1
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two eIF4E paralogs occupy separate germ granule messenger ribonucleoproteins that mediate mRNA repression and translational activation. Genetics 2025; 230:iyaf053. [PMID: 40119742 PMCID: PMC12059638 DOI: 10.1093/genetics/iyaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
We studied translation factor eukaryotic initiation factor 4E (eIF4E) paralogs that regulate germline mRNAs. Translational control of mRNAs is essential for germ cell differentiation and embryogenesis. Messenger ribonucleoprotein complexes assemble on mRNAs in the nucleus, as they exit via perinuclear germ granules, and in the cytoplasm. Bound messenger ribonucleoproteins including eIF4E exert both positive and negative posttranscriptional regulation. In Caenorhabditiselegans, germ granules are surprisingly dynamic messenger ribonucleoprotein condensates that remodel during development. Two eIF4E paralogs (IFE-1 and IFE-3), their cognate eIF4E-interacting proteins, and polyadenylated mRNAs are present in germ granules. Affinity purification of IFE-1 and IFE-3 messenger ribonucleoproteins allowed mass spectrometry and mRNA-Seq to identify other proteins and the mRNAs that populate stable eukaryotic initiation factor 4E complexes. We find translationally repressed mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched with IFE-3, but excluded from IFE-1. Identified mRNAs overlap substantially with mRNAs previously described to be IFE-1 dependent for translation. The findings suggest that oocytes and embryos utilize the 2 eukaryotic initiation factor 4E paralogs for opposite purposes on critically regulated germline mRNAs. Sublocalization within adult perinuclear germ granules suggests an architecture in which Vasa/GLH-1, PGL-1, and the IFEs are stratified, which may facilitate sequential remodeling of messenger ribonucleoproteins leaving the nucleus. Biochemical composition of isolated messenger ribonucleoproteins indicates opposing yet cooperative roles for the 2 eukaryotic initiation factor 4E paralogs. We propose that the IFEs accompany controlled mRNAs in the repressed or activated state during transit to the cytoplasm. Copurification of IFE-1 with IFE-3 suggests they may interact to move repressed mRNAs to ribosomes.
Collapse
Affiliation(s)
- Gita Gajjar
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Hayden P Huggins
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Eun Suk Kim
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| | - Frederic X Bonnet
- Katherine W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Dustin L Updike
- Katherine W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
2
|
Wang M, Ma X, Zhang Q, Zhang H, Qiu S, Xu R, Pan Y. Rapamycin Increases the Development Competence of Yak ( Bos grunniens) Oocytes by Promoting Autophagy via Upregulating 17β-Estradiol and HIF-1α During In Vitro Maturation. Animals (Basel) 2025; 15:365. [PMID: 39943135 PMCID: PMC11816318 DOI: 10.3390/ani15030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
High-quality oocyte production strategies play an important role in animal-assisted reproductive biotechnologies, and rapamycin (Rap) has been commonly used to increase the development potential of mammalian oocytes. The purpose of this study is to evaluate the effects and possible molecular mechanisms of rap on the maturation of yak oocytes. Different concentrations of Rap were supplemented during in vitro maturation (IVM) of yak oocytes. The maturation rates of oocytes and development rates of parthenogenetically activated embryos were assessed. The levels of 17β-estradiol (E2) were detected via ELISA, and the expression of autophagy-related factors, steroidogenic enzymes, and HIF-1α was detected via qRT-PCR, western blotting, and fluorescence microscopy, respectively. In addition, the impacts of E2 and HIF-1α on Rap-mediated oocyte autophagy were investigated by investigating the activities of E2 and HIF-1α. Our results showed that 0.1 nM Rap substantially enhanced the developmental ability of yak oocytes. In this group, the levels of E2, CYP19A1, CYP17A1, and autophagy-related factors were also significantly increased, and the expression of ATG5 and BECN1 in subsequent embryos was also increased. Further analysis revealed that Rap tends to enhance the development competence of yak oocytes and that the levels of autophagy-related factors are reduced when the activity of E2 or HIF-1α is inhibited. Furthermore, the levels of E2, CYP19A1, and CYP17A1 were downregulated when the activity of HIF-1α was inhibited, and the levels of HIF-1α were also significantly reduced by the estrogen receptor antagonist G15. Nevertheless, the levels of CYP11A1 mRNA in mature yak COCs were not significantly different among these groups, a phenomenon which implies that the levels of E2 were not correlated with the CYP11A1 content in yak COCs. There was an increasing tendency for the development competence of yak oocytes at the optimum concentration of Rap during IVM. The potential underlying mechanism is that Rap can activate autophagy and upregulate the levels of E2 and HIF-1α in mature oocytes. Additionally, the levels of both E2 and HIF-1α are regulated by each other and involve Rap-regulated autophagy in oocytes.
Collapse
Affiliation(s)
- Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Ruihua Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.W.); (X.M.); (Q.Z.); (H.Z.); (S.Q.); (R.X.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
3
|
Bernabò N, Di Berardino C, Capacchietti G, Peserico A, Buoncuore G, Tosi U, Crociati M, Monaci M, Barboni B. In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study. Front Mol Biosci 2021; 8:737912. [PMID: 34859047 PMCID: PMC8630647 DOI: 10.3389/fmolb.2021.737912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | | | - Alessia Peserico
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Giorgia Buoncuore
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Gu NH, Li GJ, Yang BX, You M, Lin Y, Sun F, Xu H. Hypo-Expression of Tuberin Promotes Adenomyosis via the mTOR1-Autophagy Axis. Front Cell Dev Biol 2021; 9:710407. [PMID: 34395438 PMCID: PMC8358309 DOI: 10.3389/fcell.2021.710407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adenomyosis (AM) is a disease in which endometrial tissue invades the myometrium and has a 10–60% prevalence in reproductive-aged women. TSC2 regulates autophagy via mTOR1 signalling in colorectal cancer and endometrial carcinoma. Dysregulation of autophagy is implicated in adenomyosis pathogenesis. However, whether TSC2 participates in adenomyosis via autophagy remains obscure. Here, we found that the expression of TSC2 in adenomyosis was significantly decreased than that in normal endometrium during the secretory phase. Moreover, TSC2 and autophagy marker expression was significantly lower in ectopic lesions than in eutopic samples. TSC2 downregulation inhibited autophagy through mTOR1 signalling pathway activation in endometrial cells, leading to excessive proliferation, migration, and EMT; TSC2 overexpression induced the opposite effects. Rapamycin treatment suppressed cell proliferation, migration and EMT in the absence of TSC2. In parallel, an autophagy-specific inhibitor (SAR-405) restored migration and EMT under rapamycin treatment in TSC2-knockdown Ishikawa cells. Finally, SAR-405 treatment promoted EMT and migration of overexpressing cells. Collectively, our results suggest that TSC2 controls endometrial epithelial cell migration and EMT by regulating mTOR1-autophagy axis activation and that hypo-expression of TSC2 in the endometrium might promote adenomyosis.
Collapse
Affiliation(s)
- Ni-Hao Gu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Guo-Jing Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Bing-Xin Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Min You
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yu Lin
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Feng Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
5
|
Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev 2021; 40:865-878. [PMID: 34142285 DOI: 10.1007/s10555-021-09977-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.
Collapse
Affiliation(s)
- Guido Eibl
- Department of Surgery, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| |
Collapse
|
6
|
Guo Z, Chen X, Feng P, Yu Q. Short-term rapamycin administration elevated testosterone levels and exacerbated reproductive disorder in dehydroepiandrosterone-induced polycystic ovary syndrome mice. J Ovarian Res 2021; 14:64. [PMID: 33947426 PMCID: PMC8097915 DOI: 10.1186/s13048-021-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy that affects reproduction and metabolism. Mammalian target of rapamycin (mTOR) has been shown to participate in female reproduction under physiological and pathological conditions. This study aimed to investigate the role of mTOR complex 1 (mTORC1) signaling in dehydroepiandrosterone (DHEA)-induced PCOS mice. Results Female C57BL/6J mice were randomly assigned into three groups: control group, DHEA group, and DHEA + rapamycin group. All DHEA-treated mice were administered 6 mg/100 g DHEA for 21 consecutive days, and the DHEA + rapamycin group was intraperitoneally injected with 4 mg/kg rapamycin every other day for the last 14 days of the DHEA treatment. There was no obvious change in the expression of mTORC1 signaling in the ovaries of the control and DHEA groups. Rapamycin did not protect against DHEA-induced acyclicity and PCO morphology, but impeded follicle development and elevated serum testosterone levels in DHEA-induced mice, which was related with suppressed Hsd3b1, Cyp17a1, and Cyp19a1 expression. Moreover, rapamycin also exacerbated insulin resistance but relieved lipid metabolic disturbance in the short term. Conclusions Rapamycin exacerbated reproductive imbalance in DHEA-induced PCOS mice, which characterized by elevated testosterone levels and suppressed steroid synthesis. This underscores the need for new mTORC1-specific and tissue-specific mTOR-related drugs for reproductive disorders.
Collapse
Affiliation(s)
- Zaixin Guo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Li LX, Wu SW, Yan M, Lian QQ, Ge RS, Cheng CY. Regulation of blood-testis barrier dynamics by the mTORC1/rpS6 signaling complex: An in vitro study. Asian J Androl 2020; 21:365-375. [PMID: 30829292 PMCID: PMC6628733 DOI: 10.4103/aja.aja_126_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During spermatogenesis, developing germ cells that lack the cellular ultrastructures of filopodia and lamellipodia generally found in migrating cells, such as macrophages and fibroblasts, rely on Sertoli cells to support their transport across the seminiferous epithelium. These include the transport of preleptotene spermatocytes across the blood-testis barrier (BTB), but also the transport of germ cells, in particular developing haploid spermatids, across the seminiferous epithelium, that is to and away from the tubule lumen, depending on the stages of the epithelial cycle. On the other hand, cell junctions at the Sertoli cell–cell and Sertoli–germ cell interface also undergo rapid remodeling, involving disassembly and reassembly of cell junctions, which, in turn, are supported by actin- and microtubule-based cytoskeletal remodeling. Interestingly, the underlying mechanism(s) and the involving biomolecule(s) that regulate or support cytoskeletal remodeling remain largely unknown. Herein, we used an in vitro model of primary Sertoli cell cultures that mimicked the Sertoli BTB in vivo overexpressed with the ribosomal protein S6 (rpS6, the downstream signaling protein of mammalian target of rapamycin complex 1 [mTORC1]) cloned into the mammalian expression vector pCI-neo, namely, quadruple phosphomimetic and constitutively active mutant of rpS6 (pCI-neo/p-rpS6-MT) versus pCI-neo/rpS6-WT (wild-type) and empty vector (pCI-neo/Ctrl) for studies. These findings provide compelling evidence that the mTORC1/rpS6 signal pathway exerted its effects to promote Sertoli cell BTB remodeling. This was mediated through changes in the organization of actin- and microtubule-based cytoskeletons, involving changes in the distribution and/or spatial expression of actin- and microtubule-regulatory proteins.
Collapse
Affiliation(s)
- Lin-Xi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Si-Wen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Quan Lian
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
8
|
Yan M, Li L, Mao B, Li H, Li SYT, Mruk D, Silvestrini B, Lian Q, Ge R, Cheng CY. mTORC1/rpS6 signaling complex modifies BTB transport function: an in vivo study using the adjudin model. Am J Physiol Endocrinol Metab 2019; 317:E121-E138. [PMID: 31112404 PMCID: PMC6689739 DOI: 10.1152/ajpendo.00553.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Studies have shown that the mTORC1/rpS6 signaling cascade regulates Sertoli cell blood-testis barrier (BTB) dynamics. For instance, specific inhibition of mTORC1 by treating Sertoli cells with rapamycin promotes the Sertoli cell barrier, making it "tighter." However, activation of mTORC1 by overexpressing a full-length rpS6 cDNA clone (i.e., rpS6-WT, wild type) in Sertoli cells promotes BTB remodeling, making the barrier "leaky." Also, there is an increase in rpS6 and p-rpS6 (phosphorylated and activated rpS6) expression at the BTB in testes at stages VIII-IX of the epithelial cycle, and it coincides with BTB remodeling to support the transport of preleptotene spermatocytes across the barrier, illustrating that rpS6 is a BTB-modifying signaling protein. Herein, we used a constitutively active, quadruple phosphomimetic mutant of rpS6, namely p-rpS6-MT of p-rpS6-S235E/S236E/S240E/S244E, wherein Ser (S) was converted to Glu (E) at amino acid residues 235, 236, 240, and 244 from the NH2 terminus by site-directed mutagenesis, for its overexpression in rat testes in vivo using the Polyplus in vivo jet-PEI transfection reagent with high transfection efficiency. Overexpression of this p-rpS6-MT was capable of inducing BTB remodeling, making the barrier "leaky." This thus promoted the entry of the nonhormonal male contraceptive adjudin into the adluminal compartment in the seminiferous epithelium to induce germ cell exfoliation. Combined overexpression of p-rpS6-MT with a male contraceptive (e.g., adjudin) potentiated the drug bioavailability by modifying the BTB. This approach thus lowers intrinsic drug toxicity due to a reduced drug dose, further characterizing the biology of BTB transport function.
Collapse
Affiliation(s)
- Ming Yan
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Linxi Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Baiping Mao
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Huitao Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Stephen Y T Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Dolores Mruk
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | | | - Qingquan Lian
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Renshan Ge
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - C Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| |
Collapse
|
9
|
Zhang H, Xiong Z, He Q, Fan F. ACSS2-related autophagy has a dual impact on memory. Chin Neurosurg J 2019; 5:14. [PMID: 32922914 PMCID: PMC7398205 DOI: 10.1186/s41016-019-0162-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degenerative pathway which is responsible for neuronal survival. Under the condition of nutrient deprivation, autophagy can lead to dysfunction in memory consolidation. AMPK/mTOR pathway is currently the most studied autophagy mechanism, while recently researchers have proved ACSS2 can also affect autophagy. ACSS2 is phosphorylated at Ser659 by AMPK and then forms a translocation complex with Importin α5 to translocate into the nucleus. This process interacts with TFEB, resulting in upregulated expression of lysosomal and autophagosomal genes. These upregulations inhibit synaptic plasticity and hence memory functions. On the other hand, ACSS2 is also recognized as a regulator of histone acetylation. After recruiting CBP/p300 and activating CBP's HAT activity in the nucleus, ACSS2 maintains the level of localized histone acetylation by recapturing acetate from histone deacetylation to reform acetyl-CoA, providing substrates for HAT. The increase of histone acetylation locally enhanced immediate early gene transcription, including Egr2, Fos, Nr2f2, Sgk1, and Arc, to benefit neuronal plasticity and memory in many ways.
Collapse
Affiliation(s)
- Hao Zhang
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| | - Zujian Xiong
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| | - Qin He
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| | - Fan Fan
- Central South University, Xiangya Hospital, Changsha city, Hunan province China
| |
Collapse
|
10
|
Abstract
Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase of the phosphatidylinositol kinase-related kinase family that regulates cell growth, metabolism, and autophagy. Extensive research has linked mTOR to several human diseases including cancer, neurodegenerative disorders, and aging. In this review, recent publications regarding the mechanisms underlying the role of mTOR in female reproduction under physiological and pathological conditions are summarized. Moreover, we assess whether strategies to improve or suppress mTOR expression could have therapeutic potential for reproductive diseases like premature ovarian failure, polycystic ovarian syndrome, and endometriosis.
Collapse
|
11
|
Jin YP, Valenzuela NM, Zhang X, Rozengurt E, Reed EF. HLA Class II-Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection. THE JOURNAL OF IMMUNOLOGY 2018; 200:2372-2390. [PMID: 29475988 DOI: 10.4049/jimmunol.1701259] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Transplant recipients developing donor-specific HLA class II (HLA-II) Abs are at higher risk for Ab-mediated rejection (AMR) and transplant vasculopathy. To understand how HLA-II Abs cause AMR and transplant vasculopathy, we determined the signaling events triggered in vascular endothelial cells (EC) following Ab ligation of HLA-II molecules. HLA-II expression in EC was induced by adenoviral vector expression of CIITA or by pretreatment with TNF-α/IFN-γ. Ab ligation of class II stimulated EC proliferation and migration. Class II Ab also induced activation of key signaling nodes Src, focal adhesion kinase, PI3K, and ERK that regulated downstream targets of the mammalian target of rapamycin (mTOR) pathway Akt, p70 ribosomal S6 kinase, and S6 ribosomal protein. Pharmacological inhibitors and small interfering RNA showed the protein kinases Src, focal adhesion kinase, PI3K/Akt, and MEK/ERK regulate class II Ab-stimulated cell proliferation and migration. Treatment with rapalogs for 2 h did not affect HLA-II Ab-induced phosphorylation of ERK; instead, mTOR complex (mTORC)1 targets were dependent on activation of ERK. Importantly, suppression of mTORC2 for 24 h with rapamycin or everolimus or treatment with mTOR active-site inhibitors enhanced HLA-II Ab-stimulated phosphorylation of ERK. Furthermore, knockdown of Rictor with small interfering RNA caused overactivation of ERK while abolishing phosphorylation of Akt Ser473 induced by class II Ab. These data are different from HLA class I Ab-induced activation of ERK, which is mTORC2-dependent. Our results identify a complex signaling network triggered by HLA-II Ab in EC and indicate that combined ERK and mTORC2 inhibitors may be required to achieve optimal efficacy in controlling HLA-II Ab-mediated AMR.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Xiaohai Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
12
|
Szereszewski KE, Storey KB. Translational regulation in the anoxic turtle, Trachemys scripta elegans. Mol Cell Biochem 2017; 445:13-23. [PMID: 29243067 DOI: 10.1007/s11010-017-3247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
The red-eared slider turtle (Trachemys scripta elegans), has developed remarkable adaptive mechanisms for coping with decreased oxygen availability during winter when lakes and ponds become covered with ice. Strategies for enduring anoxia tolerance include an increase in fermentable fuel reserves to support anaerobic glycolysis, the buffering of end products to minimize acidosis, altered expression in crucial survival genes, and strong metabolic rate suppression to minimize ATP-expensive metabolic processes such as protein synthesis. The mammalian target of rapamycin (mTOR) is at the center of the insulin-signaling pathway that regulates protein translation. The present study analyzed the responses of the mTOR signaling pathway to 5 (5H) or 20 h (20H) of anoxic submergence in liver and skeletal muscle of T. scripta elegans with a particular focus on regulatory changes in the phosphorylation states of targets. The data showed that phosphorylation of multiple mTOR targets was suppressed in skeletal muscle, but activated in the liver. Phosphorylated mTORSer2448 showed no change in skeletal muscle but had increased by approximately 4.5-fold in the liver after 20H of anoxia. The phosphorylation states of upstream positive regulators of mTOR (p-PDK-1Ser241, p-AKTSer473, and protein levels of GβL), the relative levels of dephosphorylated active PTEN, as well as phosphorylation state of negative regulators (TSC2Thr1462, p-PRAS40Thr246) were generally found to be differentially regulated in skeletal muscle and in liver. Downstream targets of mTOR (p-p70 S6KThr389, p-S6Ser235, PABP, p-4E-BP1Thr37/46, and p-eIF4ESer209) were generally unchanged in skeletal muscle but upregulated in most targets in liver. These findings indicate that protein synthesis is enhanced in the liver and suggests an increase in the synthesis of crucial proteins required for anoxic survival.
Collapse
Affiliation(s)
- Kama E Szereszewski
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
13
|
Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol 2017; 54:50-62. [PMID: 29079305 DOI: 10.1016/j.semcancer.2017.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be a lethal disease with no efficacious treatment modalities. The incidence of PDAC is expected to increase, at least partially because of the obesity epidemic. Increased efforts to prevent or intercept this disease are clearly needed. Mutations in KRAS are initiating events in pancreatic carcinogenesis supported by genetically engineered mouse models of the disease. However, oncogenic KRAS is not entirely sufficient for the development of fully invasive PDAC. Additional genetic mutations and/or environmental, nutritional, and metabolic stressors, e.g. inflammation and obesity, are required for efficient PDAC formation with activation of KRAS downstream effectors. Multiple factors "upstream" of KRAS associated with obesity, including insulin resistance, inflammation, changes in gut microbiota and GI peptides, can enhance/modulate downstream signals. Multiple signaling networks and feedback loops "downstream" of KRAS have been described that respond to obesogenic diets. We propose that KRAS mutations potentiate a signaling network that is promoted by environmental factors. Specifically, we envisage that KRAS mutations increase the intensity and duration of the growth-promoting signaling network. As the transcriptional activator YAP plays a critical role in the network, we conclude that the rationale for targeting the network (at different points), e.g. with FDA approved drugs such as statins and metformin, is therefore compelling.
Collapse
Affiliation(s)
- Guido Eibl
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States.
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Li N, Cheng CY. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction. Histol Histopathol 2016; 31:961-8. [PMID: 26957088 DOI: 10.14670/hh-11-753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier "leaky"; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier "tighter". These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA. or
| |
Collapse
|
15
|
Larance M, Pourkarimi E, Wang B, Brenes Murillo A, Kent R, Lamond AI, Gartner A. Global Proteomics Analysis of the Response to Starvation in C. elegans. Mol Cell Proteomics 2015; 14:1989-2001. [PMID: 25963834 PMCID: PMC4587315 DOI: 10.1074/mcp.m114.044289] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Indexed: 12/31/2022] Open
Abstract
Periodic starvation of animals induces large shifts in metabolism but may also influence many other cellular systems and can lead to adaption to prolonged starvation conditions. To date, there is limited understanding of how starvation affects gene expression, particularly at the protein level. Here, we have used mass-spectrometry-based quantitative proteomics to identify global changes in the Caenorhabditis elegans proteome due to acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we show that acute starvation rapidly alters the levels of hundreds of proteins, many involved in central metabolic pathways, highlighting key regulatory responses. Surprisingly, we also detect changes in the abundance of chromatin-associated proteins, including specific linker histones, histone variants, and histone posttranslational modifications associated with the epigenetic control of gene expression. To maximize community access to these data, they are presented in an online searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/).
Collapse
Affiliation(s)
- Mark Larance
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Ehsan Pourkarimi
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Bin Wang
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Alejandro Brenes Murillo
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Robert Kent
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Angus I Lamond
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| | - Anton Gartner
- From the ‡Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St, Dundee, United Kingdom, DD15EH
| |
Collapse
|
16
|
Kupiec M, Weisman R. TOR links starvation responses to telomere length maintenance. Cell Cycle 2014; 11:2268-71. [DOI: 10.4161/cc.20401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
17
|
Sewell A, Brown B, Biktasova A, Mills GB, Lu Y, Tyson DR, Issaeva N, Yarbrough WG. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin Cancer Res 2014; 20:2300-11. [PMID: 24599934 DOI: 10.1158/1078-0432.ccr-13-2585] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. EXPERIMENTAL DESIGN Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. RESULTS Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. CONCLUSIONS Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These data suggest that inhibitors for mTOR may have activity against HPV(+) PIK3CA mutant oropharyngeal cancers.
Collapse
Affiliation(s)
- Andrew Sewell
- Authors' Affiliations: Departments of Surgery Division of Otolaryngology and Pathology; Yale Cancer Center, Yale University, New Haven, Connecticut; Departments of Otolaryngology and Cancer Biology, Vanderbilt University, Nashville, Tennessee; and Systems Biology Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, Cheng HC, Kholodilov N, Yarygina O, Burke RE, Gershon M, Sulzer D. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 2012; 74:277-84. [PMID: 22542182 PMCID: PMC3578406 DOI: 10.1016/j.neuron.2012.02.020] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2012] [Indexed: 01/11/2023]
Abstract
mTOR is a regulator of cell growth and survival, protein synthesis-dependent synaptic plasticity, and autophagic degradation of cellular components. When triggered by mTOR inactivation, macroautophagy degrades long-lived proteins and organelles via sequestration into autophagic vacuoles. mTOR further regulates synaptic plasticity, and neurodegeneration occurs when macroautophagy is deficient. It is nevertheless unknown whether macroautophagy modulates presynaptic function. We find that the mTOR inhibitor rapamycin induces formation of autophagic vacuoles in prejunctional dopaminergic axons with associated decreased axonal profile volumes, synaptic vesicle numbers, and evoked dopamine release. Evoked dopamine secretion was enhanced and recovery was accelerated in transgenic mice in which macroautophagy deficiency was restricted to dopaminergic neurons; rapamycin failed to decrease evoked dopamine release in the striatum of these mice. Macroautophagy that follows mTOR inhibition in presynaptic terminals, therefore, rapidly alters presynaptic structure and neurotransmission.
Collapse
Affiliation(s)
- Daniela Hernandez
- Department of Neuroscience, Columbia University Medical Campus, New York NY 10013
| | - Ciara A. Torres
- Department of Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Campus, New York NY 10013
| | - Wanda Setlik
- Department of Pathology, Columbia University Medical Campus, New York NY 10013
| | - Carolina Cebrián
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Eugene V. Mosharov
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Guomei Tang
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Hsiao-Chun Cheng
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Nikolai Kholodilov
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Olga Yarygina
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Robert E. Burke
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
| | - Michael Gershon
- Department of Pathology, Columbia University Medical Campus, New York NY 10013
| | - David Sulzer
- Department of Neurology, Columbia University Medical Campus, New York NY 10013
- Department of Psychiatry and Pharmacology, Columbia University Medical Campus, New York NY 10013
| |
Collapse
|
19
|
Cho I, Horn L, Felix TM, Foster L, Gregory G, Starz-Gaiano M, Chambers MM, De Luca M, Leips J. Age- and diet-specific effects of variation at S6 kinase on life history, metabolic, and immune response traits in Drosophila melanogaster. DNA Cell Biol 2010; 29:473-85. [PMID: 20491566 DOI: 10.1089/dna.2009.0997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Life history theory hypothesizes that genetically based variation in life history traits results from alleles that alter age-specific patterns of energy allocation among the competing demands of reproduction, storage, and maintenance. Despite the important role that alleles with age-specific effects must play in life history evolution, few naturally occurring alleles with age-specific effects on life history traits have been identified. A recent mapping study identified S6 kinase (S6k) as a candidate gene affecting lipid storage in Drosophila. S6k is in the target of rapamycin pathway, which regulates cell growth in response to nutrient availability and has also been implicated to influence many life history traits from fecundity to life span. In this article, we used quantitative complementation tests to examine the effect of allelic variation at S6k on a range of phenotypes associated with metabolism and fitness in an age-, diet-, and sex-specific manner. We found that alleles of S6k have pleiotropic effects on total protein levels, glycogen storage, life span, and the immune response and demonstrate that these allelic effects are age, diet, and sex specific. As many of the genes in the target of rapamycin pathway are evolutionarily conserved, our data suggest that genes in this pathway could play a pivotal role in life history evolution in a wide range of taxa.
Collapse
Affiliation(s)
- Irene Cho
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, MD 21250, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang X, Sinnett-Smith J, Rozengurt E. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells. Biochem Biophys Res Commun 2009; 387:521-4. [PMID: 19615971 PMCID: PMC2754135 DOI: 10.1016/j.bbrc.2009.07.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/13/2009] [Indexed: 01/10/2023]
Abstract
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser(473) induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr(389) in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
21
|
Moser SC, von Elsner S, Büssing I, Alpi A, Schnabel R, Gartner A. Functional dissection of Caenorhabditis elegans CLK-2/TEL2 cell cycle defects during embryogenesis and germline development. PLoS Genet 2009; 5:e1000451. [PMID: 19360121 PMCID: PMC2660272 DOI: 10.1371/journal.pgen.1000451] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/11/2009] [Indexed: 12/31/2022] Open
Abstract
CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2 have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts) clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C. elegans ATR) and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2–null germ cells do not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development. PI3K-related protein kinases (PIKKs) ATM and ATR are essential upstream components of DNA damage signalling pathways, while TOR-1 acts as a nutrient sensor. CLK-2/TEL2 is a conserved gene initially implicated in budding yeast telomere length regulation and uncovered in the same genetic screen as the yeast TEL1 ATM like kinase. CLK-2/TEL2 was first implicated in DNA damage response signalling by C. elegans genetics, a function confirmed in yeast and human cells. In addition, CLK-2/TEL2 is essential for cellular and organismal survival from yeasts to vertebrates, but the essential phenotypes were not defined. A direct interaction between CLK-2/TEL2 and all PI3K-related protein kinases and the reduction of PIKK protein levels upon CLK-2/TEL2 depletion lead to the widely discussed notion that CLK-2/TEL2 mutants might phenocopy PIKK depletion phenotypes. We take advantage of embryonic lineage analysis and germline cytology to dissect developmental and cell cycle related functions of CLK-2. CLK-2 depletion does not phenocopy PIKK kinase depletion. We rather link CLK-2 to multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development. Furthermore, we implicate CLK-2 in a distinct cell lineage decision and show that its depletion leads to a novel germline cell cycle arrest phenotype.
Collapse
Affiliation(s)
- Sandra C. Moser
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sophie von Elsner
- Developmental Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Büssing
- Developmental Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Alpi
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Ralf Schnabel
- Developmental Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 2009; 23:496-511. [PMID: 19240135 PMCID: PMC2648650 DOI: 10.1101/gad.1775409] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/13/2009] [Indexed: 12/24/2022]
Abstract
Rictor is a component of the target of rapamycin complex 2 (TORC2). While TORC2 has been implicated in insulin and other growth factor signaling pathways, the key inputs and outputs of this kinase complex remain unknown. We identified mutations in the Caenorhabditis elegans homolog of rictor in a forward genetic screen for increased body fat. Despite high body fat, rictor mutants are developmentally delayed, small in body size, lay an attenuated brood, and are short-lived, indicating that Rictor plays a critical role in appropriately partitioning calories between long-term energy stores and vital organismal processes. Rictor is also necessary to maintain normal feeding on nutrient-rich food sources. In contrast to wild-type animals, which grow more rapidly on nutrient-rich bacterial strains, rictor mutants display even slower growth, a further reduced body size, decreased energy expenditure, and a dramatically extended life span, apparently through inappropriate, decreased consumption of nutrient-rich food. Rictor acts directly in the intestine to regulate fat mass and whole-animal growth. Further, the high-fat phenotype of rictor mutants is genetically dependent on akt-1, akt-2, and serum and glucocorticoid-induced kinase-1 (sgk-1). Alternatively, the life span, growth, and reproductive phenotypes of rictor mutants are mediated predominantly by sgk-1. These data indicate that Rictor/TORC2 is a nutrient-sensitive complex with outputs to AKT and SGK to modulate the assessment of food quality and signal to fat metabolism, growth, feeding behavior, reproduction, and life span.
Collapse
Affiliation(s)
- Alexander A. Soukas
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Endocrine Division and Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Elizabeth A. Kane
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Christopher E. Carr
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Justine A. Melo
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Gary Ruvkun
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
23
|
Mita M, Sankhala K, Abdel-Karim I, Mita A, Giles F. Deforolimus (AP23573) a novel mTOR inhibitor in clinical development. Expert Opin Investig Drugs 2008; 17:1947-54. [DOI: 10.1517/13543780802556485] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Investigation of the regulation of transcriptional changes in Ancylostoma caninum larvae following serum activation, with a focus on the insulin-like signalling pathway. Vet Parasitol 2008; 159:139-48. [PMID: 19054616 DOI: 10.1016/j.vetpar.2008.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/30/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
Abstract
The exit from dauer in the free-living nematode Caenorhabditis elegans is under the control of a single amphidial neuron (ASJ) of the insulin-like signalling pathway. Mutations of this pathway have the ability to suppress entry into the dauer stage. It has been postulated that insulin-like signalling plays a significant role in the response to serum stimulation in vitro of the third-stage larvae (L3s) of the canine hookworm Ancylostoma caninum. To test for the possible involvement of the insulin-like signalling cascade in the response to serum stimulation, the effects of two signalling stimulants (8-bromo cGMP and arecoline) and four inhibitors, namely 4,7-phenanthroline, phosphoinositide-3 kinase (PI3K), Akt inhibitor IV and rapamycin on feeding and on levels of selected activation-associated mRNAs in serum-stimulated L3s were explored. L3s of A. caninum were pre-incubated with or without the appropriate inhibitor/agonist. Following serum-stimulation, the feeding activity was assessed. The transcription levels of a number of activation-associated mRNAs linked to particular expressed sequence tags (ESTs) were investigated by reverse transcription, real-time PCR (rtPCR). The treatment of worms with 4,7-phenanthroline completely suppressed feeding and significantly reduced the differential levels of most activation-associated mRNAs, whereas the treatment with cGMP resulted in the resumption of feeding in almost 85% of the L3s and yielded a specific transcriptional profile consistent with that following serum stimulation. The treatment of L3s with arecoline resulted in the resumption of feeding in approximately 85% of L3s, but did not result in a transcriptomic profile consistent with activation. A complete reduction in feeding was recorded in the presence of the PI3K inhibitor LY294002 (1mM) and resulted in a pronounced dampening of differential transcription in response to serum stimulation for the molecules examined. Akt inhibitor IV resulted in a approximately 70% reduction in feeding but had almost no effect on the level of any of the activation-associated mRNAs studied. Rapamycin was shown to have a weak effect on feeding, and several of the mRNAs studied exhibited greater than expected transcription following treatment. The complexities of activation-associated transcription could not be addressed using the current approach. A larger number of mRNAs needs to be investigated in order to predict or identify regulatory mechanisms proposed to function in the insulin-like signalling pathway in A. caninum.
Collapse
|
25
|
Abdel-Karim IA, Giles FJ. Mammalian target of rapamycin as a target in hematological malignancies. Curr Probl Cancer 2008; 32:161-77. [PMID: 18655914 DOI: 10.1016/j.currproblcancer.2008.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Isam A Abdel-Karim
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
26
|
Schmidt T, Wahl P, Wüthrich RP, Vogetseder A, Picard N, Kaissling B, Le Hir M. Immunolocalization of phospho-S6 kinases: a new way to detect mitosis in tissue sections and in cell culture. Histochem Cell Biol 2006; 127:123-9. [PMID: 17136413 PMCID: PMC1779630 DOI: 10.1007/s00418-006-0255-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2006] [Indexed: 11/06/2022]
Abstract
During a study on the mTor pathway in the rat kidney we observed a striking increase of the phosphorylation of the S6 kinase in mitosis. In cryostat sections of perfusion-fixed tissue mitotic cells appeared as bright spots in immunofluorescence using an antibody specific for the phosphorylation site Thr421/Ser424. They were easily spotted in overviews with the objective 4× and 10×. Immunofluorescence was weak during the interphase. During the prophase it increased in both the nucleus and the cytoplasm and it remained bright during the subsequent phases of mitosis. All mitotic cells which were found in tubules and in the interstitium of the kidney using a chromatin stain displayed the bright immunofluorescence for phospho-S6 kinase. The same phenomenon was observed in rat liver and in mouse kidney as well as in a human cell line. Provided a rapid fixation, mitotic cells could be identified with the immunoperoxidase technique in paraffin sections of immersion-fixed tissue. This is the first report of phosphorylation of S6 kinase during mitosis in vivo. Thus, immunohistochemistry with anti-phospho-S6 kinase (Thr421/Ser424) appears to provide a convenient way to detect mitotic cells at low magnification.
Collapse
Affiliation(s)
- Thomas Schmidt
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patricia Wahl
- Institute of Physiology and Centre for Integrative Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rudolf P. Wüthrich
- Clinic of Nephrology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Alexander Vogetseder
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicolas Picard
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Brigitte Kaissling
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michel Le Hir
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
27
|
Rougvie AE. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development 2005; 132:3787-98. [PMID: 16100088 DOI: 10.1242/dev.01972] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A fundamental challenge in biology is to understand the reproducibility of developmental programs between individuals of the same metazoan species. This developmental precision reflects the meticulous integration of temporal control mechanisms with those that specify other aspects of pattern formation, such as spatial and sexual information. The cues that guide these developmental events are largely intrinsic to the organism but can also include extrinsic inputs, such as nutrition or temperature. This review discusses the well-characterized developmental timing mechanism that patterns the C. elegans epidermis. Components of this pathway are conserved, and their links to developmental time control in other species are considered, including the temporal patterning of the fly nervous system. Particular attention is given to the roles of miRNAs in developmental timing and to the emerging mechanisms that link developmental programs to nutritional cues.
Collapse
Affiliation(s)
- Ann E Rougvie
- University of Minnesota, Department of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Zurita-Martinez SA, Cardenas ME. Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. EUKARYOTIC CELL 2005; 4:63-71. [PMID: 15643061 PMCID: PMC544169 DOI: 10.1128/ec.4.1.63-71.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, the Tor and cyclic AMP-protein kinase A (cAMP-PKA) signaling cascades respond to nutrients and regulate coordinately the expression of genes required for cell growth, including ribosomal protein (RP) and stress-responsive (STRE) genes. The inhibition of Tor signaling by rapamycin results in repression of the RP genes and induction of the STRE genes. Mutations that hyperactivate PKA signaling confer resistance to rapamycin and suppress the repression of RP genes imposed by rapamycin. By contrast, partial inactivation of PKA confers rapamycin hypersensitivity but only modestly affects RP gene expression. Complete inactivation of PKA impairs RP gene expression and concomitantly enhances STRE gene expression; remarkably, this altered transcriptional pattern is still sensitive to rapamycin and thus subject to Tor control. These findings illustrate how the Tor and cAMP-PKA signaling pathways respond to nutrient signals to govern gene expression required for cell growth via two parallel routes, and they have broad implication for our understanding of analogous regulatory networks in normal and neoplastic mammalian cells.
Collapse
Affiliation(s)
- Sara A Zurita-Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS, Hunzicker-Dunn M. Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 2004; 279:19431-40. [PMID: 14982927 PMCID: PMC1564189 DOI: 10.1074/jbc.m401235200] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We sought to elucidate the role of AKT in follicle-stimulating hormone (FSH)-mediated granulosa cell (GC) differentiation. Our results define a signaling pathway in GCs whereby the inactivating phosphorylation of tuberin downstream of phosphatidylinositol (PI) 3-kinase/AKT activity leads to Rheb (Ras homolog enriched in brain) and subsequent mTOR (mammalian target of rapamycin) activation. mTOR then stimulates translation by phosphorylating p70 S6 kinase and, consequently, the 40 S ribosomal protein S6. Activation of this pathway is required for FSH-mediated induction of several follicular differentiation markers, including luteinizing-hormone receptor (LHR), inhibin-alpha, microtubule-associated protein 2D, and the PKA type IIbeta regulatory subunit. FSH also promotes activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). FSH-stimulated HIF-1 activity is inhibited by the PI 3-kinase inhibitor LY294002, the Rheb inhibitor FTI-277 (farnesyltransferase inhibitor-277), and the mTOR inhibitor rapamycin. Finally, we find that the FSH-mediated up-regulation of reporter activities for LHR, inhibin-alpha, and vascular endothelial growth factor is dependent upon HIF-1 activity, because a dominant negative form of HIF-1alpha interferes with the up-regulation of these genes. These results show that FSH enhances HIF-1 activity downstream of the PI 3-kinase/AKT/Rheb/mTOR pathway in GCs and that HIF-1 activity is necessary for FSH to induce multiple follicular differentiation markers.
Collapse
Affiliation(s)
- Hena Alam
- From the Departments of Cell and Molecular Biology and
| | | | - Youngkyu Park
- From the Departments of Cell and Molecular Biology and
| | - Shail Ghaey
- From the Departments of Cell and Molecular Biology and
| | | | - Navdeep S. Chandel
- Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Mary Hunzicker-Dunn
- From the Departments of Cell and Molecular Biology and
- ¶ To whom correspondence should be addressed: 303 E. Chicago Ave., Chicago, IL 60611. Tel.: 312-503-8940; Fax: 312-503-0566; E-mail:
| |
Collapse
|