1
|
Avery JT, Zhang R, Boohaker RJ. GLI1: A Therapeutic Target for Cancer. Front Oncol 2021; 11:673154. [PMID: 34113570 PMCID: PMC8186314 DOI: 10.3389/fonc.2021.673154] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1’s role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.
Collapse
Affiliation(s)
- Justin T Avery
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| | - Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rebecca J Boohaker
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| |
Collapse
|
2
|
Zhang R, Ma J, Avery JT, Sambandam V, Nguyen TH, Xu B, Suto MJ, Boohaker RJ. GLI1 Inhibitor SRI-38832 Attenuates Chemotherapeutic Resistance by Downregulating NBS1 Transcription in BRAF V600E Colorectal Cancer. Front Oncol 2020; 10:241. [PMID: 32185127 PMCID: PMC7058788 DOI: 10.3389/fonc.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.
Collapse
Affiliation(s)
- Ruowen Zhang
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Jinlu Ma
- Department of Radiation Oncology, First Affiliated Hospital, Xian Jiaotong University, Xi'an, China
| | - Justin T. Avery
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Vijaya Sambandam
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Theresa H. Nguyen
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Bo Xu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mark J. Suto
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Rebecca J. Boohaker
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| |
Collapse
|
3
|
Neumann JE, Wefers AK, Lambo S, Bianchi E, Bockstaller M, Dorostkar MM, Meister V, Schindler P, Korshunov A, von Hoff K, Nowak J, Warmuth-Metz M, Schneider MR, Renner-Müller I, Merk DJ, Shakarami M, Sharma T, Chavez L, Glass R, Chan JA, Taketo MM, Neumann P, Kool M, Schüller U. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat Med 2017; 23:1191-1202. [DOI: 10.1038/nm.4402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2017] [Indexed: 12/24/2022]
|
4
|
Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget 2015; 5:4492-503. [PMID: 24962990 PMCID: PMC4147340 DOI: 10.18632/oncotarget.2046] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The GLI genes, GLI1 and GLI2, are transcription factors that regulate target genes at the distal end of the canonical Hedgehog (HH) signaling pathway (SHH->PTCH->SMO->GLI), tightly regulated in embryonic development, tissue patterning and differentiation. Both GLI1 and GLI2 are oncogenes, constitutively activated in many types of human cancers. In colon cancer cells oncogenic KRAS-GLI signaling circumvents the HH-SMO-GLI axis to channel through and activate GLI in the transcriptional regulation of target genes. We have observed extensive cell death in a panel of 7 human colon carcinoma cell lines using the small molecule GLI inhibitor GANT61. Using computational docking and experimental confirmation by Surface Plasmon Resonance, GANT61 binds to the 5-zinc finger GLI1 protein between zinc fingers 2 and 3 at sites E119 and E167, independent of the GLI-DNA binding region, and conserved between GLI1 and GLI2. GANT61 does not bind to other zinc finger transcription factors (KLF4, TFIIβ). Mutating the predicted GANT61 binding sites in GLI1 significantly inhibits GANT61-GLI binding and GLI-luciferase activity. Data establish the specificity of GANT61 for targeting GLI, and substantiate the critical role of GLI in cancer cell survival. Thus, targeting GLI in cancer therapeutics may be of high impact.
Collapse
|
5
|
Aditya S, Rattan A. Vismodegib: A smoothened inhibitor for the treatment of advanced basal cell carcinoma. Indian Dermatol Online J 2013; 4:365-8. [PMID: 24350028 PMCID: PMC3853913 DOI: 10.4103/2229-5178.120685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Incidence of basal cell carcinoma (BCC), the most common skin cancer in humans, is rising. Surgery is the mainstay of treatment but there is no standard of care for locally advanced or metastatic disease. Hedgehog signaling proteins are critical for cell growth and differentiation during embryogenesis; Hh pathway is silenced in adults. Dysregulated or aberrant Hh signaling has been implicated in the pathogenesis of BCC. This hyperactive pathway can be inhibited by use of smoothened inhibitors such as vismodegib. Food and drug administration approved this oral, once-daily medication in 2012 to treat adults with metastatic BCC or locally advanced, recurrent BCC after surgery and also for patients with locally advanced BCC who are not candidates for surgery or radiation treatment. Clinical studies have shown it to be highly efficacious and the most common adverse effects include, muscle spasms, alopecia and dysgeusia. Use of targeted biologic modifiers, exemplified by Hh directed therapeutics offer a new hope to patients with high-surgical morbidity or inoperable tumors.
Collapse
Affiliation(s)
- Suruchi Aditya
- Department of Pharmacology, Dr. Harvansh Singh Judge Institute of Dental Sciences, Chandigarh, India
| | - Aditya Rattan
- Department of cardiology, Heartline, SCO-58, Panchkula, Haryana, India
| |
Collapse
|
6
|
Agyeman A, Mazumdar T, Houghton JA. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget 2012; 3:854-68. [PMID: 23097684 PMCID: PMC3478462 DOI: 10.18632/oncotarget.586] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/18/2012] [Indexed: 01/23/2023] Open
Abstract
Transcriptional regulation of the Hedgehog (HH) signaling response is mediated by GLI genes (GLI1, GLI2) downstream of SMO, that are also activated by oncogenic signaling pathways. We have demonstrated the importance of targeting GLI downstream of SMO in the induction of cell death in human colon carcinoma cells. In HT29 cells inhibition of GLI1/GLI2 by the small molecule inhibitor GANT61 induced DNA double strand breaks (DSBs) and activation of ATM, MDC1 and NBS1; γH2AX and MDC1, NBS1 and MDC1 co-localized in nuclear foci. Early activation of ATM was decreased by 24 hr, when p-NBS1Ser343, activated by ATM, was significantly reduced in cell extracts. Bound γH2AX was detected in isolated chromatin fractions or nuclei during DNA damage but not during DNA repair. MDC1 was tightly bound to chromatin at 32 hr as cells accumulated in early S-phase prior to becoming subG1, and during DNA repair. Limited binding of NBS1 was detected at all times during DNA damage but was strongly bound during DNA repair. Transient overexpression of NBS1 protected HT29 cells from GANT61-induced cell death, while knockdown of H2AX by H2AXshRNA delayed DNA damage signaling. Data demonstrate following GLI1/GLI2 inhibition: 1) induction of DNA damage in cells that are also resistant to SMO inhibitors, 2) dynamic interactions between γH2AX, MDC1 and NBS1 in single cell nuclei and in isolated chromatin fractions, 3) expression and chromatin binding properties of key mediator proteins that mark DNA damage or DNA repair, and 4) the importance of NBS1 in the DNA damage response mechanism.
Collapse
Affiliation(s)
- Akwasi Agyeman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
7
|
Mazumdar T, DeVecchio J, Agyeman A, Shi T, Houghton JA. The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer. Oncotarget 2012; 2:638-45. [PMID: 21860067 PMCID: PMC3248207 DOI: 10.18632/oncotarget.310] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Hedgehog (HH) signaling pathway leads to activation of GLI, which transcriptionally regulate target genes. Regulated HH signaling activity is critical during embryogenesis while aberrantly activated HH signaling is evident in a variety of human cancers. Canonical HH signaling engages the transmembrane receptor Patched (PTCH) and the signaling intermediate Smoothened (SMO) to activate GLI1 and GLI2. In addition GLI1 and GLI2 are activated by non-canonical oncogenic signaling pathways to further drive HH-dependent survival. We have demonstrated in human colon carcinoma cells that inhibition of the RAS/RAF pathway by U0126 decreases p-ERK protein expression and also inhibits GLI-luciferase activity and GLI1 mRNA and protein levels. Of importance is the demonstration that targeting of SMO (using cyclopamine) has minimal effect on cell survival in comparison to the inhibition of GLI (using GANT61), which induced extensive cell death in 7/7 human colon carcinoma cell lines. Genetic inhibition of the function of GLI1 and GLI2 by transient transfection of the C-terminus deleted repressor GLI3R, reduced proliferation and induced cleavage of caspase-3 and cell death in HT29 cells, similar to the effects of GANT61. Mechanistically, downstream of GLI1 and GLI2 inhibition, γH2AX (a marker of DNA double strand breaks) expression was upregulated, and γH2AX nuclear foci were demonstrated in cells that expressed GLI3R. Activation of the ATM/Chk2 axis with co-localization of γH2AX and p-Chk2 nuclear foci were demonstrated following GLI1/GLI2 inhibition. GANT61 induced cellular accumulation at G1/S and early S with no further progression before cells became subG1, while cDNA microarray gene profiling demonstrated downregulation of genes involved in DNA replication, the DNA damage response, and DNA repair, mechanisms that are currently being pursued. These studies highlight the importance of targeting the GLI genes downstream of SMO for terminating HH-dependent survival, suggesting that GLI may constitute a molecular switch that determines the balance between cell survival and cell death in human colon carcinoma.
Collapse
Affiliation(s)
- Tapati Mazumdar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
8
|
Bambakidis NC, Onwuzulike K. Sonic Hedgehog signaling and potential therapeutic indications. VITAMINS AND HORMONES 2012; 88:379-94. [PMID: 22391313 DOI: 10.1016/b978-0-12-394622-5.00017-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sonic hedgehog (Shh) is a glycoprotein molecule that is expressed throughout the central nervous system (CNS). It is important during neurodevelopment, particularly through its induction of endogenous neural precursor cells and neural stem cells. The signaling system by which Shh has its diffuse effects on multiple end organs depends on a downstream signaling cascade initiated by binding to the receptor Patched (PTC) on Shh-specific target cells. The downstream signaling cascade has widespread effects on multiple organ systems. Research into tumor suppressive effects and germline mutations has uncovered important implications in neuro-oncology. Modulating the neuroproliferative effects of the Shh signaling cascade implicated a potential role in ameliorating the effects of CNS injury, particularly in animal models of spinal cord injury and cerebral cortical ischemia. This chapter provides a summary of the Shh signaling mechanism and a review of its impact in these neurological disorders.
Collapse
Affiliation(s)
- Nicholas C Bambakidis
- Department of Neurological Surgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | | |
Collapse
|
9
|
Pressey JG, Anderson JR, Crossman DK, Lynch JC, Barr FG. Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2011; 57:930-8. [PMID: 21618411 PMCID: PMC3164386 DOI: 10.1002/pbc.23174] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/30/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant activation of the hedgehog (Hh) signaling pathway is implicated widely in both pediatric and adult malignancies. Inactivation of the Hh regulator PTCH is responsible for the Gorlin cancer predisposition syndrome. The spectrum of tumors found in Gorlin Syndrome includes basal cell carcinoma, medulloblastoma, and rarely, rhabdomyosarcoma (RMS). A previous report utilizing in situ hybridization has provided initial evidence for the expression of Hh targets GLI1 and PTCH in RMS tumors. PROCEDURE To investigate the role of Hh pathway signaling in pediatric RMS and undifferentiated sarcoma (US) tumors, the expression of Hh pathway targets GLI1 and PTCH was measured. RNA was extracted from archival human tumor specimens collected from pediatric patients enrolled on Intergroup Rhabdomyosarcoma Study III and IV, and subjected to quantitative reverse transcriptase-polymerase chain reaction. RESULTS Expression of GLI1 with or without PTCH was detected in substantial subsets of embryonal RMS (ERMS) and US tumors but only rarely in alveolar RMS tumors. Neither PTCH mutations nor activating SMO mutations were detected in ERMS tumors with high GLI1 expression. Microarray analysis demonstrated relative overexpression of downstream Hh targets in ERMS tumors with high or intermediate GLI1 expression. Unlike a recent report, Hh pathway activity in ERMS tumors did not correlate with a unique clinical phenotype. CONCLUSIONS Our findings support a role for Hh pathway activation in the genesis of a subset of ERMS and US tumors. Hh signaling may represent a novel therapeutic target in affected tumors.
Collapse
Affiliation(s)
- Joseph G Pressey
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
10
|
Redmond EM, Guha S, Walls D, Cahill PA. Investigational Notch and Hedgehog inhibitors--therapies for cardiovascular disease. Expert Opin Investig Drugs 2011; 20:1649-64. [PMID: 22007748 DOI: 10.1517/13543784.2011.628658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION During the past decade, a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. AREAS COVERED This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the preclinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. EXPERT OPINION Preclinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands have proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. By contrast, the Hedgehog-based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients.
Collapse
Affiliation(s)
- Eileen M Redmond
- University of Rochester, Department of Surgery, 601 Elmwood Ave, Box SURG, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
11
|
Gioeli D, Wunderlich W, Sebolt-Leopold J, Bekiranov S, Wulfkuhle JD, Petricoin EF, Conaway M, Weber MJ. Compensatory pathways induced by MEK inhibition are effective drug targets for combination therapy against castration-resistant prostate cancer. Mol Cancer Ther 2011; 10:1581-90. [PMID: 21712477 PMCID: PMC3315368 DOI: 10.1158/1535-7163.mct-10-1033] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeted therapies have often given disappointing results when used as single agents in solid tumors, suggesting the importance of devising rational combinations of targeted drugs. We hypothesized that construction of such combinations could be guided by identification of growth and survival pathways whose activity or expression become upregulated in response to single-agent drug treatment. We mapped alterations in signaling pathways assessed by gene array and protein phosphorylation to identify compensatory signal transduction pathways in prostate cancer xenografts treated with a MAP/ERK kinase (MEK) inhibitor PD325901. In addition to numerous components of the extracellular signal-regulated kinase (ERK) signaling pathway, components of the IKK, hedgehog, and phosphoinositide 3-kinase/Akt/mTOR pathways were upregulated following treatment with PD325901. Combinations of PD325901 with inhibitors of any one of these upregulated pathways provided synergistically greater growth inhibition of in vitro cell growth and survival than the individual drugs alone. Thus, the identification of compensatory signal transduction pathways paves the way for rational combinatorial therapies for the effective treatment of prostate cancer.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, PO Box 800734, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, Lebowitz PF, Kumar R. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med 2011; 9:119. [PMID: 21781349 PMCID: PMC3152520 DOI: 10.1186/1479-5876-9-119] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries. METHODS Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers. RESULTS Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways. CONCLUSIONS The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.
Collapse
Affiliation(s)
- Joanna D Holbrook
- Cancer Research, Oncology R&D, Glaxosmithkline R&D, Collegeville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chu E. An update on the current and emerging targeted agents in metastatic colorectal cancer. Clin Colorectal Cancer 2011; 11:1-13. [PMID: 21752724 DOI: 10.1016/j.clcc.2011.05.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/30/2011] [Accepted: 05/06/2011] [Indexed: 12/21/2022]
Abstract
Over the past 8 to 10 years, significant advances have been made in the treatment of metastatic colorectal cancer (mCRC). In particular, the development of the targeted biologic agents bevacizumab, cetuximab, and panitumumab, and their integration with cytotoxic chemotherapy regimens has led to improvements in clinical efficacy. Despite these gains, the overall impact of current targeted agents in the treatment of mCRC has been relatively modest, and while 2-year survival has improved, no gains have been made, as of yet, in 5-year survival. Intense efforts continue to be focused on developing novel targeted agents with a different spectrum of activity. Presently, five novel targeted molecules are in phase III trials, including the antiangiogenesis agents aflibercept and ramucirumab, two novel receptor tyrosine kinase inhibitors, regorafenib and brivanib, and the Akt inhibitor perifosine. There are an additional 52 phase II trials investigating a wide range of other candidate molecules. The potential list of approved targeted agents in mCRC seems likely to increase over the next 5 to 10 years. To maximize their potential clinical impact, however, it will be critically important to introduce efficient molecular diagnostic methodologies into the drug development process for the identification and validation of predictive biomarkers for chemosensitivity. This article reviews the development of targeted agents for the treatment of mCRC, including the three molecules currently approved by the US Food and Drug Administration (FDA), as well as the main non-FDA-approved therapeutics currently undergoing phase II and III clinical testing.
Collapse
Affiliation(s)
- Edward Chu
- Division of Hematology-Oncology, Department of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|
14
|
Strand MF, Wilson SR, Dembinski JL, Holsworth DD, Khvat A, Okun I, Petersen D, Krauss S. A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model. PLoS One 2011; 6:e19904. [PMID: 21698280 PMCID: PMC3115942 DOI: 10.1371/journal.pone.0019904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/20/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials. PRINCIPAL FINDINGS Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a "focused diversity" library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low µM range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo. SIGNIFICANCE We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist, MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists.
Collapse
Affiliation(s)
- Martin F. Strand
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Jennifer L. Dembinski
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Alexander Khvat
- ChemDiv Inc., San Diego, California, United States of America
| | - Ilya Okun
- ChemDiv Inc., San Diego, California, United States of America
| | - Dirk Petersen
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signalling, Institute for Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
15
|
Effects of the Hedgehog pathway inhibitor GDC-0449 on lung cancer cell lines are mediated by side populations. Clin Exp Med 2011; 12:25-30. [DOI: 10.1007/s10238-011-0135-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/02/2011] [Indexed: 01/25/2023]
|
16
|
Beach DF, Somer R. Novel approach to Gorlin syndrome: a patient treated with oral capecitabine. J Clin Oncol 2011; 29:e397-401. [PMID: 21357787 DOI: 10.1200/jco.2010.33.3393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Douglas F Beach
- University of Medicine and Denistry of New Jersey Robert Wood Johnson Medical School, Camden, NJ, USA
| | | |
Collapse
|
17
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|