1
|
Lee GJ, Kim YJ, Shim SW, Lee K, Oh SB. Anterior insular-nucleus accumbens pathway controls refeeding-induced analgesia under chronic inflammatory pain condition. Neuroscience 2022; 495:58-73. [DOI: 10.1016/j.neuroscience.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
2
|
Díaz-Rúa A, Chivite M, Velasco C, Comesaña S, Soengas JL, Conde-Sieira M. Periprandial response of central cannabinoid system to different feeding conditions in rainbow trout Oncorhynchus mykiss. Nutr Neurosci 2020; 25:1265-1276. [DOI: 10.1080/1028415x.2020.1853412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
3
|
Arcego DM, Krolow R, Lampert C, Toniazzo AP, Garcia EDS, Lazzaretti C, Costa G, Scorza C, Dalmaz C. Chronic high-fat diet affects food-motivated behavior and hedonic systems in the nucleus accumbens of male rats. Appetite 2020; 153:104739. [DOI: 10.1016/j.appet.2020.104739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
|
4
|
The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed Pharmacother 2019; 120:109504. [PMID: 31627091 DOI: 10.1016/j.biopha.2019.109504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
Treating Cancer-induced bone pain (CIBP) continues to be a major clinical challenge and underlying mechanisms of CIBP remain unclear. Recently, emerging body of evidence suggested the endocannabinoid system (ECS) may play essential roles in CIBP. Here, we summarized the current understanding of the antinociceptive mechanisms of endocannabinoids in CIBP and discussed the beneficial effects of endocannabinoid for CIBP treatment. Targeting non-selective cannabinoid 1 receptors or selective cannabinoid 2 receptors, and modulation of peripheral AEA and 2-AG, as well as the inhibition the function of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have produced analgesic effects in animal models of CIBP. Management of ECS therefore appears to be a promising way for the treatment of CIBP in terms of efficacy and safety. Further clinical studies are encouraged to confirm the possible translation to humans of the very promising results already obtained in the preclinical studies.
Collapse
|
5
|
Exercise training and high-fat diet elicit endocannabinoid system modifications in the rat hypothalamus and hippocampus. J Physiol Biochem 2017; 73:335-347. [PMID: 28283967 DOI: 10.1007/s13105-017-0557-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023]
Abstract
The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.
Collapse
|
6
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
8
|
Dovey TM, Boyland EJ, Trayner P, Miller J, Rarmoul-Bouhadjar A, Cole J, Halford JCG. Alterations in taste perception due to recreational drug use are due to smoking a substance rather than ingesting it. Appetite 2016; 107:1-8. [PMID: 27426619 DOI: 10.1016/j.appet.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Two studies explored the differences in tastant (salt, sour, bitter, sweet and spicy) concentration preference between recreational drug users and abstainers. In study 1, 250 opportunistically recruited abstainers, cannabis only users and multiple-drug users completed psychometric questionnaires and a concentration preference tastant test. In study 2, 76 participants purposefully recruited abstainers, daily tobacco users, recreational cannabis users and daily cannabis users completed the same protocol as study 1. Study 1 demonstrated that both multiple drug users and cannabis users had a higher preference for salt and sour tastants than abstainers. Study 2 showed that daily cannabis and tobacco users had a higher preference for sweet and spicy tastants than recreational cannabis users and abstainers. As predicted, recreational drug users scored higher on both sensation-seeking and impulsivity compared to abstainers. Participants who habitually smoke tobacco or cannabis daily have different concentration preference for specific tastants. The aim of the current study was to provide an explanation for the inconsistency in published results on taste preferences in recreational drug users. The data offered in this paper indicate that variation in recruitment strategy, definition of 'drug users', and mode of drug delivery, as well as multiple drug use, may explain the preference for stronger tastants in habitual drug users. Future research exploring the psychobiological underpinnings of the impact of drug use on food preferences should carefully define recreational drug user groups.
Collapse
Affiliation(s)
- Terence M Dovey
- Institute of Environment, Health & Societies, Department of Life Sciences, Marie Jahoda Building, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| | - Emma J Boyland
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool, L69 7ZA, United Kingdom
| | - Penelope Trayner
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool, L69 7ZA, United Kingdom
| | - Jo Miller
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool, L69 7ZA, United Kingdom
| | - Amin Rarmoul-Bouhadjar
- Institute of Environment, Health & Societies, Department of Life Sciences, Marie Jahoda Building, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Jon Cole
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool, L69 7ZA, United Kingdom
| | - Jason C G Halford
- Department of Psychological Sciences, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool, L69 7ZA, United Kingdom
| |
Collapse
|
9
|
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E. Dissecting the cannabinergic control of behavior: Thewherematters. Bioessays 2015; 37:1215-25. [DOI: 10.1002/bies.201500046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnau Busquets-Garcia
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Tifany Desprez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Mathilde Metna-Laurent
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Luigi Bellocchio
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Giovanni Marsicano
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Edgar Soria-Gomez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| |
Collapse
|
10
|
Mechanisms of exercise-induced hypoalgesia. THE JOURNAL OF PAIN 2015; 15:1294-1304. [PMID: 25261342 DOI: 10.1016/j.jpain.2014.09.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/17/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 years) completed 3 sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds and pressure pain ratings before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated that circulating concentrations of 2 endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as related lipids oleoylethanolamide, palmitoylethanolamide, N-docosahexaenoylethanolamine, and 2-oleoylglycerol, increased significantly (P < .05) following exercise. Pressure pain thresholds increased significantly (P < .05), whereas pressure pain ratings decreased significantly (P < .05) following exercise. Also, temporal summation ratings were significantly lower (P < .05) following exercise. These changes in pain responses did not differ between the placebo and naltrexone conditions (P > .05). A significant association was found between EIH and docosahexaenoylethanolamine. These results suggest involvement of a nonopioid mechanism in EIH following isometric exercise. PERSPECTIVE Currently, the mechanisms responsible for EIH are unknown. This study provides support for a potential endocannabinoid mechanism of EIH following isometric exercise.
Collapse
|
11
|
Sagheddu C, Muntoni AL, Pistis M, Melis M. Endocannabinoid Signaling in Motivation, Reward, and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:257-302. [DOI: 10.1016/bs.irn.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Janssen FJ, Deng H, Baggelaar MP, Allarà M, van der Wel T, den Dulk H, Ligresti A, van Esbroeck ACM, McGuire R, Di Marzo V, Overkleeft HS, van der Stelt M. Discovery of Glycine Sulfonamides as Dual Inhibitors of sn-1-Diacylglycerol Lipase α and α/β-Hydrolase Domain 6. J Med Chem 2014; 57:6610-22. [DOI: 10.1021/jm500681z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Freek J. Janssen
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hui Deng
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marc P. Baggelaar
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marco Allarà
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy
| | - Tom van der Wel
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans den Dulk
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Annelot C. M. van Esbroeck
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ross McGuire
- Bioaxis Research, 5351 SL Berghem, The Netherlands
| | | | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
13
|
Abstract
Mounting evidence substantiates the central role of the endocannabinoid system (ECS) in the modulation of both homeostatic and hedonic elements of appetite and food intake. Conversely, feeding status and dietary patterns directly influence activity of the ECS. Following a general introduction on the functioning of the ECS, the present review specifically addresses its role in the modulation of hedonic eating. Humans possess strong motivational systems triggered by rewarding aspects of food. Food reward is comprised of two components: one appetitive (orienting towards food); the other consummatory (hedonic evaluation), also referred to as 'wanting' and 'liking', respectively. Endocannabinoid tone seems to influence both the motivation to feed and the hedonic value of foods, probably by modifying palatability. Human physiology underlying hedonic eating is still not fully understood. A better understanding of the role of the ECS in the rewarding value of specific foods or diets could offer new possibilities to optimise the balance between energy and nutrient intake for different target groups. These groups include the obese and overweight, and potentially individuals suffering from malnutrition. Examples for the latter group are patients with disease-related anorexia, as well as the growing population of frail elderly suffering from persistent loss of food enjoyment and appetite resulting in malnutrition and involuntary weight loss. It has become clear that the psychobiology of food hedonics is extremely complex and the clinical failure of CB1 inverse agonists including rimonabant (Accomplia®) has shown that 'quick wins' in this field are unlikely.
Collapse
|
14
|
Jones EK, Kirkham TC. Noladin ether, a putative endocannabinoid, enhances motivation to eat after acute systemic administration in rats. Br J Pharmacol 2012; 166:1815-21. [PMID: 22309979 PMCID: PMC3402806 DOI: 10.1111/j.1476-5381.2012.01888.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/11/2012] [Accepted: 01/29/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoid systems are strongly implicated in the physiological control of appetite and eating behaviour, with cannabinoid CB(1) receptor agonists and antagonists, respectively, increasing or decreasing food intake. This study examined the acute actions of the putative endocannabinoid noladin ether on food intake and eating motivation, assessing how it affects the amount of work expended by animals to obtain food. EXPERIMENTAL APPROACH Non-deprived male rats were injected systemically with noladin ether to assess its acute effects on ad libitum feeding of a standard laboratory diet. Additionally, the effects of noladin on lever pressing for palatable food were determined using a progressive ratio (PR) operant paradigm. KEY RESULTS Noladin dose dependently increased 2 h food intake, with a significant effect over 1 h after a dose of 0.5 mg·kg(-1). In the PR test, this hyperphagic dose of noladin ether promoted sustained high rates of responding and significantly increased the total number of lever presses and break-point. These latter effects were prevented by pretreatment with 1.0 mg·kg(-1) of the selective CB(1) antagonist surinabant (SR147778), that alone had no effect on responding. CONCLUSIONS AND IMPLICATIONS This is the first report of hyperphagia induced by acute noladin administration, and the first description of behavioural actions in rats. Consistent with prevailing notions about the role of endocannabinoids in appetite, a hyperphagic dose of noladin markedly increased efforts expended by animals to obtain food. Thus, noladin exerts a specific action on eating motivation; possibly promoting eating by increasing the incentive value of food.
Collapse
Affiliation(s)
- E K Jones
- Department of Experimental Psychology, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
15
|
Deshmukh RR, Sharma PL. Stimulation of accumbens shell cannabinoid CB(1) receptors by noladin ether, a putative endocannabinoid, modulates food intake and dietary selection in rats. Pharmacol Res 2012; 66:276-82. [PMID: 22728691 DOI: 10.1016/j.phrs.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 01/24/2023]
Abstract
Stimulation of cannabinoid CB(1) receptors in nucleus accumbens shell has been shown to stimulate feeding and enhance positive 'liking' reactions to intraoral sucrose. This study examined the behavioural effects of noladin ether and 2-arachidonoylglycerol following infusion into accumbens shell, on chow intake and food preference in high-carbohydrate and high-fat preferring rats. Noladin ether, potently and dose-dependently stimulated chow intake as compared with 2-arachidonoylglycerol in free-feeding rats. In the diet preference paradigm, in which rats were given free access to both, high-carbohydrate (HC) and high-fat (HF) diets simultaneously, an intra-accumbens administration of noladin ether as well as 2-arachidonoylglycerol, preferentially enhanced fat consumption over carbohydrate in both HF- and HC-preferring rats. These effects were significantly attenuated by the CB(1) receptor antagonist, AM 251. These results suggesting that, the endocannabinoids through CB(1) receptors, affects appetite for specific dietary components. Both these agents exert a specific action on eating motivation and possibly promoting eating by enhancing the incentive value of food. Altogether these findings reinforce the idea that the endogenous cannabinoid system in the accumbens shell may be important to augment reward-driven feeding via modulation of CB(1) receptor signalling pathways.
Collapse
Affiliation(s)
- Rahul R Deshmukh
- Neuropharmacology Division, ISF College of Pharmacy, Moga-142001, Punjab, India.
| | | |
Collapse
|
16
|
DiPatrizio NV, Piomelli D. The thrifty lipids: endocannabinoids and the neural control of energy conservation. Trends Neurosci 2012; 35:403-11. [PMID: 22622030 DOI: 10.1016/j.tins.2012.04.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/14/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
The 'thrifty gene hypothesis' posits that evolution preferentially selects physiological mechanisms that optimize energy storage to increase survival under alternating conditions of abundance and scarcity of food. Recent experiments suggest that endocannabinoids - a class of lipid-derived mediators that activate cannabinoid receptors in many cells of the body - are key agents of energy conservation. The new evidence indicates that these compounds increase energy intake and decrease energy expenditure by controlling the activity of peripheral and central neural pathways involved in the sensing and hedonic processing of sweet and fatty foods, as well as in the storage of their energy content for future use.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Departments of Pharmacology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | | |
Collapse
|