1
|
Garzón MJ, Reyes-Prieto M, Gil R. The Minimal Translation Machinery: What We Can Learn From Naturally and Experimentally Reduced Genomes. Front Microbiol 2022; 13:858983. [PMID: 35479634 PMCID: PMC9035817 DOI: 10.3389/fmicb.2022.858983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The current theoretical proposals of minimal genomes have not attempted to outline the essential machinery for proper translation in cells. Here, we present a proposal of a minimal translation machinery based on (1) a comparative analysis of bacterial genomes of insects’ endosymbionts using a machine learning classification algorithm, (2) the empiric genomic information obtained from Mycoplasma mycoides JCVI-syn3.0 the first minimal bacterial genome obtained by design and synthesis, and (3) a detailed functional analysis of the candidate genes based on essentiality according to the DEG database (Escherichia coli and Bacillus subtilis) and the literature. This proposed minimal translational machinery is composed by 142 genes which must be present in any synthetic prokaryotic cell designed for biotechnological purposes, 76.8% of which are shared with JCVI-syn3.0. Eight additional genes were manually included in the proposal for a proper and efficient translation.
Collapse
Affiliation(s)
| | - Mariana Reyes-Prieto
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community, Valencia, Spain
| | - Rosario Gil
- Departament de Genètica, Universitat de València, Burjassot, Spain
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- *Correspondence: Rosario Gil,
| |
Collapse
|
2
|
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. MICROBIOME 2017; 5:25. [PMID: 28231859 PMCID: PMC5324219 DOI: 10.1186/s40168-017-0241-2] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches. METHODS We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats. RESULTS We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus. CONCLUSIONS Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.
Collapse
Affiliation(s)
- Bram Beckers
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.
| | - Michiel Op De Beeck
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium
- Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund, Sweden
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium
| |
Collapse
|
3
|
Gil R, Peretó J. Small genomes and the difficulty to define minimal translation and metabolic machineries. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME JOURNAL 2015; 10:376-88. [PMID: 26172209 DOI: 10.1038/ismej.2015.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/29/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
The evolution of eukaryotic organisms is often strongly influenced by microbial symbionts that confer novel traits to their hosts. Here we describe the intracellular Enterobacteriaceae symbiont of the invasive ant Cardiocondyla obscurior, 'Candidatus Westeberhardia cardiocondylae'. Upon metamorphosis, Westeberhardia is found in gut-associated bacteriomes that deteriorate following eclosion. Only queens maintain Westeberhardia in the ovarian nurse cells from where the symbionts are transmitted to late-stage oocytes during nurse cell depletion. Functional analyses of the streamlined genome of Westeberhardia (533 kb, 23.41% GC content) indicate that neither vitamins nor essential amino acids are provided for the host. However, the genome encodes for an almost complete shikimate pathway leading to 4-hydroxyphenylpyruvate, which could be converted into tyrosine by the host. Taken together with increasing titers of Westeberhardia during pupal stage, this suggests a contribution of Westeberhardia to cuticle formation. Despite a widespread occurrence of Westeberhardia across host populations, one ant lineage was found to be naturally symbiont-free, pointing to the loss of an otherwise prevalent endosymbiont. This study yields insights into a novel intracellular mutualist that could play a role in the invasive success of C. obscurior.
Collapse
|
5
|
López-Madrigal S, Beltrà A, Resurrección S, Soto A, Latorre A, Moya A, Gil R. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs. Front Microbiol 2014; 5:449. [PMID: 25206351 PMCID: PMC4144094 DOI: 10.3389/fmicb.2014.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 02/05/2023] Open
Abstract
Intracellular bacterial supply of essential amino acids is common among sap-feeding insects, thus complementing the scarcity of nitrogenous compounds in plant phloem. This is also the role of the two mealybug endosymbiotic systems whose genomes have been sequenced. In the nested endosymbiotic system from Planococcus citri (Pseudococcinae), "Candidatus Tremblaya princeps" and "Candidatus Moranella endobia" cooperate to synthesize essential amino acids, while in Phenacoccus avenae (Phenacoccinae) this function is performed by its single endosymbiont "Candidatus Tremblaya phenacola." However, little is known regarding the evolution of essential amino acid supplementation strategies in other mealybug systems. To address this knowledge gap, we screened for the presence of six selected loci involved in essential amino acid biosynthesis in five additional mealybug species. We found evidence of ongoing complementarity among endosymbionts from insects of subfamily Pseudococcinae, as well as horizontal gene transfer affecting endosymbionts from insects of family Phenacoccinae, providing a more comprehensive picture of the evolutionary history of these endosymbiotic systems. Additionally, we report two diagnostic motifs to help identify invasive mealybug species.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
| | - Aleixandre Beltrà
- Instituto Agroforestal Mediterráneo, Universitat Politecnica de ValenciaValencia, Spain
| | - Serena Resurrección
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
| | - Antonia Soto
- Instituto Agroforestal Mediterráneo, Universitat Politecnica de ValenciaValencia, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)–Salud PúblicaValencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)–Salud PúblicaValencia, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
| |
Collapse
|
6
|
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 2014; 6:76-93. [PMID: 24407854 PMCID: PMC3914690 DOI: 10.1093/gbe/evt210] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Symbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association. We present the complete genome sequence and annotation of Sitophilus oryzae primary endosymbiont (SOPE). We also present the finished genome sequence and annotation of strain HS, a close free-living relative of SOPE and other insect symbionts of the Sodalis-allied clade, whose gene inventory is expected to closely resemble the putative ancestor of this group. Structural, functional, and evolutionary analyses indicate that SOPE has undergone extensive adaptation toward an insect-associated lifestyle in a very short time period. The genome of SOPE is large in size when compared with many ancient bacterial symbionts; however, almost half of the protein-coding genes in SOPE are pseudogenes. There is also evidence for relaxed selection on the remaining intact protein-coding genes. Comparative analyses of the whole-genome sequence of strain HS and SOPE highlight numerous genomic rearrangements, duplications, and deletions facilitated by a recent expansion of insertions sequence elements, some of which appear to have catalyzed adaptive changes. Functional metabolic predictions suggest that SOPE has lost the ability to synthesize several essential amino acids and vitamins. Analyses of the bacterial cell envelope and genes encoding secretion systems suggest that these structures and elements have become simplified in the transition to a mutualistic association.
Collapse
Affiliation(s)
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | | | | - Cindy Hamil
- Department of Human Genetics, University of Utah
| | - Alex Aoyagi
- Department of Human Genetics, University of Utah
| | - Brett Duval
- Department of Human Genetics, University of Utah
| | | | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Agnès Vallier
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | | | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | | | - Abdelaziz Heddi
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, Valencia, Spain
| | - Colin Dale
- Department of Biology, University of Utah
| |
Collapse
|
7
|
Kurtböke DI, French JRJ, Hayes RA, Quinn RJ. Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 147:111-35. [PMID: 24817085 DOI: 10.1007/10_2014_270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in "omics" sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the "omics" science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia.
Collapse
Affiliation(s)
- D Ipek Kurtböke
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia,
| | | | | | | |
Collapse
|
8
|
López-Madrigal S, Balmand S, Latorre A, Heddi A, Moya A, Gil R. How does Tremblaya princeps get essential proteins from its nested partner Moranella endobia in the Mealybug Planoccocus citri? PLoS One 2013; 8:e77307. [PMID: 24204799 PMCID: PMC3804617 DOI: 10.1371/journal.pone.0077307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
Many insects maintain intracellular mutualistic symbiosis with a wide range of bacteria which are considered essential for their survival (primary or P-endosymbiont) and typically suffer drastic genome degradation. Progressive loss of P-endosymbiont metabolic capabilities could lead to the recruitment of co-existent facultative endosymbiont (secondary or S-endosymbiont), thus adding more complexity to the symbiotic system. Planococcus citri, among other mealybug species, harbors an unconventional nested endosymbiotic system where every Tremblaya princeps cell (β-proteobacterium) harbors many Moranella endobia cells (γ-proteobacterium). In this system, T. princeps possess one of the smallest prokaryote genome known so far. This extreme genome reduction suggests the supply of many metabolites and essential gene products by M. endobia. Although sporadic cell lysis is plausible, the bacterial participation on the regulation of the predicted molecular exchange (at least to some extent) cannot be excluded. Although the comprehensive analysis of the protein translocation ability of M. endobia PCVAL rules out the existence of specific mechanisms for the exportation of proteins from M. endobia to T. princeps, immunolocation of two M. endobia proteins points towards a non-massive but controlled protein provision. We propose a sporadic pattern for the predicted protein exportation events, which could be putatively controlled by the host and/or mediated by local osmotic stress.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Paterna (València), Spain
| | - Séverine Balmand
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INSA-Lyon, INRA, Villeurbanne, France
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Paterna (València), Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, València, Spain
| | - Abdelaziz Heddi
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INSA-Lyon, INRA, Villeurbanne, France
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Paterna (València), Spain
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO – Salud Pública, València, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Paterna (València), Spain
| |
Collapse
|
9
|
López-Madrigal S, Latorre A, Porcar M, Moya A, Gil R. Mealybugs nested endosymbiosis: going into the 'matryoshka' system in Planococcus citri in depth. BMC Microbiol 2013; 13:74. [PMID: 23548081 PMCID: PMC3620526 DOI: 10.1186/1471-2180-13-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/25/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In all branches of life there are plenty of symbiotic associations. Insects are particularly well suited to establishing intracellular symbiosis with bacteria, providing them with metabolic capabilities they lack. Essential primary endosymbionts can coexist with facultative secondary symbionts which can, eventually, establish metabolic complementation with the primary endosymbiont, becoming a co-primary. Usually, both endosymbionts maintain their cellular identity. An exception is the endosymbiosis found in mealybugs of the subfamily Pseudoccinae, such as Planococcus citri, with Moranella endobia located inside Tremblaya princeps. RESULTS We report the genome sequencing of M. endobia str. PCVAL and the comparative genomic analyses of the genomes of strains PCVAL and PCIT of both consortium partners. A comprehensive analysis of their functional capabilities and interactions reveals their functional coupling, with many cases of metabolic and informational complementation. Using comparative genomics, we confirm that both genomes have undergone a reductive evolution, although with some unusual genomic features as a consequence of coevolving in an exceptional compartmentalized organization. CONCLUSIONS M. endobia seems to be responsible for the biosynthesis of most cellular components and energy provision, and controls most informational processes for the consortium, while T. princeps appears to be a mere factory for amino acid synthesis, and translating proteins, using the precursors provided by M. endobia. In this scenario, we propose that both entities should be considered part of a composite organism whose compartmentalized scheme (somehow) resembles a eukaryotic cell.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Avenida de Cataluña 21, Valencia, 46020, Spain
| | - Manuel Porcar
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
- Fundació General de la Universitat de València, Apartado Postal 22085, València, 46071, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Avenida de Cataluña 21, Valencia, 46020, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
| |
Collapse
|
10
|
Pérez-Brocal V, Latorre A, Moya A. Symbionts and pathogens: what is the difference? Curr Top Microbiol Immunol 2011; 358:215-43. [PMID: 22076025 DOI: 10.1007/82_2011_190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ecological relationships that organisms establish with others can be considered as broad and diverse as the forms of life that inhabit and interact in our planet. Those interactions can be considered as a continuum spectrum, ranging from beneficial to detrimental outcomes. However, this picture has revealed as more complex and dynamic than previously thought, involving not only factors that affect the two or more members that interact, but also external forces, with chance playing a crucial role in this interplay. Thus, defining a particular symbiont as mutualist or pathogen in an exclusive way, based on simple rules of classification is increasingly challenging if not unfeasible, since new methodologies are providing more evidences that depict exceptions, reversions and transitions within either side of this continuum, especially evident at early stages of symbiotic associations. This imposes a wider and more dynamic view of a complex landscape of interactions.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain.
| | | | | |
Collapse
|