1
|
Ko JH, Forsythe NL, Gelb MB, Messina KMM, Lau UY, Bhattacharya A, Olafsen T, Lee JT, Kelly KA, Maynard HD. Safety and Biodistribution Profile of Poly(styrenyl acetal trehalose) and Its Granulocyte Colony Stimulating Factor Conjugate. Biomacromolecules 2022; 23:3383-3395. [PMID: 35767465 DOI: 10.1021/acs.biomac.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied. Investigation of acute toxicity of pSAT in mice showed that there were no adverse effects of the polymer at a high (10 mg/kg) concentration. The immune response (antipolymer antibody and cytokine production) in mice was also studied. No significant antipolymer IgG was detected for pSAT, and only a transient and low level of IgM was elicited. pSAT was also safe in terms of cytokine response. The polymer was then conjugated to a granulocyte colony stimulating factor (GCSF), a therapeutic protein that is approved by the Federal Drug Administration, in order to study the biodistribution of a pSAT conjugate. A site-selective, two-step synthesis approach was developed for efficient conjugate preparation for the biodistribution study resulting in 90% conjugation efficiency. The organ distribution of GCSF-pSAT was measured by positron emission tomography and compared to controls GCSF and GCSF-poly(ethylene glycol), which confirmed that the trehalose polymer conjugate improved the in vivo half-life of the protein by reducing renal clearance. These findings suggest that trehalose styrenyl polymers are promising for use in therapeutic protein-polymer conjugates for reduced renal clearance of the biomolecule.
Collapse
Affiliation(s)
- Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Neil L Forsythe
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Madeline B Gelb
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Uland Y Lau
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kathleen A Kelly
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Furuki T, Sakurai M. Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:271-286. [PMID: 30288715 DOI: 10.1007/978-981-13-1244-1_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
3
|
Liu Y, Lee J, Mansfield KM, Ko JH, Sallam S, Wesdemiotis C, Maynard HD. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjug Chem 2017; 28:836-845. [PMID: 28044441 DOI: 10.1021/acs.bioconjchem.6b00659] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biocompatible polymers such as poly(ethylene glycol) (PEG) have been successfully conjugated to therapeutic proteins to enhance their pharmacokinetics. However, many of these polymers, including PEG, only improve the in vivo lifetimes and do not protect proteins against inactivation during storage and transportation. Herein, we report a polymer with trehalose side chains (PolyProtek) that is capable of improving both the external stability and the in vivo plasma half-life of a therapeutic protein. Insulin was employed as a model biologic, and high performance liquid chromatography and dynamic light scattering confirmed that addition of trehalose glycopolymer as an excipient or covalent conjugation prevented thermal or agitation-induced aggregation of insulin. The insulin-trehalose glycopolymer conjugate also showed significantly prolonged plasma circulation time in mice, similar to the analogous insulin-PEG conjugate. The insulin-trehalose glycopolymer conjugate was active as tested by insulin tolerance tests in mice and retained bioactivity even after exposure to high temperatures. The trehalose glycopolymer was shown to be nontoxic to mice up to at least 1.6 mg/kg dosage. These results together suggest that the trehalose glycopolymer should be further explored as an alternative to PEG for long circulating protein therapeutics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States.,Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University , Irvine, California 92618, United States
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Kathryn M Mansfield
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Sahar Sallam
- Department of Chemistry, The University of Akron , 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron , 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Furuki T, Watanabe T, Furuta T, Takano K, Shirakashi R, Sakurai M. The Dry Preservation of Giant Vesicles Using a Group 3 LEA Protein Model Peptide and Its Molecular Mechanism. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Indra S, Biswas R. How Heterogeneous Are Trehalose/Glycerol Cryoprotectant Mixtures? A Combined Time-Resolved Fluorescence and Computer Simulation Investigation. J Phys Chem B 2016; 120:11214-11228. [PMID: 27723334 DOI: 10.1021/acs.jpcb.6b06511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterogeneity and molecular motions in representative cryoprotectant mixtures made of trehalose and glycerol are investigated in the temperature range 298 ≤ T (K) ≤ 353, via time-resolved fluorescence Stokes shift and anisotropy measurements, and molecular dynamics simulations of four-point density-time correlations and H-bond relaxations. Mixtures containing 5 and 20 wt % of trehalose along with neat glycerol are studied. Viscosity coefficients for these systems lie in the range 0.30 < η (P) < 23. Measured solute (Coumarin 153) rotation and solvation times reveal a substantial departure from the hydrodynamic viscosity dependence, suggesting the strong microheterogeneous nature of these systems. Fluorescence anisotropy decays are highly nonexponential, reflecting a non-Markovian character of the medium friction. A complete missing of the Stokes shift dynamics in these systems at 298 K but partial detection of it at other higher temperatures (shift magnitude being ∼400-600 cm-1) indicates rigid solute environments. An amorphous solid-like feature emerges in the simulated radial distribution functions at these temperatures. Analyses of mean squared displacements reveal rattling-in-a-cage motion, non-Gaussian displacement distributions, and strong dynamic heterogeneity features. Simulated dynamic structure factors and four-point correlations hint, respectively, at very long α-relaxation and correlated time scales at 298 K. This explains the long solute rotation times (∼80-200 ns) measured at 298 K. Stretched exponential decay of the simulated H-bond relaxations with long time scales further highlights the strong temporal heterogeneity and slow dynamics inherent to these systems. In summary, this work provides the first insight into the molecular motions and interspecies interaction in a representative cryoprotectant mixture, and stimulates further study to investigate the interconnection between cryoprotection and dynamic heterogeneity.
Collapse
Affiliation(s)
- Sandipa Indra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| |
Collapse
|
6
|
Mancini RJ, Lee J, Maynard HD. Trehalose Glycopolymers for Stabilization of Protein Conjugates to Environmental Stressors. J Am Chem Soc 2012; 134:8474-9. [DOI: 10.1021/ja2120234] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rock J. Mancini
- Department of Chemistry and Biochemistry and California
NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles,
California 90095-1569, United States
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry and California
NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles,
California 90095-1569, United States
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and California
NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles,
California 90095-1569, United States
| |
Collapse
|