1
|
Wragg JW, White PL, Hadzhiev Y, Wanigasooriya K, Stodolna A, Tee L, Barros-Silva JD, Beggs AD, Müller F. Intra-promoter switch of transcription initiation sites in proliferation signaling-dependent RNA metabolism. Nat Struct Mol Biol 2023; 30:1970-1984. [PMID: 37996663 PMCID: PMC10716046 DOI: 10.1038/s41594-023-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues. C-initiation is often followed by a 5' terminal oligopyrimidine (5'TOP) sequence, dramatically increasing the range of genes potentially subjected to 5'TOP-associated post-transcriptional regulation. We show selective, dynamic switching between purine and C-initiation site usage, indicating transcription initiation-level regulation in cancers. We additionally detail global metabolic changes in C-initiation transcripts that mark differentiation status, proliferative capacity, radiosensitivity, and response to irradiation and to PI3K-Akt-mTOR and DNA damage pathway-targeted radiosensitization therapies in colorectal cancer organoids and cancer cell lines and tissues.
Collapse
Affiliation(s)
- Joseph W Wragg
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Paige-Louise White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kasun Wanigasooriya
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK
| | - Agata Stodolna
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Louise Tee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joao D Barros-Silva
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Department of Surgery, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Bosco B, Rossi A, Rizzotto D, Hamadou MH, Bisio A, Giorgetta S, Perzolli A, Bonollo F, Gaucherot A, Catez F, Diaz JJ, Dassi E, Inga A. DHX30 Coordinates Cytoplasmic Translation and Mitochondrial Function Contributing to Cancer Cell Survival. Cancers (Basel) 2021; 13:4412. [PMID: 34503222 PMCID: PMC8430983 DOI: 10.3390/cancers13174412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHX30 was recently implicated in the translation control of mRNAs involved in p53-dependent apoptosis. Here, we show that DHX30 exhibits a more general function by integrating the activities of its cytoplasmic isoform and of the more abundant mitochondrial one. The depletion of both DHX30 isoforms in HCT116 cells leads to constitutive changes in polysome-associated mRNAs, enhancing the translation of mRNAs coding for cytoplasmic ribosomal proteins while reducing the translational efficiency of the nuclear-encoded mitoribosome mRNAs. Furthermore, the depletion of both DHX30 isoforms leads to higher global translation but slower proliferation and lower mitochondrial energy metabolism. Isoform-specific silencing supports a role for cytoplasmic DHX30 in modulating global translation. The impact on translation and proliferation was confirmed in U2OS and MCF7 cells. Exploiting RIP, eCLIP, and gene expression data, we identified fourteen mitoribosome transcripts we propose as direct DHX30 targets that can be used to explore the prognostic value of this mechanism in cancer. We propose that DHX30 contributes to cell homeostasis by coordinating ribosome biogenesis, global translation, and mitochondrial metabolism. Targeting DHX30 could, thus, expose a vulnerability in cancer cells.
Collapse
Affiliation(s)
- Bartolomeo Bosco
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Annalisa Rossi
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Dario Rizzotto
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Meriem Hadjer Hamadou
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Sebastiano Giorgetta
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Alicia Perzolli
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Francesco Bonollo
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Angeline Gaucherot
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (A.G.); (F.C.); (J.-J.D.)
| | - Frédéric Catez
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (A.G.); (F.C.); (J.-J.D.)
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre Léon Bérard, F-69008 Lyon, France; (A.G.); (F.C.); (J.-J.D.)
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (B.B.); (A.R.); (D.R.); (M.H.H.); (A.B.); (S.G.); (A.P.); (F.B.)
| |
Collapse
|
3
|
Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA, Braga EA. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int J Mol Sci 2021; 22:ijms22136810. [PMID: 34202777 PMCID: PMC8267719 DOI: 10.3390/ijms22136810] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/β-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
- Correspondence:
| |
Collapse
|
4
|
Chaudhary R. Potential of long non-coding RNAs as a therapeutic target and molecular markers in glioblastoma pathogenesis. Heliyon 2021; 7:e06502. [PMID: 33786397 PMCID: PMC7988331 DOI: 10.1016/j.heliyon.2021.e06502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GB) is by far the most hostile type of malignant tumor that primarily affects the brain and spine, derived from star-shaped glial cells that are astrocytes and oligodendrocytes. Despite of significant efforts in recent years in glioblastoma research, the clinical efficacy of existing medical intervention is still limited and very few potential diagnostic markers are available. Long non-coding RNAs (lncRNAs) that lacks protein-coding capabilities were previously thought to be "junk sequences" in mammalian genomes are quite indispensible epigenetic regulators that can positively or negatively regulate gene expression and nuclear architecture, with significant roles in the initiation and development of tumors. Nevertheless, the precise mechanism of these distortedly expressed lncRNAs in glioblastoma pathogenesis is not yet fully understood. Since the advent of high-throughput sequencing technologies, more and more research have elucidated that lncRNAs are one of the most promising prognostic biomarkers and therapeutic targets for glioblastoma. In this paper, I briefly outlined the existing findings of lncRNAs. And also summarizes the profiles of different lncRNAs that have been broadly classified in glioblastoma research, with emphasis on both their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| |
Collapse
|
5
|
Lambrou GI, Hatziagapiou K, Zaravinos A. The Non-Coding RNA GAS5 and Its Role in Tumor Therapy-Induced Resistance. Int J Mol Sci 2020; 21:ijms21207633. [PMID: 33076450 PMCID: PMC7588928 DOI: 10.3390/ijms21207633] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growth arrest-specific transcript 5 (GAS5) is a >200-nt lncRNA molecule that regulates several cellular functions, including proliferation, apoptosis, invasion and metastasis, across different types of human cancers. Here, we reviewed the current literature on the expression of GAS5 in leukemia, cervical, breast, ovarian, prostate, urinary bladder, lung, gastric, colorectal, liver, osteosarcoma and brain cancers, as well as its interaction with various miRNAs and its effect on therapy-related resistance in these malignancies. The general consensus is that GAS5 acts as a tumor suppressor across different tumor types and that its up-regulation results in tumor sensitization to chemotherapy or radiotherapy. GAS5 seems to play a previously unappreciated, but significant role in tumor therapy-induced resistance.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Goudi, Athens, Greece;
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-7467427 (G.I.L.); +974-4403-7819 (A.Z.)
| | - Kyriaki Hatziagapiou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Goudi, Athens, Greece;
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, 2713 Doha, Qatar
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-7467427 (G.I.L.); +974-4403-7819 (A.Z.)
| |
Collapse
|
6
|
Padrón A, Iwasaki S, Ingolia NT. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Mol Cell 2020; 75:875-887.e5. [PMID: 31442426 DOI: 10.1016/j.molcel.2019.07.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Diverse ribonucleoprotein complexes control mRNA processing, translation, and decay. Transcripts in these complexes localize to specific regions of the cell and can condense into non-membrane-bound structures such as stress granules. It has proven challenging to map the RNA composition of these large and dynamic structures, however. We therefore developed an RNA proximity labeling technique, APEX-seq, which uses the ascorbate peroxidase APEX2 to probe the spatial organization of the transcriptome. We show that APEX-seq can resolve the localization of RNAs within the cell and determine their enrichment or depletion near key RNA-binding proteins. Matching the spatial transcriptome, as revealed by APEX-seq, with the spatial proteome determined by APEX-mass spectrometry (APEX-MS), obtained precisely in parallel, provides new insights into the organization of translation initiation complexes on active mRNAs and unanticipated complexity in stress granule composition. Our novel technique allows a powerful and general approach to explore the spatial environment of macromolecules.
Collapse
Affiliation(s)
- Alejandro Padrón
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shintaro Iwasaki
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 277-8561, Japan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Ji J, Dai X, Yeung SCJ, He X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag Res 2019; 11:2729-2737. [PMID: 31114330 PMCID: PMC6497482 DOI: 10.2147/cmar.s189052] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have shown potential as a biomarker in the diagnosis and prognosis in multiple cancers. LncRNAs are dysregulated in various cancers, playing either oncogenic or tumor suppressive roles. Emerging evidences have proved that the growth arrest-specific 5 (GAS5) lncRNA can function as a tumor suppressor in several cancers. LncRNA GAS5 is downregulated in many types of cancer, regulating cellular processes such as cell proliferation, apoptosis and invasion. The low level of GAS5 expression often elevates capacity of proliferation and predicts poorer prognosis in some cancers. This review aims to summarize the recent published literature on the biogenesis, regulation mechanism and function of GAS5 in different types of cancers and explore its potential for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Jiali Ji
- Department of Medical Oncology, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaolan Dai
- Department of Pharmacy, School of Medicine, Shantou University, Shantou, Guangdong, People’s Republic of China
| | - Sai-Ching Jim Yeung
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuexin He
- Department of Medical Oncology, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Arthur LL, Djuranovic S. PolyA tracks, polybasic peptides, poly-translational hurdles. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1486. [PMID: 29869837 PMCID: PMC6281860 DOI: 10.1002/wrna.1486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
The abundance of messenger RNA (mRNA) is one of the major determinants of protein synthesis. As such, factors that influence mRNA stability often contribute to gene regulation. Polyadenylation of the 3' end of mRNA transcripts, the poly(A) tail, has long been recognized as one of these regulatory elements given its influence on translation efficiency and mRNA stability. Unwanted translation of the poly(A) tail signals to the cell an aberrant polyadenylation event or the lack of stop codons, which makes this sequence an important element in translation fidelity and mRNA surveillance response. Consequently, investigations into the effects of the poly(A) tail lead to the discoveries that poly-lysine as well as other polybasic peptide sequences and, to a much greater extent, polyA mRNA sequences within the open reading frame influence mRNA stability and translational efficiency. Conservation and evolutionary selection of codon usage in polyA track sequences across multiple organisms suggests a biological significance for coding polyA tracks in the regulation of gene expression. Here, we discuss the cellular responses and consequences of coding polyA track translation and synthesis of polybasic peptides. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Laura L Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Mol Cell 2017; 62:462-471. [PMID: 27153541 DOI: 10.1016/j.molcel.2016.04.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/07/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell-cycle regulatory genes like CDK1, TOP2A, and FBXO5, explaining their translational repression in M phase. We also find that poly(A) tail length is coupled to translation when the poly(A) tail is <20 nucleotides. However, as most genes have >20 nucleotide poly(A) tails, their translation is regulated mainly via poly(A) tail length-independent mechanisms during the cell cycle. Specifically, we find that terminal oligopyrimidine (TOP) tract-containing transcripts escape global translational suppression in M phase and are actively translated. Our quantitative and comprehensive data provide a revised view of translational control in the somatic cell cycle.
Collapse
Affiliation(s)
- Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
10
|
Thorenoor N, Slaby O. Small nucleolar RNAs functioning and potential roles in cancer. Tumour Biol 2014; 36:41-53. [DOI: 10.1007/s13277-014-2818-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022] Open
|
11
|
Abstract
We have employed gene-trap insertional mutagenesis to identify candidate genes whose disruption confer phenotypic resistance to lytic infection, in independent studies using 12 distinct viruses and several different cell lines. Analysis of >2,000 virus-resistant clones revealed >1,000 candidate host genes, approximately 20 % of which were disrupted in clones surviving separate infections with 2–6 viruses. Interestingly, there were 83 instances in which the insertional mutagenesis vector disrupted transcripts encoding H/ACA-class and C/D-class small nucleolar RNAs (SNORAs and SNORDs, respectively). Of these, 79 SNORAs and SNORDs reside within introns of 29 genes (predominantly protein-coding), while 4 appear to be independent transcription units. siRNA studies targeting candidate SNORA/Ds provided independent confirmation of their roles in infection when tested against cowpox virus, Dengue Fever virus, influenza A virus, human rhinovirus 16, herpes simplex virus 2, or respiratory syncytial virus. Significantly, eight of the nine SNORA/Ds targeted with siRNAs enhanced cellular resistance to multiple viruses suggesting widespread involvement of SNORA/Ds in virus–host interactions and/or virus-induced cell death.
Collapse
|
12
|
Chitranshi N, Tiwari AK, Somvanshi P, Tripathi PK, Seth PK. Investigating the function of single nucleotide polymorphisms in the CTSB gene: a computational approach. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Recent genome-wide association studies have revealed large numbers of single nucleotide polymorphisms (SNPs) related to Alzheimer’s disease. Here, we have investigated the gene CTSB, which plays a crucial role in encoding CTSB, a lysosomal cysteine proteinase protein. CTSB is also involved in the proteolytic processing of amyloid precursor protein (APP), which is believed to be a causative factor in Alzheimer’s disease. Materials & methods: Several bioinformatics algorithms such as, Sorting Intolerant from Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen) and CUPSAT could identify the synonymous SNPs and nonsynonymous SNPs (nsSNPs), which are predicted to be deleterious and nondeleterious, respectively. Similar tools were used to predict the impact of single amino acid substitutions on CTSB protein activity. The FASTSNP server and UTRscan were used to predict the influence on splicing regulations. The stability and solvent-accessible surface area of modeled mutated proteins were analyzed using PBEQ solver and NetASA view. Furthermore, the DSP program was used to determine the secondary structures of the modeled protein. Results: A total of 999 SNPs in CTSB were retrieved from the SNP database; 55 nsSNPs, 35 synonymous SNPs, 165 mRNA were found in the 3´untranslated region SNPs, 12 SNPs were found in the 5´untranslated region in addition to 732 intronic SNPs. Potential functions of SNPs in the CTSB gene were identified using different web servers. For example, SIFT, PolyPhen and CUPSAT servers predicted ten nsSNPs to be intolerant, three nsSNPs to be damaging and eight nsSNPs to have the potential to destabilize protein structure. The FASTSNP server predicted 12 SNPs to influence splicing regulation, whereas two SNPs could predict a risk in the range of 3–4 (medium to high). Furthermore, mutant proteins were modeled and the total energy values were compared with the native CTSB protein. It was observed that on the surface of the protein, a mutation from threonine to serine at position 235 (rs17573) caused the greatest impact on stability. Conclusion: The genome-wide association studies database has already found rs7003814 of the CTSB gene reported against Alzheimer’s disease. Our study demonstrates the presence of other deleterious nsSNPs, which may play a crucial role in predicting Alzheimer’s disease risk.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Gautam Buddh Technical University, Lucknow 227202, Uttar Pradesh, India
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow-226021, Uttar Pradesh, India.
| | - Amit K Tiwari
- Department of Biomedical Sciences, College of Veterinary Medicine, Nursing & Allied Health, Tuskegee University, Tuskegee, AL 36088, USA
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI University, 10, Institutional Area, Vasantkunj, New Delhi 110070, India
| | | | - Prahlad K Seth
- Bioinformatics Centre, Biotech Park, Sector-G, Jankipuram, Lucknow-226021, Uttar Pradesh, India
| |
Collapse
|
13
|
Meier I, Fellini L, Jakovcevski M, Schachner M, Morellini F. Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice. Hippocampus 2011; 20:1027-36. [PMID: 19739230 DOI: 10.1002/hipo.20701] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The growth arrest specific 5 (gas5) is a noncoding protein gene that hosts small nucleolar RNAs. Based on the observation that gas5 RNA level in the brain is highest in the hippocampus and remarkably enhanced in aged mice, we tested the hypothesis that gas5 is involved in functions controlled by the hippocampus and known to be affected by age, such as spatial learning and novelty-induced behaviors. We show that aged (22-month-old) C57BL/6 male mice have spatial-learning impairments, reduced novelty-induced exploration, and enhanced gas5 RNA levels in the hippocampus compared to young (3-month-old) mice. At both ages, levels of gas5 RNA in the hippocampus negatively correlated with novelty-induced exploration in the open field and elevated-plus maze tests. No correlations were found between gas5 RNA levels in the hippocampus and performance in the water maze test. The expression of gas5 RNA in the rest of the brain did not correlate with any behavioral parameter analyzed. Because variations in novelty-induced behaviors could be caused by stressfull experiences, we analyzed whether gas5 RNA levels in the hippocampus are regulated by acute stressors. We found that gas5 RNA levels in the hippocampus were upregulated by 50% 24 h after a psychogenic stressor (60-min olfactory contact with a rat) but were unchanged after exposure to an unfamiliar environment or after acquisition of new spatial information in a one-trial learning task. The present results suggest that strong psychogenic stressors upregulate gas5 RNA in the hippocampus, which in turn affects novelty-induced responses controlled by this region. We hypothesize that long-life exposure to stressors causes an age-dependent increase in hippocampal gas5 RNA levels, which could be responsible for age-related reduced novelty-induced behaviors, thus suggesting a new mechanism by which ageing and stress affect hippocampal function.
Collapse
Affiliation(s)
- Ingo Meier
- Universitätsklinikum Hamburg-Eppendorf, Zentrum für Molekulare Neurobiologie Hamburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Perina D, Korolija M, Roller M, Harcet M, Jeličić B, Mikoč A, Cetković H. Over-represented localized sequence motifs in ribosomal protein gene promoters of basal metazoans. Genomics 2011; 98:56-63. [PMID: 21457775 DOI: 10.1016/j.ygeno.2011.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 12/29/2022]
Abstract
Equimolecular presence of ribosomal proteins (RPs) in the cell is needed for ribosome assembly and is achieved by synchronized expression of ribosomal protein genes (RPGs) with promoters of similar strengths. Over-represented motifs of RPG promoter regions are identified as targets for specific transcription factors. Unlike RPs, those motifs are not conserved between mammals, drosophila, and yeast. We analyzed RPGs proximal promoter regions of three basal metazoans with sequenced genomes: sponge, cnidarian, and placozoan and found common features, such as 5'-terminal oligopyrimidine tracts and TATA-boxes. Furthermore, we identified over-represented motifs, some of which displayed the highest similarity to motifs abundant in human RPG promoters and not present in Drosophila or yeast. Our results indicate that humans over-represented motifs, as well as corresponding domains of transcription factors, were established very early in metazoan evolution. The fast evolving nature of RPGs regulatory network leads to formation of other, lineage specific, over-represented motifs.
Collapse
Affiliation(s)
- Drago Perina
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
15
|
Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3:ra8. [PMID: 20124551 DOI: 10.1126/scisignal.2000568] [Citation(s) in RCA: 944] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The availability of nutrients influences cellular growth and survival by affecting gene transcription. Glucocorticoids also influence gene transcription and have diverse activities on cell growth, energy expenditure, and survival. We found that the growth arrest-specific 5 (Gas5) noncoding RNA, which is abundant in cells whose growth has been arrested because of lack of nutrients or growth factors, sensitized cells to apoptosis by suppressing glucocorticoid-mediated induction of several responsive genes, including the one encoding cellular inhibitor of apoptosis 2. Gas5 bound to the DNA-binding domain of the glucocorticoid receptor (GR) by acting as a decoy glucocorticoid response element (GRE), thus competing with DNA GREs for binding to the GR. We conclude that Gas5 is a "riborepressor" of the GR, influencing cell survival and metabolic activities during starvation by modulating the transcriptional activity of the GR.
Collapse
Affiliation(s)
- Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA.
| | | | | | | | | |
Collapse
|
16
|
Opdenaker LM, Farach-Carson MC. Rapamycin selectively reduces the association of transcripts containing complex 5' UTRs with ribosomes in C4-2B prostate cancer cells. J Cell Biochem 2009; 107:473-81. [PMID: 19347904 PMCID: PMC2913290 DOI: 10.1002/jcb.22145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
mTOR pathway inhibitors, specifically rapamycin and its derivatives, are promising therapeutics that targets downstream pathways including protein translation. We examined the effects of a series of inhibitors targeting various pathways on ribosomal polysome distribution, overall translation rates, and translation of specific mRNAs in the bone derived prostate cancer cell line, C4-2B. Treatment with either rapamycin, PD98059 or LY294002 failed to change the distribution of polysomes in sucrose gradients. Although no change in the accumulation of heavy polysomes was observed, there was an overall decrease in the rate of translation caused by treatment with rapamycin or LY294002. Inhibiting the MAPK pathway with PD98059 decreased overall translation by 20%, but had no effect on mRNAs containing a 5' terminal oligopyrimidine tract (TOP) sequences or those with complex 5' UTRs. In contrast, treatment with rapamycin for 24 h reduced overall translation by approximately 45% and affected the translation of mRNAs with complex 5' UTRs, specifically VEGF and HIF1alpha. After 24 h, LY294002 treatment alone decreased overall translation by 60%, more than was observed with rapamycin. Although LY294002 and similar inhibitors are effective at blocking prostate cancer cell growth, they act upstream of AKT and PTEN and cancer cells can find a way to bypass this inhibition. Thus, we propose that inhibiting downstream targets such as mTOR or targets of mTOR will provide rational approaches to developing new combination therapies focused on reducing growth of prostate cancer after arrival in the bone environment.
Collapse
Affiliation(s)
- Lynn M. Opdenaker
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
- Center for Translational Cancer Research, University of Delaware, Newark, Delaware 19716
| | - Mary C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
- Center for Translational Cancer Research, University of Delaware, Newark, Delaware 19716
- Department of Material Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
17
|
Genome-wide analysis of chicken snoRNAs provides unique implications for the evolution of vertebrate snoRNAs. BMC Genomics 2009; 10:86. [PMID: 19232134 PMCID: PMC2653536 DOI: 10.1186/1471-2164-10-86] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 02/22/2009] [Indexed: 01/02/2023] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) represent one of the largest groups of functionally diverse trans-acting non-protein-coding (npc) RNAs currently known in eukaryotic cells. Chicken snoRNAs have been very poorly characterized when compared to other vertebrate snoRNAs. A genome-wide analysis of chicken snoRNAs is therefore of great importance to further understand the functional evolution of snoRNAs in vertebrates. Results Two hundred and one gene variants encoding 93 box C/D and 62 box H/ACA snoRNAs were identified in the chicken genome and are predicted to guide 86 2'-O-ribose methylations and 69 pseudouridylations of rRNAs and spliceosomal RNAs. Forty-four snoRNA clusters were grouped into four categories based on synteny characteristics of the clustered snoRNAs between chicken and human. Comparative analyses of chicken snoRNAs revealed extensive recombination and separation of guiding function, with cooperative evolution between the guiding duplexes and modification sites. The gas5-like snoRNA host gene appears to be a hotspot of snoRNA gene expansion in vertebrates. Our results suggest that the chicken is a good model for the prediction of functional snoRNAs, and that intragenic duplication and divergence might be the major driving forces responsible for expansion of novel snoRNA genes in the chicken genome. Conclusion We have provided a detailed catalog of chicken snoRNAs that aids in understanding snoRNA gene repertoire differences between avians and other vertebrates. Our genome-wide analysis of chicken snoRNAs improves annotation of the 'darkness matter' in the npcRNA world and provides a unique perspective into snoRNA evolution in vertebrates.
Collapse
|
18
|
Yamashita R, Suzuki Y, Takeuchi N, Wakaguri H, Ueda T, Sugano S, Nakai K. Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Res 2008; 36:3707-15. [PMID: 18480124 PMCID: PMC2441802 DOI: 10.1093/nar/gkn248] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 03/25/2008] [Accepted: 04/17/2008] [Indexed: 12/03/2022] Open
Abstract
Although the knowledge accumulated on the transcriptional regulations of eukaryotes is significant, the knowledge on their translational regulations remains limited. Thus, we performed a comprehensive detection of terminal oligo-pyrimidine (TOP), which is one of the well-characterized cis-regulatory motifs for translational controls located immediately downstream of the transcriptional start sites of mRNAs. Utilizing our precise 5'-end information of the full-length cDNAs, we could screen 1645 candidate TOP genes by position specific matrix search. Among them, not only 75 out of 78 ribosomal protein genes but also eight previously identified non-ribosomal-protein TOP genes were included. We further experimentally validated the translational activities of 83 TOP candidate genes. Clear translational regulations exerted on the stimulation of 12-O-tetradecanoyl-1-phorbol-13-acetate for at least 41 of them was observed, indicating that there should be a few hundreds of human genes which are subjected to regulation at translation levels via TOPs. Our result suggests that TOP genes code not only formerly characterized ribosomal proteins and translation-related proteins but also a wider variety of proteins, such as lysosome-related proteins and metabolism-related proteins, playing pivotal roles in gene expression controls in the majority of cellular mRNAs.
Collapse
Affiliation(s)
- Riu Yamashita
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Nono Takeuchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Hiroyuki Wakaguri
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Takuya Ueda
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Sumio Sugano
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 and Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), 4-5-3 Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
19
|
Doyle F, Zaleski C, George AD, Stenson EK, Ricciardi A, Tenenbaum SA. Bioinformatic tools for studying post-transcriptional gene regulation : The UAlbany TUTR collection and other informatic resources. Methods Mol Biol 2008; 419:39-52. [PMID: 18369974 DOI: 10.1007/978-1-59745-033-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The untranslated regions (UTRs) of many mRNAs contain sequence and structural motifs that are used to regulate the stability, localization, and translatability of the mRNA. It should be possible to discover previously unidentified RNA regulatory motifs by examining many related nucleotide sequences, which are assumed to contain a common motif. This is a general practice for discovery of DNA-based sequence-based patterns, in which alignment tools are heavily exploited. However, because of the complexity of sequential and structural components of RNA-based motifs, simple-alignment tools are frequently inadequate. The consensus sequences they find frequently have the potential for significant variability at any given position and are only loosely characterized. The development of RNA-motif discovery tools that infer and integrate structural information into motif discovery is both necessary and expedient. Here, we provide a selected list of existing web-accessible algorithms for the discovery of RNA motifs, which, although not exhaustive, represents the current state of the art. To facilitate the development, evaluation, and training of new software programs that identify RNA motifs, we created the UAlbany training UTR (TUTR) database, which is a collection of validated sets of sequences containing experimentally defined regulatory motifs. Presently, eleven training sets have been generated with associated indexes and "answer sets" provided that identify where the previously characterized RNA motif [the iron responsive element (IRE), AU-rich class-2 element (ARE), selenocysteine insertion sequence (SECIS), etc.] resides in each sequence. The UAlbany TUTR collection is a shared resource that is available to researchers for software development and as a research aid.
Collapse
Affiliation(s)
- Francis Doyle
- Department of Biomedical Sciences, University at Albany-SUNY, School of Public Health, Rensselaer, NY, USA
| | | | | | | | | | | |
Collapse
|
20
|
Makarova JA, Kramerov DA. Small nucleolar RNA genes. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Twiss JL, van Minnen J. New insights into neuronal regeneration: the role of axonal protein synthesis in pathfinding and axonal extension. J Neurotrauma 2006; 23:295-308. [PMID: 16629617 DOI: 10.1089/neu.2006.23.295] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein synthesis in dendrites has become an accepted cellular mechanism that contributes to activity-dependent responses in the post-synaptic neuron. Although it was argued that protein synthesis does not occur in axons, early studies from a number of groups provided evidence for the presence of RNAs and active protein synthesis machinery in both invertebrate and vertebrate axons. Work over the past decade has confirmed these early findings and has proven the capability of axons to locally synthesize some of their own proteins. The functional significance of this localized protein synthesis remained largely unknown until recent years. Recent studies have shown that mRNA translation in developing and mature axons plays a role in axonal growth. In developing axons, protein synthesis allows the distal axon to autonomously respond to guidance cues by rapidly changing its direction of outgrowth. In addition, local proteolysis of axonal proteins contributes axonal guidance and growth cone initiation. This local synthesis and degradation of proteins are likely to provide novel insights into how growing axons navigate through their complex environment. In mature axons, injury triggers formation of a growth cone through localized protein synthesis, and moreover, in these injured axons locally synthesized proteins provide a retrogradely transported signal that can enhance regenerative responses. The intrinsic capability for axons to autonomously regulate local protein levels can be modulated by exogenous stimuli providing opportunities for enhancing regeneration. In this review, the concept of axonal protein synthesis is discussed from a historical perspective. Further, the implications of axonal protein synthesis and proteolysis for neural repair are considered.
Collapse
Affiliation(s)
- Jeffery L Twiss
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | |
Collapse
|
22
|
Makarova JA, Kramerov DA. Noncoding RNA of U87 host gene is associated with ribosomes and is relatively resistant to nonsense-mediated decay. Gene 2005; 363:51-60. [PMID: 16226852 DOI: 10.1016/j.gene.2005.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/17/2005] [Accepted: 08/18/2005] [Indexed: 12/01/2022]
Abstract
Non-coding RNAs are involved in many cellular processes. In particular, most of C/D box small nucleolar RNAs (snoRNAs) function as guide RNAs in site-specific 2'-O-methylation of rRNAs. While most snoRNA genes reside in introns of protein-coding genes, here we demonstrated an unusual snoRNA gene occupying an intron of a previously unknown non-protein-coding gene U87HG. We characterized this host gene in human, mouse, rat, and dog. It is a member of 5'TOP gene family, which includes many translation apparatus genes. U87HG RNA carried multiple stop-codons and was associated with ribosomes, suggesting that it may be a target for nonsense-mediated mRNA decay (NMD), a process that eliminates transcripts bearing nonsense mutations. Surprisingly, we found that U87HG RNA was hardly susceptible to NMD. Possible mechanisms (translation reinitiation, ribosomal leaky scanning, and low efficiency of translation) of this phenomenon are discussed. Unlike transcripts of four other known non-protein-coding host genes, U87HG RNA shows a relatively high degree of conservation suggesting a selective pressure and a possible functional activity of U87HG apart from producing U87 snoRNA.
Collapse
Affiliation(s)
- Julia A Makarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
23
|
Brumby A, Secombe J, Horsfield J, Coombe M, Amin N, Coates D, Saint R, Richardson H. A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation identifies novel regulators of S-phase entry in Drosophila. Genetics 2005; 168:227-51. [PMID: 15454540 PMCID: PMC1448096 DOI: 10.1534/genetics.104.026617] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55,000 EMS or X-ray-mutagenized flies for second or third chromosome mutations that dominantly modified the DmcycEJP rough eye phenotype. We have focused on the DmcycEJP suppressors, S(DmcycEJP), to identify novel negative regulators of S-phase entry. There are 18 suppressor gene groups with more than one allele and several genes that are represented by only a single allele. All S(DmcycEJP) tested suppress the DmcycEJP rough eye phenotype by increasing the number of S phases in the postmorphogenetic furrow S-phase band. By testing candidates we have identified several modifier genes from the mutagenic screen as well as from the deficiency screen. DmcycEJP suppressor genes fall into the classes of: (1) chromatin remodeling or transcription factors; (2) signaling pathways; and (3) cytoskeletal, (4) cell adhesion, and (5) cytoarchitectural tumor suppressors. The cytoarchitectural tumor suppressors include scribble, lethal-2-giant-larvae (lgl), and discs-large (dlg), loss of function of which leads to neoplastic tumors and disruption of apical-basal cell polarity. We further explored the genetic interactions of scribble with S(DmcycEJP) genes and show that hypomorphic scribble mutants exhibit genetic interactions with lgl, scab (alphaPS3-integrin--cell adhesion), phyllopod (signaling), dEB1 (microtubule-binding protein--cytoskeletal), and moira (chromatin remodeling). These interactions of the cytoarchitectural suppressor gene, scribble, with cell adhesion, signaling, cytoskeletal, and chromatin remodeling genes, suggest that these genes may act in a common pathway to negatively regulate cyclin E or S-phase entry.
Collapse
Affiliation(s)
- Anthony Brumby
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
de Turris V, Di Leva G, Caldarola S, Loreni F, Amaldi F, Bozzoni I. TOP promoter elements control the relative ratio of intron-encoded snoRNA versus spliced mRNA biosynthesis. J Mol Biol 2004; 344:383-94. [PMID: 15522292 DOI: 10.1016/j.jmb.2004.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/02/2004] [Accepted: 09/21/2004] [Indexed: 12/01/2022]
Abstract
In vertebrates almost all snoRNAs are encoded in introns of a specific subclass of polII transcripts: the TOP genes. The majority of these RNAs originate through debranching of the spliced introns, the rest through endonucleolytic cleavage of the precursor that contains them. In both cases it has been suggested that snoRNP factors associate at early steps during transcription and control snoRNA biogenesis. Here, we analyzed the specific case of the U16 snoRNA that was shown to originate mainly through endonucleolytic cleavage. We show that TOP promoter elements determine a specific ratio of snoRNA and mRNA production. Under the control of these sequences the snoRNA is likely to originate from both splicing and cleavage of the pre-mRNA. Conversely, canonical polII promoter elements seem not to be compatible with snoRNA release through the cleavage reaction and produce a lower snoRNA/mRNA ratio. In addition, we show that the proximal part of the TOP promoter is responsible for this peculiar post-transcriptional process that controls the relative ratio between snoRNA and mRNA.
Collapse
Affiliation(s)
- Valeria de Turris
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology, University "La Sapienza" P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Ledda M, Di Croce M, Bedini B, Wannenes F, Corvaro M, Boyl PP, Caldarola S, Loreni F, Amaldi F. Effect of 3'UTR length on the translational regulation of 5'-terminal oligopyrimidine mRNAs. Gene 2004; 344:213-20. [PMID: 15656987 DOI: 10.1016/j.gene.2004.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 07/30/2004] [Accepted: 09/28/2004] [Indexed: 11/29/2022]
Abstract
In Vertebrates, all genes coding for ribosomal proteins, as well as those for other proteins implicated in the production and function of translation machinery, are regulated by mitogenic and nutritional stimuli, at the translational level. A cis-regulatory element necessary for this regulation is the typical 5'UTR, common to all ribosomal protein mRNAs, which always starts at the 5' end with several pyrimidines. Having noticed that the 3'UTR of all ribosomal protein mRNAs is much shorter than most cellular mRNAs, we have now studied the possible implication of this 3'UTR feature in the translational regulation. For this purpose, we constructed a number of chimeric genes whose transcribed mRNAs contain: (1) the 5'UTR of ribosomal protein S6 mRNA or, as a control, of beta-actin mRNA; (2) the EGFP reporter coding sequence from the starting AUG to the stop codon; (3) different 3'UTRs of various lengths. These constructs have been stably transfected in human HEK293 cells, and the translation regulation of the expressed chimeric mRNAs has been analyzed for translation efficiency, in growing and in serum starved cells, by the polysome association assay. The results obtained indicate that, while the typical growth-associated translational regulation is bestowed on an mRNA by the pyrimidine sequence containing 5'UTR, the stringency of regulation depends on the short size of the 3'UTR.
Collapse
Affiliation(s)
- Mario Ledda
- Dipartimento di Biologia, Università di Roma Tor Vergata, via della Ricerca Scientifica, 00133 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kiss AM, Jády BE, Bertrand E, Kiss T. Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol 2004; 24:5797-807. [PMID: 15199136 PMCID: PMC480876 DOI: 10.1128/mcb.24.13.5797-5807.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/23/2004] [Accepted: 04/01/2004] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine, the most abundant modified nucleoside in RNA, is synthesized by posttranscriptional isomerization of uridines. In eukaryotic RNAs, site-specific synthesis of pseudouridines is directed primarily by box H/ACA guide RNAs. In this study, we have identified 61 novel putative pseudouridylation guide RNAs by construction and characterization of a cDNA library of human box H/ACA RNAs. The majority of the new box H/ACA RNAs are predicted to direct pseudouridine synthesis in rRNAs and spliceosomal small nuclear RNAs. We can attribute RNA-directed modification to 79 of the 97 pseudouridylation sites present in the human 18S, 5.8S, and 28S rRNAs and to 11 of the 21 pseudouridines reported for the U1, U2, U4, U5, and U6 spliceosomal RNAs. We have also identified 12 novel box H/ACA RNAs which lack apparent target pseudouridines in rRNAs and small nuclear RNAs. These putative guide RNAs likely function in the pseudouridylation of some other types of cellular RNAs, suggesting that RNA-guided pseudouridylation is more general than assumed before. The genomic organization of the new box H/ACA RNA genes indicates that in human cells, all box H/ACA pseudouridylation guide RNAs are processed from introns of pre-mRNA transcripts which either encode a protein product or lack protein-coding capacity.
Collapse
Affiliation(s)
- Arnold M Kiss
- Laboratoire de Biologie Moleculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Toulouse, France
| | | | | | | |
Collapse
|
27
|
Pian JP, Huang TL, Tsai PC, Shi JP, Cu H, Pan BT. A 32 kDa protein?whose phosphorylation correlates with oncogenic Ras-induced cell cycle arrest in activatedXenopus egg extracts?is identified as ribosomal protein S6. J Cell Physiol 2004; 201:305-19. [PMID: 15334665 DOI: 10.1002/jcp.20069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oncogenic Ras induces cell-cycle arrest in mammalian cells and in fertilized Xenopus eggs. How oncogenic Ras induces cell-cycle arrest remains unclear. We previously showed that oncogenic Ras induces cell-cycle arrest in activated Xenopus egg extracts (cycling extracts) and that the induced cell-cycle arrest correlates with hyperphosphorylation of a 32 kDa protein. However, the identity of the 32 kDa protein was not known. By using a sucrose density-gradient centrifugation, Triton X-100-acetic acid-urea (TAU)-gel electrophoresis, composite agarose-polyacrylamide gel electrophoresis (CAPAGE), SDS-PAGE, and partial tryptic peptide sequence analysis, the 32 kDa protein has now been identified as S6, a 40S subunit ribosomal protein. Hence, our results indicate that the oncogenic Ras-induced cell-cycle arrest is correlated with hyperphosphorylation of S6, suggesting that phosphorylation of S6 plays an important role in the induced cell-cycle arrest. It has been shown that conditional deletion of gene encoding S6 in mammalian cells prevents proliferation, demonstrating the importance of S6 in cell proliferation. The exact role S6 plays in cell proliferation is unclear. However, phosphorylation of S6 has been implicated in the regulation of protein synthesis. Thus, our results are consistent with the concept that oncogenic Ras induces S6 phosphorylation to influence protein synthesis, thereby contributing to the cell-cycle arrest. In addition, our results also demonstrate that composite agarose-polyacrylamide gel electrophoresis is suitable for the separation of large molecular complexes.
Collapse
Affiliation(s)
- Jerry Pinghwa Pian
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Berger SA. Increased calcium influx and ribosomal content correlate with resistance to endoplasmic reticulum stress-induced cell death in mutant leukemia cell lines. J Biol Chem 2003; 279:6507-16. [PMID: 14660643 DOI: 10.1074/jbc.m306117200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell clones were derived by treatment of HL-60 cells with stepwise increasing concentrations of econazole (Ec), an imidazole antifungal that blocks Ca2+ influx and induces endoplasmic reticulum (ER) stress-related cell death in multiple mammalian cell types. Clones exhibit 20- to more than 300-fold greater resistance to Ec. Unexpectedly, they also display stable cross-resistance to tunicamycin, thapsigargin, dithiothreitol, and cycloheximide but not doxorubicin, etoposide, or Fas ligand. Phenotypic analysis indicates that the cells display increased store-operated calcium influx and resistance to ER Ca2+ store depletion by Ec. E2R2, the most resistant clone, was observed to maintain protein synthesis levels after treatment with Ec or thapsigargin. Expression of GRP78, an ER-based chaperone, was induced by these ER stress treatments but to equal degrees in HL-60 and E2R2 cells. By using microarray analysis, at least 15 ribosomal protein genes were found to be overexpressed in E2R2 compared with HL-60 cells. We also found that ribosomal protein content was increased by 30% in E2R2 as well as other clones. The resistance phenotype was partially reversed by the ribosome-inactivating protein saporin. Therefore, increased store-operated calcium influx, resistance to ER Ca2+ store depletion, and overexpression of ribosomal proteins define a novel phenotype of ER stress-associated multidrug resistance.
Collapse
Affiliation(s)
- Yicheng Zhang
- Arthritis and Immune Disorder Research Centre, University Health Network and the Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | |
Collapse
|
29
|
Feldker DEM, Datson NA, Veenema AH, Proutski V, Lathouwers D, De Kloet ER, Vreugdenhil E. GeneChip analysis of hippocampal gene expression profiles of short- and long-attack-latency mice: Technical and biological implications. J Neurosci Res 2003; 74:701-16. [PMID: 14635221 DOI: 10.1002/jnr.10800] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To gain insight into the molecular mechanisms underlying the behavioral differences between two mouse lines genetically selected for long and short attack latency (LAL and SAL mice, respectively), we have recently applied the large-scale gene expression profiling method known as serial analysis of gene expression (SAGE) to generate hippocampal gene expression profiles of these mice. The aim of the present study is to extend and validate the SAGE expression profile of hippocampi of LAL and SAL mice using GeneChips (Affymetrix, Santa Clara, CA; one array per mouse, n = 5 per mouse line). As was the case with SAGE, GeneChips detect only medium- to high-abundance genes in the hippocampus. Extensive analysis of GeneChip data using very stringent parameters shows differential expression of 122 genes, all except one of which were expressed at higher levels in LAL mice (P < 0.01). As predicted by SAGE, our data indicate higher expression of several cytoskeleton genes in LAL mice, suggesting longer axonal and dendritic projections in the hippocampus of these mice. This is consistent with our tentative model, in which the behavioral differences between LAL and SAL mice may be related to structural differences in the hippocampus. In addition, a group of 76 genes with diverse biological function and 46 expressed sequence tags (ESTs) were all expressed at higher levels in LAL mice. A novel finding in this study was the significantly lower expression of only a single gene, growth arrest-specific gene (gas5), in LAL mice. As gas5 does not encode a protein but several small nuclear RNAs, our data suggest that small RNAs may contribute to the molecular mechanisms underlying the extreme behavioral differences between LAL and SAL mice.
Collapse
Affiliation(s)
- Dorine E M Feldker
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modifications (2'-O-ribose methylation and pseudouridylation). Their genomic organization show great flexibility: some are individually or polycistronically transcribed, while others are encoded within introns of other genes. Here, we present an evolutionary analysis of the U49 gene in seven species. In all species analyzed, U49 contains the typical hallmarks of C and D box motifs, and a conserved 12-15 nt sequence complementary to rRNA that define them as homologs. In mouse, human, and Drosophila U49 is found encoded within introns of different genes, and in plants it is transcribed polycistronically from four different locations. In addition, U49 has two copies in two different introns of the RpL14 gene in Drosophila. The results indicate a substantial degree of duplication and translocation of the U49 gene in evolution. In light of its variable organization we discuss which of the two proposed mechanisms of rearrangement has acted upon the U49 snoRNA gene: chromosomal duplication or transposition through an RNA intermediate.
Collapse
Affiliation(s)
- Espen Enerly
- Division of Molecular Biology, Institute of Biology, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
31
|
Zhu J, Spencer ED, Kaspar RL. Differential translation of TOP mRNAs in rapamycin-treated human B lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:50-5. [PMID: 12850272 DOI: 10.1016/s0167-4781(03)00117-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TOP mRNAs (contain a 5' terminal oligopyrimidine tract) are differentially translated in rapamycin-treated human B lymphocytes. Following rapamycin treatment, ribosomal protein (rp) and translation elongation factor TOP mRNAs were translationally repressed, whereas hnRNP A1 TOP mRNA was not. Poly(A)-binding protein (Pabp1) TOP mRNA was translationally repressed under all conditions tested. To investigate the mechanism involved, chimeric mRNAs containing the hnRNP A1 5' untranslated region (UTR) linked to the human growth hormone (hGH) reporter were analyzed. Wild-type hnRNP A1 construct mRNA behaved similarly to endogenous hnRNP A1, whereas a single mutation (guanosine to cytidine) within the TOP element resulted in increased translational regulation. These results suggest that TOP mRNA translation can be modulated and that all TOP mRNAs are not translated with equal efficiency.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | | |
Collapse
|
32
|
Hornstein E, Tang H, Meyuhas O. Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:477-84. [PMID: 12762050 DOI: 10.1101/sqb.2001.66.477] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E Hornstein
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
33
|
Abstract
Genomic array analysis of endogenous mammalian ribonucleoproteins has recently revealed three novel findings: (1) mRNA binding proteins are associated with unique subpopulations of messages, (2) the compositions of these mRNA subsets can vary with growth conditions, and (3) the same mRNA species can be found in multiple mRNP complexes. Based on these and other findings, we propose a model of posttranscriptional gene expression in which mRNA binding proteins regulate mRNAs as subpopulations during cell growth and development. This model predicts that functionally related genes are regulated posttranscriptionally as groups by specific mRNA binding proteins that recognize sequence elements in common among the mRNAs.
Collapse
Affiliation(s)
- Jack D Keene
- Center for RNA Biology, Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
34
|
Renzi F, Filippini D, Loreni F, Bozzoni I, Caffarelli E. Characterization of the sequences encoding for Xenopus laevis box C/D snoRNP Nop56 protein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1575:26-30. [PMID: 12020815 DOI: 10.1016/s0167-4781(02)00233-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nop56p was initially identified in yeast as the third common component of the ribonucleoprotein particles (snoRNPs) assembled on box C/D small nucleolar RNAs (snoRNAs). Thereafter, the characterization of Nop56p homologs in Archaea and in several eukaryotes pointed to the highly conserved structure of this factor. Studies in yeast indicate that Nop56 is not required for the stability of box C/D snoRNAs. Through the isolation of a Xenopus laevis Nop56 cDNA clone, we have been able to characterize the X. laevis Nop56 protein (XNop56p). We showed that it is a common component of X. laevis box C/D snoRNPs and that it displays the same electrophoretic mobility of p62 protein that we previously characterized as a box C/D snoRNP component, not essential for snoRNA stability in X. laevis. Mapping the 5' end of X. laevis Nop56 transcript indicates that it starts with a pyrimidine tract and the analysis of genomic clones revealed a snoRNA encoded in one of NOP56 introns. Although these two characteristics could suggest that XNOP56 is a TOP gene, it is not translationally controlled in a growth-dependent manner.
Collapse
Affiliation(s)
- Fabiana Renzi
- Istituto Pasteur Fondazione Cenci-Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 2002; 282:E1092-101. [PMID: 11934675 DOI: 10.1152/ajpendo.00208.2001] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enhanced protein synthesis in skeletal muscle after ingestion of a balanced meal in postabsorptive rats is mimicked by oral leucine administration. To assess the contribution of insulin to the protein synthetic response to leucine, food-deprived (18 h) male rats (approximately 200 g) were intravenously administered a primed-constant infusion of somatostatin (60 microg + 3 microg.kg(-1).h(-1)) or vehicle beginning 1 h before administration of leucine (1.35 g L-leucine/kg) or saline (control). Rats were killed 15, 30, 45, 60, or 120 min after leucine administration. Compared with controls, serum insulin concentrations were elevated between 15 and 45 min after leucine administration but returned to basal values by 60 min. Somatostatin maintained insulin concentrations at basal levels throughout the time course. Protein synthesis was increased between 30 and 60 min, and this effect was blocked by somatostatin. Enhanced assembly of the mRNA cap-binding complex (composed of eukaryotic initiation factors eIF4E and eIF4G) and hyperphosphorylation of the eIF4E-binding protein 1 (4E-BP1), the 70-kDa ribosomal protein S6 kinase (S6K1), and the ribosomal protein S6 (rp S6) were observed as early as 15 min and persisted for at least 60 min. Somatostatin attenuated the leucine-induced changes in 4E-BP1 and S6K1 phosphorylation and completely blocked the change in rp S6 phosphorylation but had no effect on eIF4G small middle dot eIF4E assembly. Overall, the results suggest that the leucine-induced enhancement of protein synthesis and the phosphorylation states of 4E-BP1 and S6K1 are facilitated by the transient increase in serum insulin. In contrast, assembly of the mRNA cap-binding complex occurs independently of increases in insulin and, by itself, is insufficient to stimulate rates of protein synthesis in skeletal muscle after leucine administration.
Collapse
Affiliation(s)
- Joshua C Anthony
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Avruch J, Belham C, Weng Q, Hara K, Yonezawa K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:115-54. [PMID: 11575164 DOI: 10.1007/978-3-642-56688-2_5] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J Avruch
- Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
37
|
Pesole G, Liuni S, Grillo G, Licciulli F, Mignone F, Gissi C, Saccone C. UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res 2002; 30:335-40. [PMID: 11752330 PMCID: PMC99102 DOI: 10.1093/nar/30.1.335] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 5'- and 3'-untranslated regions (5'- and 3'-UTRs) of eukaryotic mRNAs are known to play a crucial role in post-transcriptional regulation of gene expression modulating nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization and stability. UTRdb is a specialized database of 5' and 3' untranslated sequences of eukaryotic mRNAs cleaned from redundancy. UTRdb entries are enriched with specialized information not present in the primary databases including the presence of nucleotide sequence patterns already demonstrated by experimental analysis to have some functional role. All these patterns have been collected in the UTRsite database so that it is possible to search any input sequence for the presence of annotated functional motifs. Furthermore, UTRdb entries have been annotated for the presence of repetitive elements. All Internet resources we implemented for retrieval and functional analysis of 5'- and 3'-UTRs of eukaryotic mRNAs are accessible at http://bighost.area.ba.cnr.it/BIG/UTRHome/.
Collapse
Affiliation(s)
- Graziano Pesole
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Beaumont V, Zhong N, Fletcher R, Froemke RC, Zucker RS. Phosphorylation and local presynaptic protein synthesis in calcium- and calcineurin-dependent induction of crayfish long-term facilitation. Neuron 2001; 32:489-501. [PMID: 11709159 DOI: 10.1016/s0896-6273(01)00483-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Long-term facilitation at the crayfish opener muscle is elicited by prolonged high frequency stimulation, and arises from an increase in functional active zones, resulting in increased transmitter release. LTF induction depends critically upon presynaptic calcium accumulation and calcineurin (PP2B) activity. The protein synthesis dependence of this synaptic strengthening was investigated. LTF occurred without transcription, but the translation inhibitors cycloheximide and anisomycin, or local presynaptic injection of mRNA cap analog m7GpppG, impaired LTF expression. Both MAP kinase and phosphatidylinositol 3-OH kinase (PI3K) activation are implicated in this rapamycin-sensitive synaptic potentiation. This study defines an important role for protein synthesis in the expression of activity-dependent plasticity, and provides mechanistic insight for the induction of this process at presynaptic sites.
Collapse
Affiliation(s)
- V Beaumont
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
40
|
Zhu J, Hayakawa A, Kakegawa T, Kaspar RL. Binding of the La autoantigen to the 5' untranslated region of a chimeric human translation elongation factor 1A reporter mRNA inhibits translation in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1521:19-29. [PMID: 11690632 DOI: 10.1016/s0167-4781(01)00277-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human translation elongation factor 1A (EF1A) is a member of a large class of mRNAs, including ribosomal proteins and other translation elongation factors, which are coordinately translationally regulated under various conditions. Each of these mRNAs contains a terminal oligopyrimidine tract (TOP) that is required for translational control. A human growth hormone (hGH) expression construct containing the promoter region and 5' untranslated region (UTR) of EF1A linked to the hGH coding region (EF1A/hGH) was translationally repressed following rapamycin treatment in similar fashion to endogenous EF1A in human B lymphocytes. Mutation of two nucleotides in the TOP motif abolished the translational regulation. Gel mobility shift assays showed that both La protein from human B lymphocyte cytoplasmic extracts as well as purified recombinant La protein specifically bind to an in vitro-synthesized RNA containing the 5' UTR of EF1A mRNA. Moreover, extracts prepared from rapamycin-treated cells showed increased binding activity to the EF1A 5' UTR RNA, which correlates with TOP mRNA translational repression. In an in vitro translation system, recombinant La dramatically decreased the expression of EF1A/hGH construct mRNA, but not mRNAs lacking an intact TOP element. These results indicate that TOP mRNA translation may be modulated through La binding to the TOP element.
Collapse
Affiliation(s)
- J Zhu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | |
Collapse
|
41
|
Anthony TG, Reiter AK, Anthony JC, Kimball SR, Jefferson LS. Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats. Am J Physiol Endocrinol Metab 2001; 281:E430-9. [PMID: 11500297 DOI: 10.1152/ajpendo.2001.281.3.e430] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of these studies was to investigate the mechanisms by which amino acid supply regulates global rates of protein synthesis as well as the translation of ribosomal protein (rp) mRNAs in liver. In the experiments conducted, male weanling rats were trained over a 2-wk period to consume their daily food intake within 3 h. On day 14, rats were fed the control diet or an isocaloric, isonitrogenous diet lacking glycine, tryptophan, leucine, or the branched-chain amino acids (BCAA) for 1 h. Feeding Trp-, Leu-, or BCAA-deficient diets resulted in significant reductions in serum insulin, hepatic protein synthesis, eukaryotic initiation factor 2B (eIF2B) activity, and phosphorylation of eIF4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase (S6K1). Phosphorylation of eIF2alpha was inversely related to eIF2B activity under all conditions. Alterations in the hepatic synthesis of rp were assessed by changes in the distribution of rp (S4, S8, L26) mRNAs across sucrose density gradients and compared with non-rp (beta-actin, albumin) mRNAs. In all dietary treatments, non-rp mRNAs were mostly polysome associated. Conversely, the proportion of rp mRNAs residing in polysomes was two- to fivefold less in rats fed diets lacking tryptophan, leucine, or BCAA compared with rats fed the control diet. Total hepatic abundance of all mRNAs examined did not differ among treatment groups. For all parameters examined, there were no differences between rats fed the glycine-deficient diet and rats fed the control diet. The data suggest that essential amino acid (EAA) deficiency inhibits global rates of liver protein synthesis via a block in translation initiation. Additionally, the translation of rp mRNAs is preferentially repressed in association with decreased S6K1 phosphorylation.
Collapse
Affiliation(s)
- T G Anthony
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
42
|
García Flores C, Aguilar R, Reyes de la Cruz H, Albores M, Sánchez de Jiménez E. A maize insulin-like growth factor signals to a transduction pathway that regulates protein synthesis in maize. Biochem J 2001; 358:95-100. [PMID: 11485556 PMCID: PMC1222036 DOI: 10.1042/0264-6021:3580095] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin and insulin-like growth factors (IGFs) are well-characterized regulators in higher eukaryotic cells that control biological processes such as cell growth and survival, and selective translation of mRNAs. This research presents the purification of a 20 kDa protein, isolated from maize tissue, with IGF activity. The protein was purified from 48 h-germinated maize embryonic axes by G-50 Sephadex fractionation followed by affinity chromatography through a bovine insulin antibody-Sepharose column. This protein proved to significantly speed up maize germination and seedling growth. At the molecular level, Zea mays IGF (ZmIGF) enhanced phosphorylation of S6 ribosomal protein (rp) on the 40 S ribosomal subunit, in a similar way as observed when bovine insulin is applied to maize axes during germination. Rapamycin, a specific inhibitor of the insulin-stimulated signal transduction pathway, prevented S6 rp phosphorylation in maize axes. Moreover, ZmIGF stimulated [(35)S]methionine incorporation into rps, above the level of overall cytoplasmic proteins. Either incubation with anti-insulin antibody, heat treatment (60 degrees C) or trypsin digestion abolished this ZmIGF effect. It is proposed that ZmIGF is an endogenous maize growth factor that regulates the synthesis of specific proteins through a pathway similar to that of insulin or IGFs in animal tissues.
Collapse
Affiliation(s)
- C García Flores
- Departamentos de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Institutos, Ciudad Universitaria 04510, México D.F., México
| | | | | | | | | |
Collapse
|
43
|
Jiang YP, Ballou LM, Lin RZ. Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver. J Biol Chem 2001; 276:10943-51. [PMID: 11278364 DOI: 10.1074/jbc.m007758200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In cultured cells, growth factor-induced phosphorylation of two translation modulators, p70 S6 kinase and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), is blocked by nanomolar concentrations of the immunosuppressant rapamycin. Rapamycin also attenuates liver regeneration after partial hepatectomy, but it is not known if this growth-suppressive effect is due to dephosphorylation of p70 S6 kinase and/or 4E-BP1. We found that partial hepatectomy induced a transient increase in liver p70 S6 kinase activity and 4E-BP1 phosphorylation as compared with sham-operated rats. The amount of p70 S6 kinase protein in regenerating liver did not increase, but active kinase from partially hepatectomized animals was highly phosphorylated. Phosphorylated 4E-BP1 from regenerating liver was unable to form an inhibitory complex with initiation factor 4E. Rapamycin blocked the activation of p70 S6 kinase in response to partial hepatectomy in a dose-dependent manner, but 4E-BP1 phosphorylation was not inhibited. By contrast, functional phosphorylation of 4E-BP1 induced by injection of cycloheximide or growth factors was partially reversed by the drug. The mammalian target of rapamycin (mTOR) has been proposed to directly phosphorylate 4E-BP1. Western blot analysis using phospho-specific antibodies showed that phosphorylation of Thr-36/45 and Ser-64 increased in response to partial hepatectomy in a rapamycin-resistant manner. Thus, rapamycin inhibits p70 S6 kinase activation and liver regeneration, but not functional phosphorylation of 4E-BP1, in response to partial hepatectomy. These results indicate that the effect of rapamycin on 4E-BP1 function in vivo can be significantly different from its effect in cultured cells.
Collapse
Affiliation(s)
- Y P Jiang
- Departments of Pharmacology and Medicine, University of Texas Health Science Center and the Research Service, Audie L. Murphy Memorial Veterans Hospital, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
44
|
Anthony TG, Anthony JC, Yoshizawa F, Kimball SR, Jefferson LS. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr 2001; 131:1171-6. [PMID: 11285321 DOI: 10.1093/jn/131.4.1171] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of the current study was to examine the role of the branched-chain amino acid (BCAA) leucine in the regulation of hepatic protein synthesis and ribosomal protein (rp) mRNA translation in vivo. Food-deprived (18 h) male rats (200 g) were orally administered saline (control) or 270 mg leucine, isoleucine or valine and killed 1 h later. Administration of any BCAA resulted in enhanced phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) compared with controls. However, leucine was the most effective at stimulating phosphorylation of 4E-BP1 as well as the 70-kDa ribosomal protein S6 kinase (S6K1). Despite these effects on components of the translation initiation process, there were no differences in total protein synthesis rates among treatment groups. The distribution of rp (S4, S8, L26) and non-rp (albumin, beta-actin) mRNAs across sucrose density gradients showed that the preponderance of hepatic rp mRNAs in control rats was unloaded from polysomes. Of the BCAA, only leucine was the most effective in causing a shift in the distribution of rp mRNA to polysomes compared with controls. Non-rp transcripts remained mainly polysome-associated under all conditions. These results suggest that leucine is most effective among the BCAA in its ability to stimulate translation of rp mRNA in liver. Furthermore, the translation of rp mRNA is disjointed from rates of total protein synthesis in liver and related to the degree of S6K1 phosphorylation.
Collapse
Affiliation(s)
- T G Anthony
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
45
|
de Moor CH, Richter JD. Translational control in vertebrate development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:567-608. [PMID: 11131527 DOI: 10.1016/s0074-7696(01)03017-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a large role in vertebrate oocyte maturation and contributes to the induction of the germ layers. Translational regulation is also observed in the regulation of cell proliferation and differentiation. The features of an mRNA that mediate translational control are found both in the 5' and in the 3' untranslated regions (UTRs). In the 5' UTR, secondary structure, the binding of proteins, and the presence of upstream open reading frames can interfere with the association of initiation factors with the cap, or with scanning of the initiation complex. The 3' UTR can mediate translational activation by directing cytoplasmic polyadenylation and can confer translational repression by interference with the assembly of initiation complexes. Besides mRNA-specific translational control elements, the nonspecific RNA-binding proteins contribute to the modulation of translation in development. This review discusses examples of translational control and their relevance for developmental regulation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
46
|
Tycowski KT, Steitz JA. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 2001; 80:119-25. [PMID: 11302516 DOI: 10.1078/0171-9335-00150] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification guide snoRNAs either are encoded within introns and co-transcribed with the host gene pre-mRNA or are independently transcribed as mono- or polycistronic units. Different eukaryotic kingdoms utilize these coding strategies to various degrees. Intron-encoded and polycistronic snoRNAs are released from primary transcripts as pre-snoRNAs by the spliceosome or by an RNase III-like activity, respectively. In the spliceosomal pathway, the resulting intron lariat is then linearized by a debranching activity. The leader and trailer sequences of pre-snoRNAs are removed by exonucleolytic activities. The majority of snoRNA host genes encode proteins involved in the synthesis, structure or function of the translational apparatus. Several vertebrate snoRNA host genes do not appear to code for functional proteins. We have identified two unusually compact box C/D multi-snoRNA host genes in D. melanogaster, dUHG1 and dUHG2, similar in their organization to the corresponding vertebrate non-protein-coding host genes. In dUHG1 and dUHG2, the snoRNA sequences are located within introns at a conserved distance of about 75 nucleotides upstream of the 3' splice sites. Both genes initiate transcription with TOP-like sequences that share unique features with previously reported Drosophila snoRNA host genes. Although the spliced dUHG RNAs are relatively stable, they exhibit little potential for protein coding.
Collapse
Affiliation(s)
- K T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| | | |
Collapse
|
47
|
Kim S, Jung Y, Kim D, Koh H, Chung J. Extracellular zinc activates p70 S6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem 2000; 275:25979-84. [PMID: 10851233 DOI: 10.1074/jbc.m001975200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied a possible role of extracellular zinc ion in the activation of p70S6k, which plays an important role in the progression of cells from the G(1) to S phase of the cell cycle. Treatment of Swiss 3T3 cells with zinc sulfate led to the activation and phosphorylation of p70S6k in a dose-dependent manner. The activation of p70S6k by zinc treatment was biphasic, the early phase being at 30 min followed by the late phase at 120 min. The zinc-induced activation of p70S6k was partially inhibited by down-regulation of phorbol 12-myristate 13-acetate-responsive protein kinase C (PKC) by chronic treatment with phorbol 12-myristate 13-acetate, but this was not significant. Moreover, Go6976, a specific calcium-dependent PKC inhibitor, did not significantly inhibit the activation of p70S6k by zinc. These results demonstrate that the zinc-induced activation of p70S6k is not related to PKC. Also, extracellular calcium was not involved in the activation of p70S6k by zinc. Further characterization of the zinc-induced activation of p70S6k using specific inhibitors of the p70S6k signaling pathway, namely rapamycin, wortmannin, and LY294002, showed that zinc acted upstream of mTOR/FRAP/RAFT and phosphatidylinositol 3-kinase (PI3K), because these inhibitors caused the inhibition of zinc-induced p70S6k activity. In addition, Akt, the upstream component of p70S6k, was activated by zinc in a biphasic manner, as was p70S6k. Moreover, dominant interfering alleles of Akt and PDK1 blocked the zinc-induced activation of p70S6k, whereas the lipid kinase activity of PI3K was potently activated by zinc. Taken together, our data suggest that zinc activates p70S6k through the PI3K signaling pathway.
Collapse
Affiliation(s)
- S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong, Taejon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Twiss JL, Smith DS, Chang B, Shooter EM. Translational control of ribosomal protein L4 mRNA is required for rapid neurite regeneration. Neurobiol Dis 2000; 7:416-28. [PMID: 10964612 DOI: 10.1006/nbdi.2000.0293] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Under some circumstances neurons can be primed to rapidly regenerate injured neuritic processes independent of new gene expression. Such transcription-independent neurite extension occurs in adult rat sensory neurons cultured after sciatic nerve crush and in NGF-differentiated PC12 cells whose neurites have been mechanically sheared. In the PC12 cells, neurite regeneration occurs by means of translational control of mRNAs which were transcribed prior to neurite injury. The survival of such translationally regulated mRNAs is relatively short in the differentiated PC12 cells (< or =10 h). By subtractive hybridization, we have isolated a short-lived mRNA from differentiated PC12 cells. This mRNA, which encodes the ribosomal protein L4, is translationally regulated during neurite regeneration in PC12 cells. Antisense oligonucleotides to L4 mRNA inhibit neurite regeneration from the differentiated PC12 cells as well as axonal elongation from conditioned sensory neurons, indicating that ongoing translation of L4 mRNA is needed for these forms of rapid transcription-independent neurite growth. Taken together, these data point to the importance of translational regulation of existing neuronal mRNAs in the regenerative responses to neuronal injury. Although there are other examples of neuronal translational control, there are no other known neuronal proteins whose levels are regulated predominantly by translational rather than transcriptional control.
Collapse
Affiliation(s)
- J L Twiss
- Department of Pathology and Laboratory Medicine/Brain Research Institute, University of California at Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, California, 90095, USA
| | | | | | | |
Collapse
|
49
|
Kleijn M, Proud CG. Glucose and amino acids modulate translation factor activation by growth factors in PC12 cells. Biochem J 2000; 347:399-406. [PMID: 10749669 PMCID: PMC1220972 DOI: 10.1042/0264-6021:3470399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In PC12 phaeochromocytoma cells, protein synthesis is activated by epidermal and nerve growth factors (EGF and NGF). EGF and NGF also regulate a number of components of the translational machinery in these cells. Here we show that the ability of EGF and NGF to induce the phosphorylation of the 70 kDa ribosomal protein, S6 kinase, and the eukaryotic initiation factor (eIF), 4E-binding protein 1, is dependent upon the presence of amino acids (but not glucose) in the medium. This resembles the regulation of these proteins by insulin, which also requires amino acids. Glucose, but not amino acids, is required for the activation of eIF2B by EGF and NGF. In contrast, EGF and NGF can still activate protein synthesis in the absence of nutrients, suggesting that other regulatory events are important in this. In nutrient-deprived cells, an increase in the phosphorylation of eIF4E, and the assembly of the eIF4F complex by EGF and NGF, coincided with the activation of protein synthesis. In serum-starved cells, activation of protein synthesis, phosphorylation of eIF4E, and formation of the eIF4F complex, were blocked by inhibition of MEK, a component of the extracellular regulated kinase (ERK) signalling pathway. Thus the ERK pathway plays a key role in the regulation of protein synthesis in PC12 cells.
Collapse
Affiliation(s)
- M Kleijn
- Department of Anatomy and Physiology, MSI/Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | |
Collapse
|
50
|
Rybkin II, Cross ME, McReynolds EM, Lin RZ, Ballou LM. alpha(1A) adrenergic receptor induces eukaryotic initiation factor 4E-binding protein 1 phosphorylation via a Ca(2+)-dependent pathway independent of phosphatidylinositol 3-kinase/Akt. J Biol Chem 2000; 275:5460-5. [PMID: 10681523 DOI: 10.1074/jbc.275.8.5460] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the translation repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is thought to be partly responsible for increased protein synthesis induced by growth factors. This study investigated the effect of a G(q)-coupled receptor on protein synthesis and the phosphorylation state and function of 4E-BP1 in Rat-1 fibroblasts expressing the human alpha(1A) adrenergic receptor. Treatment of cells with phenylephrine (PE), a specific alpha(1) adrenergic receptor agonist, increased protein synthesis and induced the phosphorylation of 4E-BP1 and its release from translation initiation factor 4E. Although the PE-induced phosphorylation of 4E-BP1 was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002, neither phosphatidylinositol 3-kinase nor Akt, its downstream effector, is activated in cells treated with PE (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z., J. Biol. Chem. 275, 4803-4809). The effect of PE on 4E-BP1 phosphorylation was also abolished in cells depleted of intracellular Ca(2+) and in cells pretreated with calmodulin antagonists. By contrast, phosphorylation of 4E-BP1 still occurred in cells in which the Ca(2+)- and diacylglycerol-dependent isoforms of protein kinase C were down-regulated by prolonged exposure to a phorbol ester. We conclude that activation of the alpha(1A) adrenergic receptor in Rat-1 fibroblasts leads to phosphorylation of 4E-BP1 via a pathway that is Ca(2+)- and calmodulin-dependent. Phosphatidylinositol 3-kinase, Akt, and phorbol ester-sensitive protein kinase C isoforms do not appear to be required in this signaling pathway.
Collapse
Affiliation(s)
- I I Rybkin
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284, USA
| | | | | | | | | |
Collapse
|