1
|
Zhang X, Yao S, Bao P, Du M, Hu G, Chu C, Wang D, Chen C, Ma Q, Jia H, Sun Y, Yan Y, Liao Y, Niu Z, Man Z, Wang L, Gao W, Li H, Zhang J, Luo W, Wang X, Wang Y, Mu J. Associations of genetic variations in the M3 receptor with salt sensitivity, longitudinal changes in blood pressure and the incidence of hypertension in Chinese adults. J Clin Hypertens (Greenwich) 2024; 26:36-46. [PMID: 38010846 PMCID: PMC10795080 DOI: 10.1111/jch.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Recent studies have reported the role of the M3 muscarinic acetylcholine receptor (M3R), a member of the G-protein coupled receptor superfamily, encoded by the CHRM3 gene, in cardiac function and the regulation of blood pressure (BP). The aim of this study was to investigate the associations of CHRM3 genetic variants with salt sensitivity, longitudinal BP changes, and the development of hypertension in a Chinese population. We conducted a chronic dietary salt intervention experiment in a previously established Chinese cohort to analyze salt sensitivity of BP. Additionally, a 14-year follow-up was conducted on all participants in the cohort to evaluate the associations of CHRM3 polymorphisms with longitudinal BP changes, as well as the incidence of hypertension. The single nucleotide polymorphism (SNP) rs10802811 within the CHRM3 gene displayed significant associations with low salt-induced changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), while rs373288072, rs114677844, and rs663148 exhibited significant associations with SBP and MAP responses to a high-salt diet. Furthermore, the SNP rs58359377 was associated with changes in SBP and pulse pressure (PP) over the course of 14 years. Additionally, the 14-year follow-up revealed a significant association between the rs619288 polymorphism and an increased risk of hypertension (OR = 1.74, 95% CI: 1.06-2.87, p = .029). This study provides evidence that CHRM3 may have a role in salt sensitivity, BP progression, and the development of hypertension.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Shi Yao
- National and Local Joint Engineering Research Center of Biodiagnosis and BiotherapySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Peng Bao
- Department of General PracticeXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingfei Du
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Guilin Hu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chao Chu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Dan Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Chen Chen
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qiong Ma
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Hao Jia
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yue Sun
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yu Yan
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yueyuan Liao
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Zejiaxin Niu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ziyue Man
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Lan Wang
- Department of Critical Care MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weihua Gao
- Department of CardiologyXi'an International Medical Center HospitalXi'anChina
| | - Hao Li
- Department of CardiologyXi'an No.1 HospitalXi'anChina
| | - Jie Zhang
- Department of CardiologyXi'an People's HospitalXi'anChina
| | - Wenjing Luo
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xin Wang
- Department of Science and TechnologyFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yang Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Jianjun Mu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| |
Collapse
|
2
|
Matera MG, Rogliani P, Novelli G, Cazzola M. The impact of genomic variants on patient response to inhaled bronchodilators: a comprehensive update. Expert Opin Drug Metab Toxicol 2023. [PMID: 37269324 DOI: 10.1080/17425255.2023.2221848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The bronchodilator response (BDR) depends on many factors, including genetic ones. Numerous single nucleotide polymorphisms (SNPs) influencing BDR have been identified. However, despite several studies in this field, genetic variations are not currently being utilized to support the use of bronchodilators. AREAS COVERED In this narrative review, the possible impact of genetic variants on BDR is discussed. EXPERT OPINION Pharmacogenetic studies of β2-agonists have mainly focused on ADRB2 gene. Three SNPs, A46G, C79G, and C491T, have functional significance. However, other uncommon variants may contribute to individual variability in salbutamol response. SNPs haplotypes in ADRB2 may have a role. Many variants in genes coding for muscarinic ACh receptor (mAChR) have been reported, particularly in the M2 and, to a lesser degree, M3 mAChRs, but no consistent evidence for a pharmacological relevance of these SNPs has been reported. Moreover, there is a link between SNPs and ethnic and/or age profiles regarding BDR. Nevertheless, replication of pharmacogenetic results is limited and often, BDR is dissociated from what is expected based on SNP identification. Pharmacogenetic studies on bronchodilators must continue. However, they must integrate data derived from a multi-omics approach with epigenetic factors that may modify BDR.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
3
|
Di Mizio G, Marcianò G, Palleria C, Muraca L, Rania V, Roberti R, Spaziano G, Piscopo A, Ciconte V, Di Nunno N, Esposito M, Viola P, Pisani D, De Sarro G, Raffi M, Piras A, Chiarella G, Gallelli L. Drug-Drug Interactions in Vestibular Diseases, Clinical Problems, and Medico-Legal Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12936. [PMID: 34948545 PMCID: PMC8701970 DOI: 10.3390/ijerph182412936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
Peripheral vestibular disease can be treated with several approaches (e.g., maneuvers, surgery, or medical approach). Comorbidity is common in elderly patients, so polytherapy is used, but it can generate the development of drug-drug interactions (DDIs) that play a role in both adverse drug reactions and reduced adherence. For this reason, they need a complex kind of approach, considering all their individual characteristics. Physicians must be able to prescribe and deprescribe drugs based on a solid knowledge of pharmacokinetics, pharmacodynamics, and clinical indications. Moreover, full information is required to reach a real therapeutic alliance, to improve the safety of care and reduce possible malpractice claims related to drug-drug interactions. In this review, using PubMed, Embase, and Cochrane library, we searched articles published until 30 August 2021, and described both pharmacokinetic and pharmacodynamic DDIs in patients with vestibular disorders, focusing the interest on their clinical implications and on risk management strategies.
Collapse
Affiliation(s)
- Giulio Di Mizio
- Department of Law, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Caterina Palleria
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Lucia Muraca
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
- Department of Primary Care, ASP 7, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Roberta Roberti
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80123 Naples, Italy
| | - Amalia Piscopo
- Department of Law, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Ciconte
- Department of Law, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, 83100 Lecce, Italy
| | - Massimiliano Esposito
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Pasquale Viola
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre of Cochlear Implants and ENT Diseases, Magna Graecia University, 88100 Catanzaro, Italy
| | - Davide Pisani
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre of Cochlear Implants and ENT Diseases, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University of Catanzaro, 88100 Catanzaro, Italy
| | - Milena Raffi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandro Piras
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Chiarella
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre of Cochlear Implants and ENT Diseases, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University of Catanzaro, 88100 Catanzaro, Italy
- Medifarmagen SRL, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Ruan Y, Patzak A, Pfeiffer N, Gericke A. Muscarinic Acetylcholine Receptors in the Retina-Therapeutic Implications. Int J Mol Sci 2021; 22:4989. [PMID: 34066677 PMCID: PMC8125843 DOI: 10.3390/ijms22094989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein-coupled receptors (GPCRs). The family of mAChRs is composed of five subtypes, M1, M2, M3, M4 and M5, which have distinct expression patterns and functions. In the eye and its adnexa, mAChRs are widely expressed and exert multiple functions, such as modulation of tear secretion, regulation of pupil size, modulation of intraocular pressure, participation in cell-to-cell signaling and modula-tion of vascular diameter in the retina. Due to this variety of functions, it is reasonable to assume that abnormalities in mAChR signaling may contribute to the development of various ocular diseases. On the other hand, mAChRs may offer an attractive therapeutic target to treat ocular diseases. Thus far, non-subtype-selective mAChR ligands have been used in ophthalmology to treat dry eye disease, myopia and glaucoma. However, these drugs were shown to cause various side-effects. Thus, the use of subtype-selective ligands would be useful to circumvent this problem. In this review, we give an overview on the localization and on the functional role of mAChR subtypes in the eye and its adnexa with a special focus on the retina. Moreover, we describe the pathophysiological role of mAChRs in retinal diseases and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (N.P.); (A.G.)
| |
Collapse
|
5
|
Özdemir F, Kır Y, Tok KC, Baskak B, Süzen HS. A Novel Genotyping Method for Detection of the Muscarinic Receptor M1 Gene rs2067477 Polymorphism and Its Genotype/Allele Frequencies in a Turkish Population. Turk J Pharm Sci 2020; 17:653-658. [PMID: 33389966 DOI: 10.4274/tjps.galenos.2019.46793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Gene variation in the cholinergic muscarinic receptor 1 (CHRM1) has potential to become a candidate biomarker in the development of several disorders as well as drug response. In this study, a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was developed to determine the C to A single nucleotide polymorphism at position 267 in the CHRM1 gene. Materials and Methods A new reverse primer and a mismatched forward primer were designed to obtain 125 bp PCR products. The PCR products were then digested with the Hae III restriction enzyme to detect the rs2067477 polymorphism that comprises a C to A base change. The novel assay developed was tested in 51 Turkish schizophrenia patients. Results The genotyping assay was successfully performed in patients with schizophrenia in order to confirm the accuracy and validity of this method. The frequency of CC, CA, and AA genotypes was 72.5%, 25.5%, and 2%, respectively. On the basis of these findings, the allele frequency of C was 0.85 and the allele frequency of A was 0.15. Conclusion This genotyping assay is practical for screening the CHRM1 C267A polymorphism in pharmacogenetic studies. The present polymorphism may be used as a candidate biomarker to determine genetic susceptibility to related diseases and may contribute to the implementation of individualized drug therapy for M1-related diseases.
Collapse
Affiliation(s)
- Fezile Özdemir
- Ankara University Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Yağmur Kır
- Ankara University Faculty of Medicine, Department of Psychiatry, Ankara, Turkey
| | - Kenan Can Tok
- Ankara University Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Bora Baskak
- Ankara University Faculty of Medicine, Department of Psychiatry, Ankara, Turkey
| | - Halit Sinan Süzen
- Ankara University Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ankara, Turkey
| |
Collapse
|
6
|
Pozhidaev IV, Boiko AS, Loonen AJM, Paderina DZ, Fedorenko OY, Tenin G, Kornetova EG, Semke AV, Bokhan NA, Wilffert B, Ivanova SA. Association of Cholinergic Muscarinic M4 Receptor Gene Polymorphism with Schizophrenia. APPLICATION OF CLINICAL GENETICS 2020; 13:97-105. [PMID: 32368127 PMCID: PMC7183770 DOI: 10.2147/tacg.s247174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Background Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. Purpose To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. Patients and Methods We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann–Whitney test was used to compare qualitative traits and χ2 test was used for categorical traits. Results The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33–0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31–0.80]; p=0.010). Conclusion Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia.
Collapse
Affiliation(s)
- Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anton J M Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Diana Z Paderina
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Gennadiy Tenin
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
7
|
Boiko AS, Ivanova SA, Pozhidaev IV, Freidin MB, Osmanova DZ, Fedorenko OY, Semke AV, Bokhan NA, Wilffert B, Loonen AJM. Pharmacogenetics of tardive dyskinesia in schizophrenia: The role of CHRM1 and CHRM2 muscarinic receptors. World J Biol Psychiatry 2020; 21:72-77. [PMID: 30623717 DOI: 10.1080/15622975.2018.1548780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Acetylcholine M (muscarinic) receptors are possibly involved in tardive dyskinesia (TD). The authors tried to verify this hypothesis by testing for possible associations between two muscarinic receptor genes (CHRM1 and CHRM2) polymorphisms and TD in patients with schizophrenia.Methods: A total of 472 patients with schizophrenia were recruited. TD was assessed cross-sectionally using the Abnormal Involuntary Movement Scale. Fourteen allelic variants of CHRM1 and CHRM2 were genotyped using Applied Biosystems amplifiers (USA) and the MassARRAY System by Agena Bioscience.Results: The prevalence of the rs1824024*GG genotype of the CHRM2 gene was lower in TD patients compared to the group without it (χ2 = 6.035, p = 0.049). This suggested that this genotype has a protective effect for the development of TD (OR = 0.4, 95% CI: 0.19-0.88). When age, gender, duration of schizophrenia and dosage of antipsychotic treatment were added as covariates in regression analysis, the results did not reach statistical significance.Conclusions: This study did identify associations between CHRM2 variations and TD; the results of logistic regression analysis with covariates suggest that the association is, however, likely to be secondary to other concomitant factors.
Collapse
Affiliation(s)
- Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Live Course Sciences, King's College London, London, United Kingdom.,Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Diana Z Osmanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Arkadyi V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Bob Wilffert
- Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anton J M Loonen
- Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, the Netherlands.,GGZ WNB, Mental health hospital, Bergen op Zoom, The Netherlands
| |
Collapse
|
8
|
Schrenk D, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Leblanc JC, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Cottrill B, Dusemund B, Mulder P, Arcella D, Baert K, Cascio C, Steinkellner H, Bignami M. Scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids in feed and food, in particular in lupins and lupin-derived products. EFSA J 2019; 17:e05860. [PMID: 32626161 PMCID: PMC7008800 DOI: 10.2903/j.efsa.2019.5860] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids (QAs) in feed and food. This risk assessment is limited to QAs occurring in Lupinus species/varieties relevant for animal and human consumption in Europe (i.e. Lupinus albus L., Lupinus angustifolius L., Lupinus luteus L. and Lupinus mutabilis Sweet). Information on the toxicity of QAs in animals and humans is limited. Following acute exposure to sparteine (reference compound), anticholinergic effects and changes in cardiac electric conductivity are considered to be critical for human hazard characterisation. The CONTAM Panel used a margin of exposure (MOE) approach identifying a lowest single oral effective dose of 0.16 mg sparteine/kg body weight as reference point to characterise the risk following acute exposure. No reference point could be identified to characterise the risk of chronic exposure. Because of similar modes of action for QAs, the CONTAM Panel used a group approach assuming dose additivity. For food, the highest mean concentration of Total QAs (TotQAs) (i.e. the 6 most abundant QAs) was found in lupin seed samples classified as 'Lupins (dry) and similar-'. Due to the limited data on occurrence and consumption, dietary exposure was calculated for some specific scenarios and no full human health risk characterisation was possible. The calculated margin of exposures (MOEs) may indicate a risk for some consumers. For example, when lupin seeds are consumed without a debittering step, or as debittered lupin seeds high in QA content and when 'lupin-based meat imitates' are consumed. For horses, companion and farm animals, other than salmonids, the available database on adverse effects was too limited to identify no-observed-adverse-effect levels and/or lowest-observed-adverse-effect levels and no risk characterisation was possible. For salmonids, the CONTAM Panel considers the risk for adverse effects to be low.
Collapse
|
9
|
Cherubini E, Esposito MC, Scozzi D, Terzo F, Osman GA, Mariotta S, Mancini R, Bruno P, Ricci A. Genetic Polymorphism of CHRM2 in COPD: Clinical Significance and Therapeutic Implications. J Cell Physiol 2016; 231:1745-51. [DOI: 10.1002/jcp.25277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Emanuela Cherubini
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
| | - Maria Cristina Esposito
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Davide Scozzi
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
| | - Fabrizio Terzo
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Giorgia Amira Osman
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Salvatore Mariotta
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Department of Surgery “Pietro Valdoni”; Sapienza University of Rome; Rome Italy
| | - Pierdonato Bruno
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| |
Collapse
|
10
|
Hou D, Chen Y, Liu J, Xu L, Zhang Z, Zhang J, Wang H, Wang X, Chen J, Zhao R, Hu A, Hakonarson H, Zhang L, Shen Y. Proteomics screen to reveal molecular changes mediated by C722G missense mutation in CHRM2 gene. J Proteomics 2013; 89:39-50. [PMID: 23743182 DOI: 10.1016/j.jprot.2013.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Previously, we reported a missense mutation (C722G) in the M2-muscarinic acetylcholine receptor (CHRM2) gene associated with familial dilated cardiomyopathy. However, the exact molecular mechanisms by the related protein changes of CHRM2-C722G mutation induced are still unclear. CHRM2 and CHRM2-C722G lentiviral vector was infected to CHO cells. Proteomic analysis by label-free shotgun strategy and the STRING 9.0 software were performed. A total of 102 proteins with at least 2-fold change in the CHRM2-C722G group were identified, 42 proteins were up-regulated, whereas 57 were down-regulated. These altered proteins belong to three broad functional categories: (i) metabolic (e.g. Cytosolic acyl coenzyme A thioester hydrolase, Malate dehydrogenase); (ii) cytoskeletal (e.g. Actin-related protein, Myosin light polypeptide 6 and Alpha-actinin-1) and (iii) stress response (e.g. heat shock protein 70, Ras-related protein Rab-10). Interestingly, the marked differences in the expression of selected eight proteins (change >4.0-fold), were connected with many proteins related to apoptosis and immune/inflammatory response such as: FOS, BAX, MYC, TP53 and IL6. This novel study demonstrated for the first time a full-scale screening of the proteomics research by CHRM2-C722G mutation and profiled 102 changed proteins, of which, eight might be critical in cardiac dysfunction for future mapping. SIGNIFICANCE It was a full-scale screening of the proteomics research by CHRM2-C722G mutation. These proteins might serve as valuable biomarkers that could predict the presence of a precursor field. These proteins might serve to further explore the pathophysiological mechanisms in familial DCM patients with C176W mutation.
Collapse
Affiliation(s)
- Dongyan Hou
- Heart Failure Center, Department of Cardiology, Capital Medical University, Chao-Yang Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|