1
|
Knoblach B, Ishida R, Hobman TC, Rachubinski RA. Peroxisomes exhibit compromised structure and matrix protein content in SARS-CoV-2-infected cells. Mol Biol Cell 2021; 32:1273-1282. [PMID: 34010015 PMCID: PMC8351553 DOI: 10.1091/mbc.e21-02-0074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has triggered global health and economic crises. Here we report the effects of SARS-CoV-2 infection on peroxisomes of human cell lines Huh-7 and SK-N-SH. Peroxisomes undergo dramatic changes in morphology in SARS-CoV-2-infected cells. Rearrangement of peroxisomal membranes is followed by redistribution of peroxisomal matrix proteins to the cytosol, resulting in a dramatic decrease in the number of mature peroxisomes. The SARS-CoV-2 ORF14 protein was shown to interact physically with human PEX14, a peroxisomal membrane protein required for matrix protein import and peroxisome biogenesis. Given the important roles of peroxisomes in innate immunity, SARS-CoV-2 may directly target peroxisomes, resulting in loss of peroxisome structural integrity, matrix protein content and ability to function in antiviral signaling.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ray Ishida
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
2
|
Kato F, Ishida Y, Kawakami A, Takasaki T, Saijo M, Miura T, Hishiki T. Evaluation of Macaca radiata as a non-human primate model of Dengue virus infection. Sci Rep 2018; 8:3421. [PMID: 29467430 PMCID: PMC5821881 DOI: 10.1038/s41598-018-21582-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) causes a wide range of illnesses in humans, including dengue fever and dengue haemorrhagic fever. Current animal models of DENV infection are limited for understanding infectious diseases in humans. Bonnet monkeys (Macaca radiata), a type of Old World monkey, have been used to study experimental and natural infections by flaviviruses, but Old World monkeys have not yet been used as DENV infection models. In this study, the replication levels of several DENV strains were evaluated using peripheral blood mononuclear cells. Our findings indicated that DENV-4 09-48 strain, isolated from a traveller returning from India in 2009, was a highly replicative virus. Three bonnet monkeys were infected with 09-48 strain and antibody responses were assessed. DENV nonstructural protein 1 antigen was detected and high viraemia was observed. These results indicated that bonnet monkeys and 09-48 strain could be used as a reliable primate model for the study of DENV.
Collapse
Affiliation(s)
- Fumihiro Kato
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Ishida
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Kawakami
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan.,Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Hishiki
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. .,Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
3
|
Abstract
Dengue is one of the most important vector-borne disease and an increasing problem worldwide because of current globalization trends. Roughly, half the world's population lives in dengue endemic countries, and nearly 100 million people are infected annually with dengue. India has the highest burden of the disease with 34% of the global cases. In the context of an expanding and potentially fatal infectious disease without effective prevention or specific treatment, the public health value of a protective vaccine is clear. There is no licensed dengue vaccine is available still, but several vaccines are under development. Keeping in view the rise in dengue prevalence globally, there is a need to increase clinical drug and vaccine research on dengue. This paper briefly reviews on the development and current status of dengue vaccine to provide information to policymakers, researchers, and public health experts to design and implement appropriate vaccine for prophylactic intervention.
Collapse
Affiliation(s)
- Priya Marimuthu
- Department of Pharmacology, SRM Medical College, Kattankulathur, Kanchipuram, Tamil Nadu, India
| | - Jamuna Rani Ravinder
- Department of Pharmacology, SRM Medical College, Kattankulathur, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
4
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
5
|
Durbin AP, Kirkpatrick BD, Pierce KK, Schmidt AC, Whitehead SS. Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine. Vaccine 2011; 29:7242-50. [PMID: 21781997 DOI: 10.1016/j.vaccine.2011.07.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
The Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases, National Institutes of Health has been engaged in an effort to develop a safe, efficacious, and affordable live attenuated tetravalent dengue vaccine (LATV) for more than ten years. Numerous recombinant monovalent DENV vaccine candidates have been evaluated in the SCID-HuH-7 mouse and in rhesus macaques to identify those candidates with a suitable attenuation phenotype. In addition, the ability of these candidates to infect and disseminate in Aedes mosquitoes had also been determined. Those candidates that were suitably attenuated in SCID-HuH-7 mice, rhesus macaques, and mosquitoes were selected for further evaluation in humans. This review will describe the generation of multiple candidate vaccines directed against each DENV serotype, the preclinical and clinical evaluation of these candidates, and the process of selecting suitable candidates for inclusion in a LATV dengue vaccine.
Collapse
Affiliation(s)
- Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| | | | | | | | | |
Collapse
|
6
|
Thomas SJ. The necessity and quandaries of dengue vaccine development. J Infect Dis 2011; 203:299-303. [PMID: 21208919 PMCID: PMC3071120 DOI: 10.1093/infdis/jiq060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 11/13/2022] Open
|
7
|
Murrell S, Wu SC, Butler M. Review of dengue virus and the development of a vaccine. Biotechnol Adv 2010; 29:239-47. [PMID: 21146601 DOI: 10.1016/j.biotechadv.2010.11.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/28/2010] [Accepted: 11/29/2010] [Indexed: 01/28/2023]
Abstract
Dengue viral infection has become an increasing global health concern with over two-fifths of the world's population at risk of infection. It is the most rapidly spreading vector borne disease, attributed to changing demographics, urbanization, environment, and global travel. It continues to be a threat in over 100 tropical and sub-tropical countries, affecting predominantly children. Dengue also carries a hefty financial burden on the health care systems in affected areas, as those infected seek care for their symptoms. The search for a suitable vaccine for dengue has been ongoing for the last sixty years, yet any effective treatment or vaccine remains elusive. A vaccine must be protective for all four serotypes of dengue and be cost-effective. Many approaches to developing candidate vaccines have been employed. The candidates include live attenuated tetravalent vaccines, chimeric tetravalent vaccines based on attenuated dengue virus or Yellow Fever 17D, and recombinant DNA vaccines based on flavivirus and non-flavivirus vectors. This review outlines the challenges involved in dengue vaccine development and presents the current stages of proposed vaccine candidate development.
Collapse
Affiliation(s)
- Sarah Murrell
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
8
|
Clements DE, Coller BAG, Lieberman MM, Ogata S, Wang G, Harada KE, Putnak JR, Ivy JM, McDonell M, Bignami GS, Peters ID, Leung J, Weeks-Levy C, Nakano ET, Humphreys T. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 2010; 28:2705-15. [PMID: 20097152 PMCID: PMC2837772 DOI: 10.1016/j.vaccine.2010.01.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/08/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Truncated recombinant dengue virus envelope protein subunits (80E) are efficiently expressed using the Drosophila Schneider-2 (S2) cell expression system. Binding of conformationally sensitive antibodies as well as X-ray crystal structural studies indicate that the recombinant 80E subunits are properly folded native-like proteins. Combining the 80E subunits from each of the four dengue serotypes with ISCOMATRIX adjuvant, an adjuvant selected from a set of adjuvants tested for maximal and long lasting immune responses, results in high titer virus neutralizing antibody responses. Immunization of mice with a mixture of all four 80E subunits and ISCOMATRIX adjuvant resulted in potent virus neutralizing antibody responses to each of the four serotypes. The responses to the components of the tetravalent mixture were equivalent to the responses to each of the subunits administered individually. In an effort to evaluate the potential protective efficacy of the Drosophila expressed 80E, the dengue serotype 2 (DEN2-80E) subunit was tested in both the mouse and monkey challenge models. In both models protection against viral challenge was achieved with low doses of antigen in the vaccine formulation. In non-human primates, low doses of the tetravalent formulation induced good virus neutralizing antibody titers to all four serotypes and protection against challenge with the two dengue virus serotypes tested. In contrast to previous reports, where subunit vaccine candidates have generally failed to induce potent, protective responses, native-like soluble 80E proteins expressed in the Drosophila S2 cells and administered with appropriate adjuvants are highly immunogenic and capable of eliciting protective responses in both mice and monkeys. These results support the development of a dengue virus tetravalent vaccine based on the four 80E subunits produced in the Drosophila S2 cell expression system.
Collapse
Affiliation(s)
| | | | | | - Steven Ogata
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | - Gordon Wang
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | - Kent E. Harada
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | - J. Robert Putnak
- Walter Reed Army Institute for Research, Silver Spring, MD 20910
| | - John M. Ivy
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | | | - Gary S. Bignami
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | - Iain D. Peters
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | - Julia Leung
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| | | | | | - Tom Humphreys
- Hawaii Biotech, Inc., 99–193 Aiea Heights Drive, Aiea, HI 96701
| |
Collapse
|