1
|
Niu B, Bai N, Liu X, Ma L, Dai L, Mu X, Wu S, Ma J, Hao X, Wang L, Li P. The role of GmHSP23.9 in regulating soybean nodulation under elevated CO 2 condition. Int J Biol Macromol 2024; 274:133436. [PMID: 38936572 DOI: 10.1016/j.ijbiomac.2024.133436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.
Collapse
Affiliation(s)
- Bingjie Niu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Nan Bai
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofeng Liu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Longjing Ma
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lijiao Dai
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoya Mu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Shenjie Wu
- College of Life Sceinces, Shanxi Agricultural University, Taigu 030801, China
| | - Junkui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lixiang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
How CM, Cheng KC, Li YS, Pan MH, Wei CC. Tangeretin Supplementation Mitigates the Aging Toxicity Induced by Dietary Benzo[a]pyrene Exposure with Aberrant Proteostasis and Heat Shock Responses in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13474-13482. [PMID: 37639537 DOI: 10.1021/acs.jafc.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Benzo[a]pyrene (BaP) is a common food contaminant that can impair organismal aging. Tangeretin (TAN) may mitigate aging toxicities as a dietary supplement. This study used Caenorhabditis elegans to investigate the effects of chronic exposure to BaP on aging and to determine whether TAN supplementation could alleviate BaP-induced toxicity. Early life exposure to BaP (10 μM) significantly inhibited growth by 5%, and exposure to 0.1 to 10 μM BaP impaired C. elegans motility, resulting in a 3.4-6.5% reduction in motility. Chronic exposure to BaP (10 μM) age-dependently aggravated aberrant protein aggregation (7% increase) and shortened the median lifespan of the worms from 20 to 16 days. In addition, BaP worsened the age-dependent decline in motility and pharyngeal pumping, as well as the accumulation of reactive oxygen species. Furthermore, exposure to BaP resulted in significantly higher relative transcript levels of approximately 1.8-2.0-fold for the hsp-16.1, hsp-16.2, hsp-16.49, and hsp-70 genes. Stressed worms exposed to BaP exhibited significantly lower survival under heat stress. Dietary TAN supplementation alleviated the BaP-induced decline in motility, pumping, and poly-Q accumulation and restored heat shock proteins' transcript levels. Our findings suggest that chronic BaP exposure adversely affects aging and that TAN exposure mitigates the BaP-induced aging toxicity.
Collapse
Affiliation(s)
- Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Ko-Chun Cheng
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yong-Shan Li
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| |
Collapse
|
3
|
Strauch A, Rossa B, Köhler F, Haeussler S, Mühlhofer M, Rührnößl F, Körösy C, Bushman Y, Conradt B, Haslbeck M, Weinkauf S, Buchner J. The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions. J Biol Chem 2022; 299:102753. [PMID: 36442512 PMCID: PMC9800568 DOI: 10.1016/j.jbc.2022.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.
Collapse
Affiliation(s)
- Annika Strauch
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Benjamin Rossa
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Florian Rührnößl
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Caroline Körösy
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany; Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sevil Weinkauf
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
4
|
Li M, Tang T, Yuan F, Zhang Y, Li F, Liu F. Protective effects of small heat shock proteins in Daphnia magna against heavy metal exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157565. [PMID: 35907523 DOI: 10.1016/j.scitotenv.2022.157565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Daphnia magna is one of the most commonly used model organisms to assess toxicity of heavy metal and other xenobiotics. However, the lack of knowledge about important stress-resistant molecules limits our understanding of the alteration of phenotypic and physiological traits of D. magna upon stress exposures. In this study, we focused on a chaperone family of small heat shock protein (sHSP) that has been found in archaea, bacteria and eukaryotes and plays an important role in stress tolerance. A total of eleven sHSP genes (termed DmsHSP1 - DmsHSP11) were identified from the D. magna genome, whose expression profiles during exposure to heavy metal (Cd2+, Cu2+ and Zn2+) and a few other potential pollutants were evaluated via qRT-PCR and RNA-Seq analysis. The results highlighted the predominant role of DmsHSP1 with the highest basal expression level in adults and robust upregulation upon exposure to heavy metals (Cu2+ > Cd2+ > Zn2+). In vivo, recombinant protein rDmsHSP1-21 and rDmsHSP11-12.8 could not only prevent model substrates agglutination induced by heavy metals or reducer dithiotreitol (DTT), but also protect tissue proteins and enzymes from denaturation and inactivation caused by heavy metals or high temperature. Ectopically expression of DmsHSP1-21 or DmsHSP11-12.8 in E. coli conferred host enhanced resistance against various abiotic stresses including Cd2+, Cu2+ and phenazine methosulfate (PMS). Knockdown of DmsHSP1-21 by RNAi, but not for DmsHSP11-12.8, significantly increased the vulnerability of D. magna to heavy metal exposure. Our work provides systematic information on the evolution and function of sHSPs in D. magna and leads to important insights into the mechanisms by which D. magna survive in adverse environments.
Collapse
Affiliation(s)
- Muyi Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ting Tang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 2022; 298:101796. [PMID: 35248532 PMCID: PMC9065632 DOI: 10.1016/j.jbc.2022.101796] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.
Collapse
|
6
|
Yang Z, Du H, Xing X, Li W, Kong Y, Li X, Zhang C. A small heat shock protein, GmHSP17.9, from nodule confers symbiotic nitrogen fixation and seed yield in soybean. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:103-115. [PMID: 34487637 PMCID: PMC8710831 DOI: 10.1111/pbi.13698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 05/27/2023]
Abstract
Legume-rhizobia symbiosis enables biological nitrogen fixation to improve crop production for sustainable agriculture. Small heat shock proteins (sHSPs) are involved in multiple environmental stresses and plant development processes. However, the role of sHSPs in nodule development in soybean remains largely unknown. In the present study, we identified a nodule-localized sHSP, called GmHSP17.9, in soybean, which was markedly up-regulated during nodule development. GmHSP17.9 was specifically expressed in the infected regions of the nodules. GmHSP17.9 overexpression and RNAi in transgenic composite plants and loss of function in CRISPR-Cas9 gene-editing mutant plants in soybean resulted in remarkable alterations in nodule number, nodule fresh weight, nitrogenase activity, contents of poly β-hydroxybutyrate bodies (PHBs), ureide and total nitrogen content, which caused significant changes in plant growth and seed yield. GmHSP17.9 was also found to act as a chaperone for its interacting partner, GmNOD100, a sucrose synthase in soybean nodules which was also preferentially expressed in the infected zone of nodules, similar to GmHSP17.9. Functional analysis of GmNOD100 in composite transgenic plants revealed that GmNOD100 played an essential role in soybean nodulation. The hsp17.9 lines showed markedly more reduced sucrose synthase activity, lower contents of UDP-glucose and acetyl coenzyme A (acetyl-CoA), and decreased activity of succinic dehydrogenase (SDH) in the tricarboxylic acid (TCA) cycle in nodules due to the missing interaction with GmNOD100. Our findings reveal an important role and an unprecedented molecular mechanism of sHSPs in nodule development and nitrogen fixation in soybean.
Collapse
Affiliation(s)
- Zhanwu Yang
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Hui Du
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Xinzhu Xing
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Wenlong Li
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Youbin Kong
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Xihuan Li
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| | - Caiying Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryCollege of AgronomyHebei Agricultural UniversityBaodingChina
| |
Collapse
|
7
|
Shih SR, Bach DM, Rondeau NC, Sam J, Lovinger NL, Lopatkin AJ, Snow JW. Honey bee sHSP are responsive to diverse proteostatic stresses and potentially promising biomarkers of honey bee stress. Sci Rep 2021; 11:22087. [PMID: 34764357 PMCID: PMC8586346 DOI: 10.1038/s41598-021-01547-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
The pollination services provided by the honey bee are critical in both natural and agricultural ecosystems. Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. Defining specific common cellular processes and cellular stress responses impacted by multiple stressors represent a key step in understanding these synergies. Proteotoxic stresses negatively impact protein synthesis, folding, and degradation. Diverse proteotoxic stresses induce expression of genes encoding small heat shock proteins (sHSP) of the expanded lethal (2) essential for life (l(2)efl) gene family. In addition to upregulation by the Integrated Stress Response (ISR), the Heat Shock Response (HSR), and the Oxidative Stress Response (OSR), our data provide first evidence that sHSP genes are upregulated by the Unfolded Protein Response (UPR). As these genes appear to be part of a core stress response that could serve as a useful biomarker for cellular stress in honey bees, we designed and tested an RT-LAMP assay to detect increased l(2)efl gene expression in response to heat-stress. While this assay provides a powerful proof of principle, further work will be necessary to link changes in sHSP gene expression to colony-level outcomes, to adapt our preliminary assay into a Point of Care Testing (POCT) assay appropriate for use as a diagnostic tool for use in the field, and to couple assay results to management recommendations.
Collapse
Affiliation(s)
- Samantha R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Dunay M Bach
- Biology Department, Barnard College, New York, NY, 10027, USA
| | | | - Jessica Sam
- Biology Department, Barnard College, New York, NY, 10027, USA
| | | | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
8
|
Iburg M, Puchkov D, Rosas-Brugada IU, Bergemann L, Rieprecht U, Kirstein J. The noncanonical small heat shock protein HSP-17 from Caenorhabditis elegans is a selective protein aggregase. J Biol Chem 2020; 295:3064-3079. [PMID: 32001616 DOI: 10.1074/jbc.ra119.011185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHsps) are conserved, ubiquitous members of the proteostasis network. Canonically, they act as "holdases" and buffer unfolded or misfolded proteins against aggregation in an ATP-independent manner. Whereas bacteria and yeast each have only two sHsps in their genomes, this number is higher in metazoan genomes, suggesting a spatiotemporal and functional specialization in higher eukaryotes. Here, using recombinantly expressed and purified proteins, static light-scattering analysis, and disaggregation assays, we report that the noncanonical sHsp HSP-17 of Caenorhabditis elegans facilitates aggregation of model substrates, such as malate dehydrogenase (MDH), and inhibits disaggregation of luciferase in vitro Experiments with fluorescently tagged HSP-17 under the control of its endogenous promoter revealed that HSP-17 is expressed in the digestive and excretory organs, where its overexpression promotes the aggregation of polyQ proteins and of the endogenous kinase KIN-19. Systemic depletion of hsp-17 shortens C. elegans lifespan and severely reduces fecundity and survival upon prolonged heat stress. HSP-17 is an abundant protein exhibiting opposing chaperone activities on different substrates, indicating that it is a selective protein aggregase with physiological roles in development, digestion, and osmoregulation.
Collapse
Affiliation(s)
- Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Irving U Rosas-Brugada
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Linda Bergemann
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Ulrike Rieprecht
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, 13125 Berlin, Germany; Faculty 2, Cell Biology, University of Bremen, Leobener Strasse, 28359 Bremen, Germany.
| |
Collapse
|
9
|
Janowska MK, Baughman HER, Woods CN, Klevit RE. Mechanisms of Small Heat Shock Proteins. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034025. [PMID: 30833458 DOI: 10.1101/cshperspect.a034025] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that delay formation of harmful protein aggregates. sHSPs' role in protein homeostasis has been appreciated for decades, but their mechanisms of action remain poorly understood. This gap in understanding is largely a consequence of sHSP properties that make them recalcitrant to detailed study. Multiple stress-associated conditions including pH acidosis, oxidation, and unusual availability of metal ions, as well as reversible stress-induced phosphorylation can modulate sHSP chaperone activity. Investigations of sHSPs reveal that sHSPs can engage in transient or long-lived interactions with client proteins depending on solution conditions and sHSP or client identity. Recent advances in the field highlight both the diversity of function within the sHSP family and the exquisite sensitivity of individual sHSPs to cellular and experimental conditions. Here, we will present and highlight current understanding, recent progress, and future challenges.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Hannah E R Baughman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
10
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
11
|
Phani V, Somvanshi VS, Shukla RN, Davies KG, Rao U. A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita. BMC Genomics 2018; 19:850. [PMID: 30486772 PMCID: PMC6263062 DOI: 10.1186/s12864-018-5230-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, India
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK. .,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115 NO-1431, Ås, Norway.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
12
|
Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: Simplicity meets complexity. J Biol Chem 2018; 294:2121-2132. [PMID: 30385502 DOI: 10.1074/jbc.rev118.002809] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.
Collapse
Affiliation(s)
- Martin Haslbeck
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Sevil Weinkauf
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Johannes Buchner
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| |
Collapse
|
13
|
Kourtis N, Tavernarakis N. Small heat shock proteins and neurodegeneration: recent developments. Biomol Concepts 2018; 9:94-102. [PMID: 30133417 DOI: 10.1515/bmc-2018-0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractMembers of the small heat shock protein (sHSP) family are molecular chaperones with a critical role in the maintenance of cellular homeostasis under unfavorable conditions. The chaperone properties of sHSPs prevent protein aggregation, and sHSP deregulation underlies the pathology of several diseases, including neurodegenerative disorders. Recent evidence suggests that the clientele of sHSPs is broad, and the mechanisms of sHSP-mediated neuroprotection diverse. Nonetheless, the crosstalk of sHSPs with the neurodegeneration-promoting signaling pathways remains poorly understood. Here, we survey recent findings on the role and regulation of sHSPs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikos Kourtis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 70013, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
14
|
Dabbaghizadeh A, Morrow G, Amer YO, Chatelain EH, Pichaud N, Tanguay RM. Identification of proteins interacting with the mitochondrial small heat shock protein Hsp22 of Drosophila melanogaster: Implication in mitochondrial homeostasis. PLoS One 2018; 13:e0193771. [PMID: 29509794 PMCID: PMC5839585 DOI: 10.1371/journal.pone.0193771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
The small heat shock protein (sHsp) Hsp22 from Drosophila melanogaster (DmHsp22) is part of the family of sHsps in this diptera. This sHsp is characterized by its presence in the mitochondrial matrix as well as by its preferential expression during ageing. Although DmHsp22 has been demonstrated to be an efficient in vitro chaperone, its function within mitochondria in vivo remains largely unknown. Thus, determining its protein-interaction network (interactome) in the mitochondrial matrix would help to shed light on its function(s). In the present study we combined immunoaffinity conjugation (IAC) with mass spectroscopy analysis of mitochondria from HeLa cells transfected with DmHsp22 in non-heat shock condition and after heat shock (HS). 60 common DmHsp22-binding mitochondrial partners were detected in two independent IACs. Immunoblotting was used to validate interaction between DmHsp22 and two members of the mitochondrial chaperone machinery; Hsp60 and Hsp70. Among the partners of DmHsp22, several ATP synthase subunits were found. Moreover, we showed that expression of DmHsp22 in transiently transfected HeLa cells increased maximal mitochondrial oxygen consumption capacity and ATP contents, providing a mechanistic link between DmHsp22 and mitochondrial functions.
Collapse
Affiliation(s)
- Afrooz Dabbaghizadeh
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Geneviève Morrow
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Yasmine Ould Amer
- Laboratoire de Signalisation Mitochondriale, Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - Etienne Hebert Chatelain
- Laboratoire de Signalisation Mitochondriale, Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Laboratoire de Biochimie et Physiologie Comparée, Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Robert M Tanguay
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
15
|
Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans. Genetics 2017; 207:571-582. [PMID: 28754659 DOI: 10.1534/genetics.117.300070] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1, which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1, gk138, had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1(gk138) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light.
Collapse
|
16
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
17
|
Wang Y, Ezemaduka AN, Li Z, Chen Z, Song C. Joint Toxicity of Arsenic, Copper and Glyphosate on Behavior, Reproduction and Heat Shock Protein Response in Caenorhabditis elegans. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:465-471. [PMID: 28224177 DOI: 10.1007/s00128-017-2042-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
The soil nematode Caenorhabditis elegans was used in 24-h acute exposures to arsenic (As), copper (Cu) and glyphosate (GPS) and to mixtures of As/Cu and As/GPS to investigate the effects of mixture exposures in the worms. A synergistic type of interaction was observed for acute toxicity with the As/Cu and As/GPS mixtures. Sublethal 24-h exposures of 1/1000, 1/100 and 1/10 of the LC50 concentrations for As, Cu and GPS individually and for As/Cu and As/GPS mixtures were conducted to observe responses in locomotory behavior (head thrashing), reproduction, and heat shock protein expression. Head thrash frequency and reproduction exhibited concentration dependent decreases in both individual and combined exposures to the tested chemical stressors, and showed synergistic interactions even at micromolar concentrations. Furthermore, the HSP70 protein level was significantly increased following exposure to individual and combined chemical stressors in wild-type C. elegans. Our findings establish for the first time the effects of exposure to As/GPS and As/Cu mixtures in C. elegans.
Collapse
Affiliation(s)
- Yunbiao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Anastasia N Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Zhuheng Li
- Jilin Provincial Institute of Education, Changchun, 130022, China
| | - Zhanyan Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Chuantao Song
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
18
|
A novel mechanism for small heat shock proteins to function as molecular chaperones. Sci Rep 2015; 5:8811. [PMID: 25744691 PMCID: PMC4351549 DOI: 10.1038/srep08811] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/04/2015] [Indexed: 11/08/2022] Open
Abstract
Small heat shock proteins (sHSPs) are molecular chaperones ubiquitously present in all forms of life, but their function mechanisms remain controversial. Here we show by cryo-electron microscopy and single particle 3D reconstruction that, at the low temperatures (4-25°C), CeHSP17 (a sHSP from Caenorhabditis elegans) exists as a 24-subunit spherical oligomer with tetrahedral symmetry. Our studies demonstrate that CeHSP17 forms large sheet-like super-molecular assemblies (SMAs) at the high temperatures (45-60°C), and such SMAs are apparently the form that exhibits chaperone-like activity. Our findings suggest a novel molecular mechanism for sHSPs to function as molecular chaperones.
Collapse
|
19
|
|
20
|
Nelson MD, Trojanowski NF, George-Raizen JB, Smith CJ, Yu CC, Fang-Yen C, Raizen DM. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nat Commun 2014; 4:2846. [PMID: 24301180 PMCID: PMC3867200 DOI: 10.1038/ncomms3846] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/30/2013] [Indexed: 11/09/2022] Open
Abstract
Neuropeptides play central roles in the regulation of homeostatic behaviors such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed during lethargus. nlp-22 shows cyclical mRNA expression in synchrony with lethargus; it is regulated by LIN-42, an orthologue of the core circadian protein PERIOD; and it is expressed solely in the two RIA interneurons. nlp-22 and the RIA interneurons are required for normal lethargus quiescence, and forced expression of nlp-22 during active stages causes anachronistic locomotion and feeding quiescence. Optogenetic stimulation of RIA interneurons has a movement-promoting effect, demonstrating functional complexity in a single neuron type. Our work defines a quiescence-regulating role for NLP-22 and expands our knowledge of the neural circuitry controlling Caenorhabditis elegans behavioral quiescence.
Collapse
Affiliation(s)
- M D Nelson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50°C conceivably by maintaining cell envelope integrity. J Bacteriol 2014; 196:2004-11. [PMID: 24659772 DOI: 10.1128/jb.01473-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is essential for organisms to adapt to fluctuating growth temperatures. Escherichia coli, a model bacterium commonly used in research and industry, has been reported to grow at a temperature lower than 46.5°C. Here we report that the heterologous expression of the 17-kDa small heat shock protein from the nematode Caenorhabditis elegans, CeHSP17, enables E. coli cells to grow at 50°C, which is their highest growth temperature ever reported. Strikingly, CeHSP17 also rescues the thermal lethality of an E. coli mutant deficient in degP, which encodes a protein quality control factor localized in the periplasmic space. Mechanistically, we show that CeHSP17 is partially localized in the periplasmic space and associated with the inner membrane of E. coli, and it helps to maintain the cell envelope integrity of the E. coli cells at the lethal temperatures. Together, our data indicate that maintaining the cell envelope integrity is crucial for the E. coli cells to grow at high temperatures and also shed new light on the development of thermophilic bacteria for industrial application.
Collapse
|
22
|
Kurnellas MP, Brownell SE, Su L, Malkovskiy AV, Rajadas J, Dolganov G, Chopra S, Schoolnik GK, Sobel RA, Webster J, Ousman SS, Becker RA, Steinman L, Rothbard JB. Chaperone activity of small heat shock proteins underlies therapeutic efficacy in experimental autoimmune encephalomyelitis. J Biol Chem 2012; 287:36423-34. [PMID: 22955287 DOI: 10.1074/jbc.m112.371229] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73-92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.
Collapse
Affiliation(s)
- Michael P Kurnellas
- Department Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5316, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McElwee MK, Freedman JH. Comparative toxicology of mercurials in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2135-2141. [PMID: 21692103 PMCID: PMC3152674 DOI: 10.1002/etc.603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/05/2011] [Accepted: 06/08/2011] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) is a toxic metal that can exist in multiple chemical species. Humans are commonly exposed to methylmercury and Hg vapor, which are converted to mercuric species in the body. Despite years of research, little information exists on the similarities and differences in the mechanisms of Hg toxicity. The relative toxicity of mercuric chloride (HgCl(2)) and methylmercury chloride (MeHgCl) in Caenorhabditis elegans was determined in assays that measured growth, feeding, reproduction, and locomotion. The effect of HgCl(2) and MeHgCl on the expression of several archetypal stress-response genes was also determined. There was no significant difference between the EC50s of the two mercurials in terms of C. elegans growth. However, MeHgCl was more toxic to C. elegans than HgCl(2) when assessing feeding, movement, and reproduction, all of which require proper neuromuscular activity. Methylmercury chloride exposure resulted in increased steady-state levels of the stress response genes at lower concentrations than HgCl(2). In general, MeHgCl was more toxic to C. elegans than HgCl(2), particularly when assaying behaviors that require neuromuscular function.
Collapse
Affiliation(s)
| | - Jonathan H. Freedman
- Corresponding Author: Jonathan H. Freedman Laboratory of Toxicology and Pharmacology National Institute of Environmental Health Sciences Mail Drop E1-05 P.O. Box 12233 111 T.W. Alexander Drive Research Triangle Park, NC, USA 27709 Tel. 919-541-7899 Fax. 919-541-5737
| |
Collapse
|
24
|
Sarkar S, Singh MD, Yadav R, Arunkumar KP, Pittman GW. Heat shock proteins: Molecules with assorted functions. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Uversky VN. Flexible Nets of Malleable Guardians: Intrinsically Disordered Chaperones in Neurodegenerative Diseases. Chem Rev 2010; 111:1134-66. [DOI: 10.1021/cr100186d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States, Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, University of Indiana School of Medicine, Indianapolis, Indiana 46202, United States, and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| |
Collapse
|
26
|
Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 2010; 24:3633-42. [DOI: 10.1096/fj.10-156992] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Kriehuber
- Munich Center for Integrated Protein ScienceDepartment Chemie TechnischeUniversität München Garching Germany
| | - Thomas Rattei
- Department of Genome Oriented Bioinformatics, Wissenschaftszentrum WeihenstephanTechnische Universität München Freising Germany
| | - Thomas Weinmaier
- Department of Genome Oriented Bioinformatics, Wissenschaftszentrum WeihenstephanTechnische Universität München Freising Germany
| | - Alexander Bepperling
- Munich Center for Integrated Protein ScienceDepartment Chemie TechnischeUniversität München Garching Germany
| | - Martin Haslbeck
- Munich Center for Integrated Protein ScienceDepartment Chemie TechnischeUniversität München Garching Germany
| | - Johannes Buchner
- Munich Center for Integrated Protein ScienceDepartment Chemie TechnischeUniversität München Garching Germany
| |
Collapse
|
27
|
Michaud S, Lavoie S, Guimond MO, Tanguay RM. The nuclear localization of Drosophila Hsp27 is dependent on a monopartite arginine-rich NLS and is uncoupled from its association to nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1200-10. [DOI: 10.1016/j.bbamcr.2008.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/30/2022]
|
28
|
Braendle C, Milloz J, Félix MA. Mechanisms and evolution of environmental responses in Caenorhabditis elegans. Curr Top Dev Biol 2007; 80:171-207. [PMID: 17950375 DOI: 10.1016/s0070-2153(07)80005-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We review mechanistic and evolutionary aspects of interactions between the model organism Caenorhabditis elegans and its environment. In particular, we focus on environmental effects affecting developmental mechanisms. We describe natural and laboratory environments of C. elegans and provide an overview of the different environmental responses of this organism. We then show how two developmental processes respond to changes in the environment. First, we discuss the development of alternative juvenile stages, the dauer and non-dauer larva. This example illustrates how development responds to variation in the environment to generate complex phenotypic variation. Second, we discuss the development of the C. elegans vulva. This example illustrates how development responds to variation in the environment while generating an invariant final phenotype.
Collapse
Affiliation(s)
- Christian Braendle
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Tour 43 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
29
|
Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 2005; 12:842-6. [PMID: 16205709 DOI: 10.1038/nsmb993] [Citation(s) in RCA: 605] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Small heat-shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. Recent evidence suggests that they maintain protein homeostasis by binding proteins in non-native conformations, thereby preventing substrate aggregation. Some members of the sHsp family are inactive or only partially active under physiological conditions, and transition toward the active state is induced by specific triggers, such as elevated temperature. Release of substrate proteins bound to sHsps requires cooperation with ATP-dependent chaperones, suggesting that sHsps create a reservoir of non-native proteins for subsequent refolding.
Collapse
Affiliation(s)
- Martin Haslbeck
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | |
Collapse
|
30
|
Hong M, Kwon JY, Shim J, Lee J. Differential Hypoxia Response of hsp-16 Genes in the Nematode. J Mol Biol 2004; 344:369-81. [PMID: 15522291 DOI: 10.1016/j.jmb.2004.09.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 09/01/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022]
Abstract
Small heat shock proteins are induced by various stresses. We here report the differential hypoxia responses of the hsp-16 genes in the nematode. The hsp-16.1 and hsp-16.2 genes in Caenorhabditis elegans responded to hypoxia, while hsp-16.41 and hsp-16.48, which share the promoter regions with hsp-16.1 and hsp-16.2, respectively, did not. For comparative genomic analysis, we identified ten hsp-16 genes in the nematode C.briggsae from the genome database. The comparison of the promoter sequences revealed a new conserved sequence block, CAC(A/T)CT, that was required for the orientation-dependent hypoxia response, but not for other stress responses such as heat or ethanol. We propose a working model for the orientation-dependent promoter usage between two genes sharing the promoter region. We also discuss a possible application of the hypoxia-inducible promoter for conditional gene expression.
Collapse
Affiliation(s)
- Mingi Hong
- National Research Laboratory, Department of Biology, Yonsei University, 134 Shinchon, Seoul, 120-749 South Korea, Korea
| | | | | | | |
Collapse
|
31
|
Hou L, Tang JW, Cui XN, Wang B, Song B, Sun L. Construction and selection of subtracted cDNA library of mouse hepatocarcinoma cell lines with different lymphatic metastasis potential. World J Gastroenterol 2004; 10:2318-22. [PMID: 15285011 PMCID: PMC4576280 DOI: 10.3748/wjg.v10.i16.2318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: In order to elucidate the molecular mechanism of lymphatic metastasis of hepatocarcinoma, we detected the difference of gene expression between mouse hepatocarcinoma cell lines Hca-F and Hca-P with different lymphatic metastasis potential.
METHODS: cDNA of Hca-F cells was used as a tester and cDNA of Hca-P cells was used as a driver. cDNAs highly expressed in Hca-F cells were isolated by the suppression subtractive hybridization (SSH) method. The isolated cDNA was cloned into T/A cloning vector. The ligation products were transformed into DH5 α competent cells. Individual clones were randomly selected and used for PCR amplification. Vector DNA from positive clones was isolated for sequencing.
RESULTS: There were 800 positive clones in amplified subtracted cDNA library. Random analysis of 160 clones with PCR showed that 95% of the clones contained 100-700 bp inserts. Analysis of 20 sequenced cDNA clones randomly picked from the SSH library revealed 4 known genes (mouse heat shock protein 84 ku, DNA helicase, ribosomal protein S13 ,ethanol induced 6 gene) and 3 expressed sequence tags (ESTs). Four cDNAs showed no homology and presumably represent novel genes.
CONCLUSION: A subtracted cDNA library of differentially expressed genes in mouse heptocarcinoma cell lines with different lymphatic metastasis potential was successfully constructed with SSH and T/A cloning techniques. The library is efficient and lays a solid foundation for searching new lymphatic metastasis related genes. The expression of mouse heat shock protein gene, DNA helicase and other 4 novel gene may be different between mouse heptocarcinoma cell lines with different lymphatic metastasis potential.
Collapse
Affiliation(s)
- Li Hou
- Department of Pathology, Dalian Medical University, Dalian 116027, Liaoning Province, China.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Embryos of the brine shrimp, Artemia franciscana, either develop directly into swimming larvae or are released from females as encysted gastrulae (cysts) which enter diapause, a reversible state of dormancy. Metabolic activity in diapause cysts is very low and these embryos are remarkably resistant to physiological stresses. Encysting embryos, but not those undergoing uninterrupted development, synthesize large amounts of two proteins, namely p26 and artemin. Cloning and sequencing demonstrated p26 is a small heat shock/alpha-crystallin protein while artemin has structural similarity to ferritin. p26 exhibits molecular chaperone activity in vitro, moves reversibly into nuclei during stress and confers thermotolerance on transformed organisms, suggesting critical roles in cyst development. The function of artemin is unknown. Encysted Artemia also contain an abundance of trehalose, a disaccharide capable of protecting embryos. Artemia represent a novel experimental system where the developmental functions of small heat shock/alpha-crystallin proteins and other stress response elements can be explored.
Collapse
Affiliation(s)
- Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| |
Collapse
|
33
|
Shim J, Im SH, Lee J. Tissue-specific expression, heat inducibility, and biological roles of two hsp16 genes in Caenorhabditis elegans. FEBS Lett 2003; 537:139-45. [PMID: 12606046 DOI: 10.1016/s0014-5793(03)00111-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report we have examined two new heat shock protein (HSP16) proteins in the nematode Caenorhabditis elegans encoded by the open reading frames F08H9.3 and F08H9.4. The F08H9.3 and F08H9.4 genes are oriented in the same direction next to each other on the chromosome, not sharing any promoter region, unlike other hsp16 genes that share common promoters in pairs. The F08H9.3 and F08H9.4 proteins were expressed in a tissue-specific manner, unlike the other four HSP16 proteins. F08H9.3 was expressed in the pharynx, and F08H9.4 in the excretory canal and a few neuronal cells. While F08H9.3 was weakly induced by heat shock only in the same tissue as under the normal condition, F08H9.4 was newly induced in the intestine. RNA interference experiments showed that these two proteins are required for survival under the heat shock condition.
Collapse
Affiliation(s)
- Jaegal Shim
- National Research Laboratory, Department of Biology, Yonsei University, 134 Shinchon-dong, Seoul 120-749, South Korea
| | | | | |
Collapse
|
34
|
Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, de Jong WW. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 2003; 8:53-61. [PMID: 12820654 PMCID: PMC514853 DOI: 10.1379/1466-1268(2003)8<53:thgecs>2.0.co;2] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To obtain an inventory of all human genes that code for alpha-crystallin-related small heat shock proteins (sHsps), the databases available from the public International Human Genome Sequencing Consortium (IHGSC) and the private Celera human genome project were exhaustively searched. Using the human Hsp27 protein sequence as a query in the protein databases, which are derived from the predicted genes in the human genome, 10 sHsp-like proteins were retrieved, including Hsp27 itself. Repeating the search procedure with all 10 proteins and with a variety of more distantly related animal sHsps, no further human sHsps were detected, as was the case when searches were performed at deoxyribonucleic acid level. The 10 retrieved proteins comprised the 9 earlier recognized human sHsps (Hsp27/HspB1, HspB2, HspB3, alphaA-crystallin/HspB4, alphaB-crystallin/HspB5, Hsp20/HspB6, cvHsp/HspB7, H11/HspB8, and HspB9) and a sperm tail protein known since 1993 as outer dense fiber protein 1 (ODF1). Although this latter protein probably serves a structural role and has a high cysteine content (14%), it clearly contains an alpha-crystallin domain that is characteristic for sHsps. ODF1 can as such be designated as HspB10. The expression of all 10 human sHsp genes was confirmed by expressed sequence tag (EST) searches. For Hsp27/HspB1, 2 retropseudogenes were detected. The HspB1-10 genes are dispersed over 9 chromosomes, reflecting their ancient origin. Two of the genes (HspB3 and HspB9) are intronless, and the others have 1 or 2 introns at various positions. The transcripts of several sHsp genes, notably HspB7, display low levels of alternative splicing, as supported by EST evidence, which may result in minor amounts of isoforms at the protein level.
Collapse
Affiliation(s)
- Guido Kappé
- Department of Biochemistry, 161 NCMLS, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|