1
|
Giarola V, Jung NU, Singh A, Satpathy P, Bartels D. Analysis of pcC13-62 promoters predicts a link between cis-element variations and desiccation tolerance in Linderniaceae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3773-3784. [PMID: 29757404 PMCID: PMC6022661 DOI: 10.1093/jxb/ery173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 05/24/2023]
Abstract
Reproductive structures of plants (e.g. seeds) and vegetative tissues of resurrection plants can tolerate desiccation. Many genes encoding desiccation-related proteins (DRPs) have been identified in the resurrection plant Craterostigma plantagineum, but the function of these genes remains mainly hypothetical. Here, the importance of the DRP gene pcC13-62 for desiccation tolerance is evaluated by analysing its expression in C. plantagineum and in the closely related desiccation-tolerant species Lindernia brevidens and the desiccation-sensitive species Lindernia subracemosa. Quantitative analysis revealed that pcC13-62 transcripts accumulate at a much lower level in desiccation-sensitive species than in desiccation-tolerant species. The study of pcC13-62 promoters from these species demonstrated a correlation between promoter activity and gene expression levels, suggesting transcriptional regulation of gene expression. Comparison of promoter sequences identified a dehydration-responsive element motif in the promoters of tolerant species that is required for dehydration-induced β-glucuronidase (GUS) accumulation. We hypothesize that variations in the regulatory sequences of the pcC13-62 gene occurred to establish pcC13-62 expression in vegetative tissues, which might be required for desiccation tolerance. The pcC13-62 promoters could also be activated by salt stress in Arabidopsis thaliana plants stably transformed with promoter::GUS constructs.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Niklas Udo Jung
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Aishwarya Singh
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Pooja Satpathy
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee, Bonn, Germany
| |
Collapse
|
2
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
3
|
Giarola V, Bartels D. What can we learn from the transcriptome of the resurrection plant Craterostigma plantagineum? PLANTA 2015; 242:427-34. [PMID: 26002527 DOI: 10.1007/s00425-015-2327-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/02/2015] [Indexed: 05/21/2023]
Abstract
The desiccation transcriptome of the resurrection plant C. plantagineum is composed of conserved protein coding transcripts, taxonomically restricted transcripts and recently evolved non-protein coding transcripts. Research in resurrection plants has been hampered by the lack of genome sequence information, but recently introduced sequencing technologies overcome this limitation partially and provide access to the transcriptome of these plants. Transcriptome studies showed that mechanisms involved in desiccation tolerance are conserved in resurrection plants, seeds and pollen. The accumulation of protective molecules such as sugars and LEA proteins are major components in desiccation tolerance. Leaf folding, chloroplast protection and protection during rehydration must involve specific molecular mechanisms, but the basis of such mechanisms is mainly unknown. The study of regulatory regions of a desiccation-induced C. plantagineum gene suggests that cis-regulatory elements may be responsible for expression variations in desiccation tolerant and non-desiccation-tolerant plants. The analysis of the C. plantagineum transcriptome also revealed that part of it is composed of taxonomically restricted genes (TRGs) and non-protein coding RNAs (ncRNAs). TRGs are known to code for new traits required for the adaptation of organisms to particular environmental conditions. Thus the study of TRGs from resurrection plants should reveal species-specific functions related to the desiccation tolerance phenotype. Non-protein coding RNAs can regulate gene expression at epigenetic, transcriptional and post-transcriptional level and thus these RNAs may be key players in the rewiring of regulatory networks of desiccation-related genes in C. plantagineum.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | |
Collapse
|
4
|
Almoguera C, Personat JM, Prieto-Dapena P, Jordano J. Heat shock transcription factors involved in seed desiccation tolerance and longevity retard vegetative senescence in transgenic tobacco. PLANTA 2015; 242:461-75. [PMID: 26021607 DOI: 10.1007/s00425-015-2336-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/20/2015] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Transcription factors normally expressed in sunflower seeds delayed vegetative senescence induced by severe stress in transgenic tobacco. This revealed a novel connection between seed heat shock factors, desiccation tolerance and vegetative longevity. HaHSFA9 and HaHSFA4a coactivate a genetic program that, in sunflower (Helianthus annuus L.), contributes to seed longevity and desiccation tolerance. We have shown that overexpression of HaHSFA9 in transgenic tobacco seedlings resulted in tolerance to drastic dehydration and oxidative stress. Overexpression of HaHSFA9 alone was linked to a remarkable protection of the photosynthetic apparatus. In addition, the combined overexpression of HaHSFA9 and HaHSFA4a enhanced all these stress-resistance phenotypes. Here, we find that HaHSFA9 confers protection against damage induced by different stress conditions that accelerate vegetative senescence during different stages of development. Seedlings and plants that overexpress HaHSFA9 survived lethal treatments of dark-induced senescence. HaHSFA9 overexpression induced resistance to effects of culture under darkness for several weeks. Only some homoiochlorophyllous resurrection plants are able to withstand this experimental severe stress condition. The combined overexpression of HaHSFA9 and HaHSFA4a did not result in further slowing of dark-induced seedling senescence. However, combined expression of the two transcription factors caused improved recovery of the photosynthetic organs of seedlings after lethal dark treatments. At later stages of vegetative development, HaHSFA9 delayed the appearance of senescence symptoms in leaves of plants grown under normal illumination. This delay was observed under either control or stress treatments. Thus, HaHSFA9 delayed both natural and stress-induced leaf senesce. These novel observations connect transcription factors involved in desiccation tolerance with leaf longevity.
Collapse
Affiliation(s)
- Concepción Almoguera
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain
| | | | | | | |
Collapse
|
5
|
Xiao L, Yang G, Zhang L, Yang X, Zhao S, Ji Z, Zhou Q, Hu M, Wang Y, Chen M, Xu Y, Jin H, Xiao X, Hu G, Bao F, Hu Y, Wan P, Li L, Deng X, Kuang T, Xiang C, Zhu JK, Oliver MJ, He Y. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. Proc Natl Acad Sci U S A 2015; 112:5833-7. [PMID: 25902549 PMCID: PMC4426394 DOI: 10.1073/pnas.1505811112] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
"Drying without dying" is an essential trait in land plant evolution. Unraveling how a unique group of angiosperms, the Resurrection Plants, survive desiccation of their leaves and roots has been hampered by the lack of a foundational genome perspective. Here we report the ∼1,691-Mb sequenced genome of Boea hygrometrica, an important resurrection plant model. The sequence revealed evidence for two historical genome-wide duplication events, a compliment of 49,374 protein-coding genes, 29.15% of which are unique (orphan) to Boea and 20% of which (9,888) significantly respond to desiccation at the transcript level. Expansion of early light-inducible protein (ELIP) and 5S rRNA genes highlights the importance of the protection of the photosynthetic apparatus during drying and the rapid resumption of protein synthesis in the resurrection capability of Boea. Transcriptome analysis reveals extensive alternative splicing of transcripts and a focus on cellular protection strategies. The lack of desiccation tolerance-specific genome organizational features suggests the resurrection phenotype evolved mainly by an alteration in the control of dehydration response genes.
Collapse
Affiliation(s)
- Lihong Xiao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ge Yang
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liechi Zhang
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xinhua Yang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Shuang Zhao
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Zhongzhong Ji
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qing Zhou
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Min Hu
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yu Wang
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ming Chen
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yu Xu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Haijing Jin
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuan Xiao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Guipeng Hu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ping Wan
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xin Deng
- Key Laboratory of Plant Resources and
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chengbin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei 230022, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and
| | - Melvin J Oliver
- Plant Genetics Research Unit, Midwest Area, Agricultural Research Service, United State Department of Agriculture, University of Missouri, Columbia, MO 65211
| | - Yikun He
- School of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
6
|
Moyankova D, Mladenov P, Berkov S, Peshev D, Georgieva D, Djilianov D. Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery. PHYSIOLOGIA PLANTARUM 2014; 152:675-87. [PMID: 24735127 DOI: 10.1111/ppl.12212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 05/22/2023]
Abstract
Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids - e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, β-aminoisobutyric acid, β-sitosterol and α-tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal - improving crop drought tolerance.
Collapse
|
7
|
Personat JM, Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Jordano J. Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC PLANT BIOLOGY 2014; 14:56. [PMID: 24593798 PMCID: PMC4081658 DOI: 10.1186/1471-2229-14-56] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/26/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND We have previously reported that the seed-specific overexpression of sunflower (Helianthus annuus L.) Heat Shock Factor A9 (HaHSFA9) enhanced seed longevity in transgenic tobacco (Nicotiana tabacum L.). In addition, the overexpression of HaHSFA9 in vegetative organs conferred tolerance to drastic levels of dehydration and oxidative stress. RESULTS Here we found that the combined overexpression of sunflower Heat Shock Factor A4a (HaHSFA4a) and HaHSFA9 enhanced all the previously reported phenotypes described for the overexpression of HaHSFA9 alone. The improved phenotypes occurred in coincidence with only subtle changes in the accumulation of small Heat Shock Proteins (sHSP) that are encoded by genes activated by HaHSFA9. The single overexpression of HaHSFA4a in vegetative organs (which lack endogenous HSFA9 proteins) did not induce sHSP accumulation under control growth conditions; neither it conferred thermotolerance. The overexpression of HaHSFA4a alone also failed to induce tolerance to severe abiotic stress. Thus, a synergistic functional effect of both factors was evident in seedlings. CONCLUSIONS Our study revealed that HaHSFA4a requires HaHSFA9 for in planta function. Our results strongly support the involvement of HaHSFA4a and HaHSFA9 in transcriptional co-activation of a genetic program of longevity and desiccation tolerance in sunflower seeds. These results would also have potential application for improving seed longevity and tolerance to severe stress in vegetative organs.
Collapse
Affiliation(s)
- José-María Personat
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - Javier Tejedor-Cano
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - Pilar Prieto-Dapena
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - Concepción Almoguera
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| | - Juan Jordano
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain
| |
Collapse
|
8
|
Gasulla F, Jain R, Barreno E, Guéra A, Balbuena TS, Thelen JJ, Oliver MJ. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. PLANT, CELL & ENVIRONMENT 2013; 36:1363-78. [PMID: 23305100 DOI: 10.1111/pce.12065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 05/11/2023]
Abstract
The study of desiccation tolerance of lichens, and of their chlorobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. In this study, we used proteomic and transcript analyses to assess the changes associated with desiccation in the isolated phycobiont Asterochloris erici. Algae were dried either slowly (5-6 h) or rapidly (<60 min), and rehydrated after 24 h in the desiccated state. To identify proteins that accumulated during the drying or rehydration processes, we employed two-dimensional (2D) difference gel electrophoresis (DIGE) coupled with individual protein identification using trypsin digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analyses revealed that desiccation caused an increase in relative abundance of only 11-13 proteins, regardless of drying rate, involved in glycolysis, cellular protection, cytoskeleton, cell cycle, and targeting and degradation. Transcripts of five Hsp90 and two β-tubulin genes accumulated primarily at the end of the dehydration process. In addition, transmission electron microscopy (TEM) images indicate that ultrastructural cell injuries, perhaps resulting from physical or mechanical stress rather than metabolic damage, were more intense after rapid dehydration. This occurred with no major change in the proteome. These results suggest that desiccation tolerance of A. erici is achieved by constitutive mechanisms.
Collapse
Affiliation(s)
- Franscico Gasulla
- Dpt. Botànica, ICBiBE, Universitat de València, Burjassot 46100, Spain
| | - Renuka Jain
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Eva Barreno
- Dpt. Botànica, ICBiBE, Universitat de València, Burjassot, 46100, Spain
| | - Alfredo Guéra
- Dpto. Biología Vegetal, Universidad de Alcalá, Alcalá de Henares, 28871, Spain
| | - Tiago S Balbuena
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
9
|
Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sørensen I, Willats WGT, Driouich A, Farrant JM. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. PLANTA 2013; 237:739-54. [PMID: 23117392 DOI: 10.1007/s00425-012-1785-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/11/2012] [Indexed: 05/20/2023]
Abstract
A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.
Collapse
Affiliation(s)
- John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:983-99. [PMID: 23061970 DOI: 10.1111/tpj.12008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557-0330, USADepartment of Biological Sciences, University of Nevada, Reno, NV 89557-0314, USAMetabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USAU.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012. [PMID: 23061970 DOI: 10.1111/tpj.12008 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557-0330, USADepartment of Biological Sciences, University of Nevada, Reno, NV 89557-0314, USAMetabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USAU.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BWM, Cushman JC. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. THE PLANT CELL 2011; 23:1231-48. [PMID: 21467579 PMCID: PMC3101564 DOI: 10.1105/tpc.110.082800] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 12/29/2010] [Accepted: 03/12/2011] [Indexed: 05/15/2023]
Abstract
Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.
Collapse
Affiliation(s)
- Melvin J Oliver
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | |
Collapse
|