1
|
Briganti F, Wang Z. Alternative Splicing in the Heart: The Therapeutic Potential of Regulating the Regulators. Int J Mol Sci 2024; 25:13023. [PMID: 39684734 PMCID: PMC11641712 DOI: 10.3390/ijms252313023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Alternative splicing allows a single gene to produce a variety of protein isoforms. Changes in splicing isoform usage characterize virtually every stage of the differentiation process and define the physiological differences between cardiomyocytes with different function, at different stages of development, and pathological function. Recent identification of cardiac splicing factors provided insights into the mechanisms underlying alternative splicing and revealed how these splicing factors impact functional properties of the heart. Alterations of the splicing of sarcomeric genes, cell signaling proteins, and ion channels have been associated with the development of pathological conditions such as cardiomyopathy and arrhythmia. RBM20, RBM24, PTBP1, RBFOX, and QKI play key roles in cardiac development and pathology. A better understanding of their regulation will yield insights into healthy cardiac development and inform the development of molecular therapeutics.
Collapse
Affiliation(s)
- Francesca Briganti
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Division of Cardiology, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zilu Wang
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Sun Q, Sun Y, Liu X, Li M, Li Q, Xiao J, Xu P, Zhang S, Ding X. Regulation of plant resistance to salt stress by the SnRK1-dependent splicing factor SRRM1L. THE NEW PHYTOLOGIST 2024; 242:2093-2114. [PMID: 38511255 DOI: 10.1111/nph.19699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Most splicing factors are extensively phosphorylated but their physiological functions in plant salt resistance are still elusive. We found that phosphorylation by SnRK1 kinase is essential for SRRM1L nuclear speckle formation and its splicing factor activity in plant cells. In Arabidopsis, loss-of-function of SRRM1L leads to the occurrence of alternative pre-mRNA splicing events and compromises plant resistance to salt stress. In Arabidopsis srrm1l mutant line, we identified an intron-retention Nuclear factor Y subunit A 10 (NFYA10) mRNA variant by RNA-Seq and found phosphorylation-dependent RNA-binding of SRRM1L is indispensable for its alternative splicing activity. In the wild-type Arabidopsis, salt stress can activate SnRK1 to phosphorylate SRRM1L, triggering enrichment of functional NFYA10.1 variant to enhance plant salt resistance. By contrast, the Arabidopsis srrm1l mutant accumulates nonfunctional NFYA10.3 variant, sensitizing plants to salt stress. In summary, this work deciphered the molecular mechanisms and physiological functions of SnRK1-SRRM1L-NFYA10 module, shedding light on a regulatory pathway to fine-tune plant adaptation to abiotic stress at the post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Yixin Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
3
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in Arabidopsis thaliana. Genetics 2018; 210:1267-1285. [PMID: 30297453 PMCID: PMC6283158 DOI: 10.1534/genetics.118.301515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Prp4 kinase (Prp4k) is the first spliceosome-associated kinase shown to regulate splicing in fungi and metazoans, but nothing is yet known about its functions in plants. Here, Kanno and Venhuizen et al. report... Splicing of precursor messenger RNAs (pre-mRNAs) is an essential step in the expression of most eukaryotic genes. Both constitutive splicing and alternative splicing, which produces multiple messenger RNA (mRNA) isoforms from a single primary transcript, are modulated by reversible protein phosphorylation. Although the plant splicing machinery is known to be a target for phosphorylation, the protein kinases involved remain to be fully defined. We report here the identification of pre-mRNA processing 4 (PRP4) KINASE A (PRP4KA) in a forward genetic screen based on an alternatively spliced GFP reporter gene in Arabidopsis thaliana (Arabidopsis). Prp4 kinase is the first spliceosome-associated kinase shown to regulate splicing in fungi and mammals but it has not yet been studied in plants. In the same screen we identified mutants defective in SAC3A, a putative mRNA export factor that is highly coexpressed with PRP4KA in Arabidopsis. Whereas the sac3a mutants appear normal, the prp4ka mutants display a pleiotropic phenotype featuring atypical rosettes, late flowering, tall final stature, reduced branching, and lowered seed set. Analysis of RNA-sequencing data from prp4ka and sac3a mutants identified widespread and partially overlapping perturbations in alternative splicing in the two mutants. Quantitative phosphoproteomic profiling of a prp4ka mutant detected phosphorylation changes in several serine/arginine-rich proteins, which regulate constitutive and alternative splicing, and other splicing-related factors. Tests of PRP4KB, the paralog of PRP4KA, indicated that the two genes are not functionally redundant. The results demonstrate the importance of PRP4KA for alternative splicing and plant phenotype, and suggest that PRP4KA may influence alternative splicing patterns by phosphorylating a subset of splicing regulators.
Collapse
|
5
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
6
|
Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol 2011; 11:321. [PMID: 22047078 PMCID: PMC3239843 DOI: 10.1186/1471-2148-11-321] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 12/04/2022] Open
Abstract
Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and propose specific hypotheses for experimental investigation. The apicomplexan-specific kinase features reported in this study can be used in the design of selective kinase inhibitors.
Collapse
|
7
|
Niu DK, Yang YF. Why eukaryotic cells use introns to enhance gene expression: splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity. Biol Direct 2011; 6:24. [PMID: 21592350 PMCID: PMC3118952 DOI: 10.1186/1745-6150-6-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background The costs and benefits of spliceosomal introns in eukaryotes have not been established. One recognized effect of intron splicing is its known enhancement of gene expression. However, the mechanism regulating such splicing-mediated expression enhancement has not been defined. Previous studies have shown that intron splicing is a time-consuming process, indicating that splicing may not reduce the time required for transcription and processing of spliced pre-mRNA molecules; rather, it might facilitate the later rounds of transcription. Because the densities of active RNA polymerase II on most genes are less than one molecule per gene, direct interactions between the splicing apparatus and transcriptional complexes (from the later rounds of transcription) are infrequent, and thus unlikely to account for splicing-mediated gene expression enhancement. Presentation of the hypothesis The serine/arginine-rich protein SF2/ASF can inhibit the DNA topoisomerase I activity that removes negative supercoiling of DNA generated by transcription. Consequently, splicing could make genes more receptive to RNA polymerase II during the later rounds of transcription, and thus affect the frequency of gene transcription. Compared with the transcriptional enhancement mediated by strong promoters, intron-containing genes experience a lower frequency of cut-and-paste processes. The cleavage and religation activity of DNA strands by DNA topoisomerase I was recently shown to account for transcription-associated mutagenesis. Therefore, intron-mediated enhancement of gene expression could reduce transcription-associated genome instability. Testing the hypothesis Experimentally test whether transcription-associated mutagenesis is lower in intron-containing genes than in intronless genes. Use bioinformatic analysis to check whether exons flanking lost introns have higher frequencies of short deletions. Implications of the hypothesis The mechanism of intron-mediated enhancement proposed here may also explain the positive correlation observed between intron size and gene expression levels in unicellular organisms, and the greater number of intron containing genes in higher organisms. Reviewers This article was reviewed by Dr Arcady Mushegian, Dr Igor B Rogozin (nominated by Dr I King Jordan) and Dr Alexey S Kondrashov. For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
8
|
McKay SL, Johnson TL. A bird's-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics. MOLECULAR BIOSYSTEMS 2010; 6:2093-102. [PMID: 20672149 PMCID: PMC4065859 DOI: 10.1039/c002828b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing, the removal of noncoding intron sequences from the pre-mRNA, is a critical reaction in eukaryotic gene expression. Pre-mRNA splicing is carried out by a remarkable macromolecular machine, the spliceosome, which undergoes dynamic rearrangements of its RNA and protein components to assemble its catalytic center. While significant progress has been made in describing the "moving parts" of this machine, the mechanisms by which spliceosomal proteins mediate the ordered rearrangements within the spliceosome remain elusive. Here we explore recent evidence from proteomics studies revealing extensive post-translational modification of splicing factors. While the functional significance of most of these modifications remains to be characterized, we describe recent studies in which the roles of specific post-translational modifications of splicing factors have been characterized. These examples illustrate the importance of post-translational modifications in spliceosome dynamics.
Collapse
Affiliation(s)
- Susannah L. McKay
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Tracy L. Johnson
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| |
Collapse
|
9
|
Lai MC, Peng TY, Tarn WY. Functional interplay between viral and cellular SR proteins in control of post-transcriptional gene regulation. FEBS J 2008; 276:1517-26. [PMID: 19220464 PMCID: PMC7164074 DOI: 10.1111/j.1742-4658.2009.06894.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses take advantage of cellular machineries to facilitate their gene expression in the host. SR proteins, a superfamily of cellular precursor mRNA splicing factors, contain a domain consisting of repetitive arginine/serine dipeptides, termed the RS domain. The authentic RS domain or variants can also be found in some virus‐encoded proteins. Viral proteins may act through their own RS domain or through interaction with cellular SR proteins to facilitate viral gene expression. Numerous lines of evidence indicate that cellular SR proteins are important for regulation of viral RNA splicing and participate in other steps of post‐transcriptional viral gene expression control. Moreover, viral infection may alter the expression levels or modify the phosphorylation status of cellular SR proteins and thus perturb cellular precursor mRNA splicing. We review our current understanding of the interplay between virus and host in post‐transcriptional regulation of gene expression via RS domain‐containing proteins.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|