, Gothenburg University, Sweden
| | | | | |
Collapse
|
36
|
TRPA channels distinguish gravity sensing from hearing in Johnston's organ. Proc Natl Acad Sci U S A 2009; 106:13606-11. [PMID: 19666538 DOI: 10.1073/pnas.0906377106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although many animal species sense gravity for spatial orientation, the molecular bases remain uncertain. Therefore, we studied Drosophila melanogaster, which possess an inherent upward movement against gravity-negative geotaxis. Negative geotaxis requires Johnston's organ, a mechanosensory structure located in the antenna that also detects near-field sound. Because channels of the transient receptor potential (TRP) superfamily can contribute to mechanosensory signaling, we asked whether they are important for negative geotaxis. We identified distinct expression patterns for 5 TRP genes; the TRPV genes nanchung and inactive were present in most Johnston's organ neurons, the TRPN gene nompC and the TRPA gene painless were localized to 2 subpopulations of neurons, and the TRPA gene pyrexia was expressed in cap cells that may interact with the neurons. Likewise, mutating specific TRP genes produced distinct phenotypes, disrupting negative geotaxis (painless and pyrexia), hearing (nompC), or both (nanchung and inactive). Our genetic, physiological and behavioral data indicate that the sensory component of negative geotaxis involves multiple TRP genes. The results also distinguish between different mechanosensory modalities and set the stage for understanding how TRP channels contribute to mechanosensation.
Collapse
|
37
|
Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 2009; 123:371-85. [PMID: 19501617 DOI: 10.1016/j.pharmthera.2009.05.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022]
Abstract
Transient receptor potential (TRP) proteins constitute a large non-voltage-gated cation channel superfamily, activated polymodally by various physicochemical stimuli, and are implicated in a variety of cellular functions. Known activators for TRP include not only chemical stimuli such as receptor stimulation, increased acidity and pungent/cooling agents, but temperature change and various forms of mechanical stimuli such as osmotic stress, membrane stretch, and shear force. Recent investigations have revealed that at least ten mammalian TRPs exhibit mechanosensitivity (TRPC1, 5, 6; TRPV1, 2, 4; TRPM3, 7; TRPA1; TRPP2), but the mechanisms underlying it appear considerably divergent and complex. The proposed mechanisms are associated with lipid bilayer mechanics, specialized force-transducing structures, biochemical reactions, membrane trafficking and transcriptional regulation. Many of mechanosensitive (MS)-TRP channel likely undergo multiple regulations via these mechanisms. In the cardiovascular system in which hemodynamic forces constantly operate, the impact of mechanical stress may be particularly significant. Extensive morphological and functional studies have indicated that several MS-TRP channels are expressed in cardiac muscle, vascular smooth muscle, endothelium and vasosensory neurons, each differentially contributing to cardiovascular (CV) functions. To further complexity, the recent evidence suggests that mechanical stress may synergize with neurohormonal mechanisms thereby amplifying otherwise marginal responses. Furthermore, the currently available data suggest that MS-TRP channels may be involved in CV pathophysiology such as cardiac arrhythmia, cardiac hypertrophy/myopathy, hypertension and aneurysms. This review will overview currently known mechanisms for mechanical activation/modulation of TRPs and possible connections of MS-TRP channels to CV disorders.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
38
|
Abstract
Neurons that sense touch, sound and acceleration respond rapidly to specific mechanical signals. The proteins that transduce these signals and underlie these senses, however, are mostly unknown. Research over the past decade has suggested that members of three families of channel proteins are candidate transduction molecules. Current studies are directed towards characterizing these candidates, determining how they are mechanically gated and discovering new molecules that are involved in mechanical sensing.
Collapse
Affiliation(s)
- Martin Chalfie
- Columbia University, Department of Biological Sciences, 1012 Fairchild Center, M.C. 2446, New York, New York 10027, USA.
| |
Collapse
|
39
|
Carreño FR, Ji LL, Cunningham JT. Altered central TRPV4 expression and lipid raft association related to inappropriate vasopressin secretion in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol 2008; 296:R454-66. [PMID: 19091909 DOI: 10.1152/ajpregu.90460.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inappropriate vasopressin (AVP) release causes dilutional hyponatremia in many pathophysiological states such as cirrhosis. The central molecular mechanisms that mediate inappropriate AVP release are unknown. We tested the hypothesis that changes in the expression or trafficking of TRPV4 in the central nervous system may contribute to inappropriate AVP release in the bile duct ligation (BDL) model of cirrhosis in the rat. Four weeks after surgery, BDL rats demonstrated significantly increased plasma vasopressin and plasma renin activity (PRA), hypervolemia, and decreased plasma osmolality. These effects were blocked by providing BDL rats with 2% saline to drink for 15 days. TRPV4 protein expression was significantly increased in brain punches from BDL rats containing the supraoptic nucleus (SON) of the hypothalamus (100% +/- 11 to 157% +/- 4.8), and this effect was blocked in BDL rats given saline. Immunohistochemistry demonstrated a significant increase in TRPV4-positive cells and the percentage of AVP neurons that also were TRPV4-positive in the SON of BDL rats. In the hypothalamus of BDL rats, TRPV4 lipid raft association increased compared with sham (from 100% +/- 2.1 to 326.1% +/- 16). This effect was significantly attenuated in BDL rats given 2% saline to drink (174% +/- 11). In the brain stem, TRPV4 lipid raft association was reduced by BDL and inversely related to plasma AVP and PRA. We speculate that changes in TRPV4 expression and compartmentalization within lipid rafts could contribute to a feed-forward mechanism related to AVP release in cirrhosis.
Collapse
Affiliation(s)
- Flávia Regina Carreño
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
40
|
Hermanstyne TO, Markowitz K, Fan L, Gold MS. Mechanotransducers in rat pulpal afferents. J Dent Res 2008; 87:834-8. [PMID: 18719209 DOI: 10.1177/154405910808700910] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The hydrodynamic theory suggests that pain associated with stimulation of a sensitive tooth ultimately involves mechanotransduction as a consequence of fluid movement within exposed dentinal tubules. To determine whether putative mechanotransducers could underlie mechanotransduction in pulpal afferents, we used a single-cell PCR approach to screen retrogradely labeled pulpal afferents. The presence of mRNA encoding BNC-1, ASIC3, TRPV4, TRPA1, the alpha, beta, and gamma subunits of ENaC, and the two pore K+ channels (TREK1, TREK2) and TRAAK were screened in pulpal neurons from rats with and without pulpal inflammation. ASIC3, TRPA1, TREK1, and TREK2 were present in approximately 67%, 64%, 14%, and 10% of pulpal neurons, respectively. There was no detectable influence of inflammation on the proportion of neurons expressing these mechanotransducers. Given that the majority of pulpal afferents express ASIC3 and TRPA1, our results raise the possibility that these channels may be novel targets for the treatment of dentin sensitivity.
Collapse
Affiliation(s)
- T O Hermanstyne
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
41
|
Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I. Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 2008; 80:445-52. [DOI: 10.1093/cvr/cvn207] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
42
|
D'hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B. Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 2008; 283:6272-80. [PMID: 18174177 DOI: 10.1074/jbc.m706386200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood. We have recently shown that the relative amount of TRPV4 in the plasma membrane is enhanced by interaction with the SH3 domain of PACSIN 3, a member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis. Here we demonstrate that PACSIN 3 strongly inhibits the basal activity of TRPV4 and its activation by cell swelling and heat, while leaving channel gating induced by the synthetic ligand 4alpha-phorbol 12,13-didecanoate unaffected. A single proline mutation in the SH3 domain of PACSIN 3 abolishes its inhibitory effect on TRPV4, indicating that PACSIN 3 must bind to the channel to modulate its function. In line herewith, mutations at specific proline residues in the N terminus of TRPV4 abolish binding of PACSIN 3 and render the channel insensitive to PACSIN 3-induced inhibition. Taken together, these data suggest that PACSIN 3 acts as an auxiliary protein of TRPV4 channel that not only affects the channel's subcellular localization but also modulates its function in a stimulus-specific manner.
Collapse
Affiliation(s)
- Dieter D'hoedt
- Department of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49 Bus 802, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Köhler R. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2007; 2:e827. [PMID: 17786199 PMCID: PMC1959246 DOI: 10.1371/journal.pone.0000827] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 08/09/2007] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which adjust the contractile state of the smooth muscle. In endothelial sensing of shear stress, the osmo- and mechanosensitive Ca(2+)-permeable TRPV4 channel has been proposed to be candidate mechanosensor. Using TRPV4(-/-) mice, we now investigated whether the absence of endothelial TRPV4 alters shear-stress-induced arterial vasodilation. METHODOLOGY/PRINCIPAL FINDINGS In TRPV4(-/-) mice, loss of the TRPV4 protein was confirmed by Western blot, immunohistochemistry and by in situ-patch-clamp techniques in carotid artery endothelial cells (CAEC). Endothelium-dependent vasodilation was determined by pressure myography in carotid arteries (CA) from TRPV4(-/-) mice and wild-type littermates (WT). In WT CAEC, TRPV4 currents could be elicited by TRPV4 activators 4alpha-phorbol-12,13-didecanoate (4alphaPDD), arachidonic acid (AA), and by hypotonic cell swelling (HTS). In striking contrast, in TRPV4(-/-) mice, 4alphaPDD did not produce currents and currents elicited by AA and HTS were significantly reduced. 4alphaPDD caused a robust and endothelium-dependent vasodilation in WT mice, again conspicuously absent in TRPV4(-/-) mice. Shear stress-induced vasodilation could readily be evoked in WT, but was completely eliminated in TRPV4(-/-) mice. In addition, flow/reperfusion-induced vasodilation was significantly reduced in TRPV4(-/-) vs. WT mice. Vasodilation in response to acetylcholine, vasoconstriction in response to phenylephrine, and passive mechanical compliance did not differ between genotypes, greatly underscoring the specificity of the above trpv4-dependent phenotype for physiologically relevant shear stress. CONCLUSIONS/SIGNIFICANCE Genetically encoded loss-of-function of trpv4 results in a loss of shear stress-induced vasodilation, a response pattern critically dependent on endothelial TRPV4 expression. Thus, Ca(2+)-influx through endothelial TRPV4 channels is a molecular mechanism contributing significantly to endothelial mechanotransduction.
Collapse
Affiliation(s)
| | - Willm-Thomas Heyken
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | - Michael Kacik
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | - Anuradha Kaistha
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | - Ivica Grgic
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | - Christian Harteneck
- Institut für Pharmakologie, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Wolfgang Liedtke
- Center for Translational Neuroscience, Duke University, Durham, North Carolina, United States of America
| | - Joachim Hoyer
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
| | - Ralf Köhler
- Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Cortright DN, Krause JE, Broom DC. TRP channels and pain. Biochim Biophys Acta Mol Basis Dis 2007; 1772:978-88. [PMID: 17467247 DOI: 10.1016/j.bbadis.2007.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 11/20/2022]
Abstract
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.
Collapse
|