1
|
Luo Q, Chen S, Nian H, Ma Q, Ding Y, Hao Q, Wei J, Patel JD, McElroy JS, Liu Y, Chen Y. Establishment of an Efficient Agrobacterium-Mediated Genetic Transformation System to Enhance the Tolerance of the Paraquat Stress in Engineering Goosegrass (Eleusine Indica L.). Int J Mol Sci 2023; 24:ijms24076629. [PMID: 37047599 PMCID: PMC10095498 DOI: 10.3390/ijms24076629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Eleusine indica (goosegrass) is a problematic weed worldwide known for its multi-herbicide tolerance/resistance biotype. However, a genetic transformation method in goosegrass has not been successfully established, making a bottleneck for functional genomics studies in this species. Here, we report a successful Agrobacterium-mediated transformation method for goosegrass. Firstly, we optimized conditions for breaking seed dormancy and increasing seed germination rate. A higher callus induction rate from germinated seeds was obtained in N6 than in MS or B5 medium. Then the optimal transformation efficiency of the gus reporter gene was obtained by infection with Agrobacterium tumefaciens culture of OD600 = 0.5 for 30 min, followed by 3 days of co-cultivation with 300 μmol/L acetosyringone. Concentrations of 20 mg L−1 kanamycin and 100 mg L−1 timentin were used to select the transformed calli. The optimal rate of regeneration of the calli was generated by using 0.50 mg L−1 6-BA and 0.50 mg L−1 KT in the culture medium. Then, using this transformation method, we overexpressed the paraquat-resistant EiKCS gene into a paraquat-susceptible goosegrass biotype MZ04 and confirmed the stable inheritance of paraquat-resistance in the transgenic goosegrass lines. This approach may provide a potential mechanism for the evolution of paraquat-resistant goosegrass and a promising gene for the manipulation of paraquat-resistance plants. This study is novel and valuable in future research using similar methods for herbicide resistance.
Collapse
Affiliation(s)
- Qiyu Luo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36830, USA
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Hai Nian
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qibing Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yuyao Ding
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qinwen Hao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiping Wei
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinesh D. Patel
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36830, USA
| | - Joseph Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36830, USA
| | - Yaoguang Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
3
|
Wang X, Wang X, Zhu Y, Chen X. ADME/T-based strategies for paraquat detoxification: Transporters and enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118137. [PMID: 34536650 DOI: 10.1016/j.envpol.2021.118137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a toxic, organic herbicide for which there is no specific antidote. Although banned in some countries, it is still used as an irreplaceable weed killer in others. The lack of understanding of the precise mechanism of its toxicity has hindered the development of treatments for PQ exposure. While toxicity is thought to be related to PQ-induced oxidative stress, antioxidants are limited in their ability to ameliorate the untoward biological responses to this agent. Summarized in this review are data on the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of PQ, focusing on the essential roles of individual transporters and enzymes in these processes. Based on these findings, strategies are proposed to design and test specific and effective antidotes for the clinical management of PQ poisoning.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
4
|
Xiao Q, Wang W, Qi H, Gao X, Zhu B, Li J, Wang P. Continuous hemoperfusion relieves pulmonary fibrosis in patients with acute mild and moderate paraquat poisoning. J Toxicol Sci 2020; 45:611-617. [PMID: 33012729 DOI: 10.2131/jts.45.611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acute paraquat poisoning (APP) is a serious public health problem with a high mortality rate and there is no specific antidote for APP in clinical. Early haemoperfusion (HP) treatment is effective in APP rescue. In this study, we compared the influence of routine HP and continuous HP on the survival rate and the treatment of pulmonary fibrosis in mild and moderate APP patients. Eighty-two cases of mild and moderate APP patients who were admitted to our hospital from January of 2017 to December of 2018 were selected. All patients were randomly divided into a routine haemoperfusion (HP) group (n = 40) and a continuous haemoperfusion (CHP) group (n = 42). Compared with the HP group, the 28-day survival rate of mild and moderate APP patients was elevated in the CHP group. Blood N-terminal procollagen Ш propeptide (PIIINP) levels in APP patients were positively related with paraquat (PQ) concentration (r = 0.309, P = 0.000). There were statistically significant differences in the levels of PIIINP, Collage TypeIV (CIV), transforming growth factor-beta 1 (TGF-β1), malondialdehyde (MDA), superoxide dismutase (SOD) activity and sequential organ failure assessment (SOFA) score between the two groups both on the third and seventh days after treatment, and the treatment effect of the CHP group on pulmonary fibrosis in APP patients was better than that of the HP group. In conclusion, CHP treatment had a significant therapeutic effect on mild and moderate APP patients, which could effectively improve the survival rate and relieve pulmonary fibrosis.
Collapse
Affiliation(s)
- Qingmian Xiao
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| | - Weizhan Wang
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| | - Hongna Qi
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| | - Xun Gao
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| | - Baoyue Zhu
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| | - Jing Li
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| | - Pu Wang
- Emergency Department of Harrison International Peace Hospital Affiliated to Hebei Medical University, China
| |
Collapse
|
5
|
Na JD, Choi YJ, Jun DS, Kim YC. Alleviation of paraquat-induced oxidative lung injury by betaineviaregulation of sulfur-containing amino acid metabolism despite the lack of betaine-homocysteine methyltransferase (BHMT) in the lung. Food Funct 2019; 10:1225-1234. [DOI: 10.1039/c8fo01457d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Betaine regulates sulfur-containing amino acid metabolism in the lung despite the lack of BHMT and increases pulmonary antioxidant capacity.
Collapse
Affiliation(s)
- Jong Deok Na
- College of Pharmacy
- Seoul National University
- Seoul 151-742
- Korea
| | - Yeo Jin Choi
- College of Pharmacy
- Seoul National University
- Seoul 151-742
- Korea
| | - Doo Sung Jun
- College of Pharmacy
- Seoul National University
- Seoul 151-742
- Korea
| | - Young Chul Kim
- College of Pharmacy
- Seoul National University
- Seoul 151-742
- Korea
- Research Institute of Pharmaceutical Sciences
| |
Collapse
|
6
|
Sun DZ, Song CQ, Xu YM, Wang R, Liu W, Liu Z, Dong XS. Involvement of PINK1/Parkin-mediated mitophagy in paraquat- induced apoptosis in human lung epithelial-like A549 cells. Toxicol In Vitro 2018; 53:148-159. [DOI: 10.1016/j.tiv.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
|
7
|
Fan H, Huang H, Hu L, Zhu W, Yu Y, Lou J, Hu L, Chen F. The activation of STIM1 mediates S-phase arrest and cell death in paraquat induced acute lung intoxication. Toxicol Lett 2018; 292:123-135. [DOI: 10.1016/j.toxlet.2018.04.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
|
8
|
Ratio of Injured Lung Volume Fraction in Prognosis Evaluation of Acute PQ Poisoning. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4501536. [PMID: 29651433 PMCID: PMC5832052 DOI: 10.1155/2018/4501536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 11/17/2022]
Abstract
Although paraquat (PQ) concentrations are the most reliable prognosis predictors of PQ poisoning, these laboratory tests are not readily available in all hospitals. In this study, we proposed an imaging related parameter, that is, the ratio of injured lung volume fraction, for the prognosis evaluation of acute PQ poisoning based on the correlation between disease progress and lung imaging features. An artificial neural network was trained and then used to classify the injured and normal lung regions. The ratio of injured lung volume fraction was calculated from the injured lung volume fractions in the first and second CT scans after three-dimensional reconstruction. Parameters of blood tests were collected. A significant difference was observed with respect to the ratio of injured lung volume fraction between survivors and nonsurvivors (0.73 ± 0.17 versus 0.40 ± 0.14, P < 0.001). No patients survived when the ratio of injured lung volume fraction was less than 0.3, while all patients survived as the ratio of injured lung volume fraction was greater than 0.8. Thus, the ratio of injured lung volume fraction may provide an alternative and informative measure for the prognosis of acute PQ poisoning.
Collapse
|
9
|
Abstract
Paraquat (PQ) is a widely used herbicide associated with a high mortality rate, yet, there are no effective treatments for PQ poisoning. PQ may damage alveolar type II cells leading to moderate to severe acute respiratory distress syndrome (ARDS). The present study was undertaken to show that PQ causes alveolar type II (A549) cell death and to evaluate whether chloroquine (CQ) can protect A549 cells against PQ-induced cell death. The results showed that high concentrations of PQ resulted in toxicity, as indicated by a decrease in cell viability. More importantly, for the first time, CQ was found to improve cell viability of PQ treated A549 cells. Moreover, our data demonstrated that CQ increased lysosome-associated membrane protein-1, lysosome-associated membrane protein-2 and light chain-3 expressions, suggesting that the mechanism by which CQ rescues PQ-induced cytotoxicity may be through protection of the lysosomal membrane or up-regulation of autophagy. In conclusion, our study indicates that CQ may be used as a potential drug to rescue PQ-induced ARDS.
Collapse
Affiliation(s)
- Lingjie Xu
- a Department of Emergency Medicine , Peking Union Medical College Hospital, Peking Union Medical College , Beijing , China and
| | - Zhong Wang
- b Beijing Tsinghua Hospital, Tsinghua University , Beijing , China
| |
Collapse
|
10
|
Lopert P, Patel M. Mitochondrial mechanisms of redox cycling agents implicated in Parkinson's disease. J Neural Transm (Vienna) 2015; 123:113-23. [PMID: 25749885 DOI: 10.1007/s00702-015-1386-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
Abstract
Environmental agents have been implicated in Parkinson's disease (PD) based on epidemiological studies and the ability of toxicants to replicate features of PD. However, the precise mechanisms by which toxicants induce dopaminergic toxicity observed in the idiopathic form of PD remain to be fully understood. The roles of ROS and mitochondria are strongly suggested in the mechanisms by which these toxicants exert dopaminergic toxicity. There are marked differences and similarities shared by the toxicants in increasing steady-state levels of mitochondrial ROS. Furthermore, toxicants increase steady-state mitochondrial ROS levels by stimulating the production, inhibiting the antioxidant pathways of both. This review will focus on the role of mitochondria and ROS in PD associated with environmental exposures to redox-based toxicants.
Collapse
Affiliation(s)
- Pamela Lopert
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manisha Patel
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Silva R, Carmo H, Vilas-Boas V, Barbosa DJ, Monteiro M, de Pinho PG, de Lourdes Bastos M, Remião F. Several transport systems contribute to the intestinal uptake of Paraquat, modulating its cytotoxic effects. Toxicol Lett 2015; 232:271-83. [DOI: 10.1016/j.toxlet.2014.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
|
12
|
Xu L, Xu J, Wang Z. Molecular mechanisms of paraquat-induced acute lung injury: a current review. Drug Chem Toxicol 2014; 37:130-4. [PMID: 24392656 DOI: 10.3109/01480545.2013.834361] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paraquat is an organic heterocyclic herbicide that is widely used in agriculture, especially in Asian countries. The prevalence of paraquat poisonings has increased dramatically in the past two decades in China. Nearly all paraquat poisonings resulted from intentional or accidental oral administration leading to acute lung injury and, ultimately, acute respiratory distress syndrome. The mortality rate has been reported to be greater than 90%. However, the exact toxic mechanism remains unclear. Herein, we reviewed and summarized the most recent publications related to the molecular mechanisms of paraquat-induced acute lung injury.
Collapse
Affiliation(s)
- Lingjie Xu
- Department of Emergency Medicine, Peking Union Medical Collage Hospital, Peking Union Medical Collage , Beijing , China and
| | | | | |
Collapse
|
13
|
Baltazar MT, Dinis-Oliveira RJ, Bastos MDL, Duarte JA, Carvalho F. Lysine acetylsalicylate improves the safety of paraquat formulation in rats by increasing its elimination and preventing lung and kidney injury. Toxicol Res (Camb) 2014; 3:266. [DOI: 10.1039/c3tx50102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
14
|
Vilas-Boas V, Silva R, Guedes-de-Pinho P, Carvalho F, Bastos ML, Remião F. RBE4 cells are highly resistant to paraquat-induced cytotoxicity: studies on uptake and efflux mechanisms. J Appl Toxicol 2013; 34:1023-30. [PMID: 24105845 DOI: 10.1002/jat.2926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/26/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023]
Affiliation(s)
- V. Vilas-Boas
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - R. Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - P. Guedes-de-Pinho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - F. Carvalho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - M. L. Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| | - F. Remião
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia; Universidade do Porto; Rua de Jorge Viterbo Ferreira, 228, Edifício 3, 4º piso 4050-313 Porto Portugal
| |
Collapse
|
15
|
Jo YH, Kim K, Rhee JE, Suh GJ, Kwon WY, Na SH, Alam HB. Therapeutic hypothermia attenuates acute lung injury in paraquat intoxication in rats. Resuscitation 2011; 82:487-91. [PMID: 21236547 DOI: 10.1016/j.resuscitation.2010.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/25/2010] [Accepted: 11/26/2010] [Indexed: 12/18/2022]
Abstract
AIM OF THE STUDY Paraquat intoxication induces acute lung injury and numerous fatalities have been reported. The mechanism of toxic effect of paraquat is oxidative injury and inflammation. Therapeutic hypothermia has been known to have antioxidant and anti-inflammatory effects. This study was designed to evaluate the effect of therapeutic hypothermia on paraquat intoxication. METHODS Male Sprague-Dawley rats were given 50 mg/kg of paraquat intraperitoneally and divided into the normothermia (36-38°C) group and the hypothermia (30-32°C) group after 1h of paraquat administration. The hypothermia group underwent 2 h of hypothermia followed by 2 h of rewarming. In the survival study, mortality was observed for 24 h after paraquat administration. An in the second experiment, lung tissues and plasma were harvested at 6 h after paraquat administration. RESULTS The 12 h survival rate was significantly higher in the hypothermia group than in the normothermia group (100% vs. 50%, p<0.05), but survival rates for 24 h were not different. Acute lung injury score was lower in the hypothermia group than in the normothermia group (p<0.05). Thmalondialdehyde contents of lung tissues, plasma interleukin-6 and nitrite/nitrate concentrations were significantly decreased in the HT group compared to the NT group (p<0.05). CONCLUSION Therapeutic hypothermia delayed early mortality and attenuated acute lung injury in paraquat intoxication.
Collapse
Affiliation(s)
- You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Shoaf CR, Wolpert RJ, Menzel DB. Factors Controlling Nitrosamine Formation in the Lung: A Unique Uptake System. Inhal Toxicol 2008. [DOI: 10.3109/08958378909145664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Drechsel DA, Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease. Free Radic Biol Med 2008; 44:1873-86. [PMID: 18342017 PMCID: PMC2723777 DOI: 10.1016/j.freeradbiomed.2008.02.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 12/14/2022]
Abstract
Among age-related neurodegenerative diseases, Parkinson's disease (PD) represents the best example for which oxidative stress has been strongly implicated. The etiology of PD remains unknown, yet recent epidemiological studies have linked exposure to environmental agents, including pesticides, with an increased risk of developing the disease. As a result, the environmental hypothesis of PD has developed, which speculates that chemical agents in the environment are capable of producing selective dopaminergic cell death, thus contributing to disease development. The use of environmental agents such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone, paraquat, dieldrin, and maneb in toxicant-based models of PD has become increasingly popular and provided valuable insight into the neurodegenerative process. Understanding the unique and shared mechanisms by which these environmental agents act as selective dopaminergic toxicants is critical in identifying pathways involved in PD pathogenesis. In this review, we discuss the neurotoxic properties of these compounds with specific focus on the induction of oxidative stress. We highlight landmark studies along with recent advances that support the role of reactive oxygen and reactive nitrogen species from a variety of cellular sources as potent contributors to the neurotoxicity of these environmental agents. Finally, human risk and the implications of these studies in our understanding of PD-related neurodegeneration are discussed.
Collapse
Affiliation(s)
- Derek A Drechsel
- Department of Pharmaceutical Sciences, University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
18
|
Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, Remião F, Bastos ML, Carvalho F. Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 2008; 38:13-71. [PMID: 18161502 DOI: 10.1080/10408440701669959] [Citation(s) in RCA: 571] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Paraquat dichloride (methyl viologen; PQ) is an effective and widely used herbicide that has a proven safety record when appropriately applied to eliminate weeds. However, over the last decades, there have been numerous fatalities, mainly caused by accidental or voluntary ingestion. PQ poisoning is an extremely frustrating condition to manage clinically, due to the elevated morbidity and mortality observed so far and due to the lack of effective treatments to be used in humans. PQ mainly accumulates in the lung (pulmonary concentrations can be 6 to 10 times higher than those in the plasma), where it is retained even when blood levels start to decrease. The pulmonary effects can be explained by the participation of the polyamine transport system abundantly expressed in the membrane of alveolar cells type I, II, and Clara cells. Further downstream at the toxicodynamic level, the main molecular mechanism of PQ toxicity is based on redox cycling and intracellular oxidative stress generation. With this review we aimed to collect and describe the most pertinent and significant findings published in established scientific publications since the discovery of PQ, focusing on the most recent developments related to PQ lung toxicity and their relevance to the treatment of human poisonings. Considerable space is also dedicated to techniques for prognosis prediction, since these could allow development of rigorous clinical protocols that may produce comparable data for the evaluation of proposed therapies.
Collapse
Affiliation(s)
- R J Dinis-Oliveira
- REQUIMTE, Departamento de Toxicologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
19
|
Heylings JR, Farnworth MJ, Swain CM, Clapp MJ, Elliott BM. Identification of an alginate-based formulation of paraquat to reduce the exposure of the herbicide following oral ingestion. Toxicology 2007; 241:1-10. [PMID: 17825971 DOI: 10.1016/j.tox.2007.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 12/20/2022]
Abstract
The herbicide paraquat has been widely used throughout the world for almost 50 years and is important in sustainable agriculture. When used correctly the chemical poses no known risk to human health. However, it is acutely toxic, and can be fatal, if the concentrated product is ingested orally. Despite many years of research there is no successful treatment for paraquat intoxication. In recent years we have turned our attention to understanding how we can make the product safer, if it is accidentally or intentionally consumed. We present in this paper a novel approach aimed at safening the paraquat product, Gramoxone. Following our previous research on the site and mechanism of paraquat absorption from the gastrointestinal tract we have identified a new formulation of paraquat, Gramoxone INTEON that reduces the absorption of paraquat into the blood. This new formulation contains the polysaccharide, alginate, a natural product extracted from sea-weed. We have designed a preparation of paraquat and alginate with surfactants that is herbicidally active but has the unique property that it gels on contact with gastric acid in the stomach. The resulting mixture slows the dispersion and delivery of the toxic chemical to its site of absorption in the small intestine. Alginates also protect the mucosa against the damaging influence of topical gastric irritants, like paraquat. Our studies have shown that increasing the loading of alginate between 7 and 17 g/L causes a dose-related reduction in paraquat absorption in vitro in isolated rat ileum. This is also observed in vivo, as measured by paraquat plasma kinetics in the rabbit where the Area Under Curve (AUC 0-24h) was reduced from 33.8+/-3 for Gramoxone to 12.5+/-6 (microg/mL)h for a formulation containing 17 g/L alginate. Such a reduction in systemic exposure to paraquat is expected to reduce the acute oral toxicity of the formulation. This should be particularly effective in a vomiting species such as man since we have shown in this investigation that alginates not only reduce the peak plasma paraquat values but also delay the time to peak levels. This provides the opportunity for a more effective emetic response since the highly viscous gelled material should remain in the stomach for longer than the liquid Gramoxone. Further research is required to understand and optimise the safening and herbicidal characteristics of these alginate acid-triggered gel formulations of paraquat. However, we anticipate that this alginate technology in Gramoxone INTEON could have significant benefit in reducing human mortalities associated with the herbicide.
Collapse
Affiliation(s)
- J R Heylings
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, United Kingdom.
| | | | | | | | | |
Collapse
|
20
|
Prasad K, Winnik B, Thiruchelvam MJ, Buckley B, Mirochnitchenko O, Richfield EK. Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1448-53. [PMID: 17938734 PMCID: PMC2022643 DOI: 10.1289/ehp.9932] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 07/20/2007] [Indexed: 05/09/2023]
Abstract
BACKGROUND Paraquat (PQ) has been implicated as a risk factor for the Parkinson disease phenotype (PDP) in humans and mice using epidemiologic or experimental approaches. The toxicokinetics (TK) and toxicodynamics (TD) of PQ in the brain are not well understood. OBJECTIVES The TK and TD of PQ in brain were measured after single or repeated doses. METHODS Brain regions were analyzed for PQ levels, amount of lipid peroxidation, and functional activity of the 20S proteasome. RESULTS Paraquat (10 mg/kg, ip) was found to be persistent in mouse ventral midbrain (VM) with an apparent half-life of approximately 28 days and was cumulative with a linear pattern between one and five doses. PQ was also absorbed orally with a concentration in brain rising linearly after single doses between 10 and 50 mg/kg. The level of tissue lipid peroxides (LPO) was differentially elevated in three regions, being highest in VM, lower in striatum (STR), and least in frontal cortex (FCtx), with the earliest significant elevation detected at 1 day. An elevated level of LPO was still present in VM after 28 days. Despite the cumulative tissue levels of PQ after one, three, and five doses, the level of LPO was not further increased. The activity of the 20S proteasome in the striatum was altered after a single dose and reduced after five doses. CONCLUSIONS These data have implications for PQ as a risk factor in humans and in rodent models of the PDP.
Collapse
Affiliation(s)
- Kavita Prasad
- Department of Pathology and Lab Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry New Jersey, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Bozena Winnik
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Mona J. Thiruchelvam
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry New Jersey, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
- Rutgers University, Piscataway, New Jersey, USA
| | - Oleg Mirochnitchenko
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry New Jersey, Piscataway, New Jersey, USA
| | - Eric K. Richfield
- Department of Pathology and Lab Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry New Jersey, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
- Address correspondence to E.K. Richfield, Department of Pathology and Laboratory Medicine, EOHSI, 170 Frelinghuysen Rd., Piscataway, NJ 08854 USA. Telephone: (732) 445–3729. Fax: (732) 445–0131. E-mail:
| |
Collapse
|
21
|
Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F. Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology 2006; 27:1110-22. [PMID: 16815551 DOI: 10.1016/j.neuro.2006.05.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/12/2006] [Accepted: 05/09/2006] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a multifactorial chronic progressive neurodegenerative disease influenced by age, and by genetic and environmental factors. The role of genetic predisposition in PD has been increasingly acknowledged and a number of relevant genes have been identified (e.g., genes encoding alpha-synuclein, parkin, and dardarin), while the search for environmental factors that influence the pathogenesis of PD has only recently begun to escalate. In recent years, the investigation on paraquat (PQ) toxicity has suggested that this herbicide might be an environmental factor contributing to this neurodegenerative disorder. Although the biochemical mechanism through which PQ causes neurodegeneration in PD is not yet fully understood, PQ-induced lipid peroxidation and consequent cell death of dopaminergic neurons can be responsible for the onset of the Parkinsonian syndrome, thus indicating that this herbicide may induce PD or influence its natural course. PQ has also been recently considered as an eligible candidate for inducing the Parkinsonian syndrome in laboratory animals, and can therefore constitute an alternative tool in suitable animal models for the study of PD. In the present review, the recent evidences linking PQ exposure with PD development are discussed, with the aim of encouraging new perspectives and further investigation on the involvement of environmental agents in PD.
Collapse
Affiliation(s)
- R J Dinis-Oliveira
- REQUIMTE, Department of Toxicology, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
22
|
Shultz MA, Zhang L, Gu YZ, Baker GL, Fannuchi MV, Padua AM, Gurske WA, Morin D, Penn SG, Jovanovich SB, Plopper CG, Buckpitt AR. Gene expression analysis in response to lung toxicants: I. Sequencing and microarray development. Am J Respir Cell Mol Biol 2004; 30:296-310. [PMID: 12947022 DOI: 10.1165/rcmb.2003-0214oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A key challenge in measuring gene expression changes in the lung in response to site-selective toxicants is differentiating between target and nontarget areas. The toxicity for the cytotoxicant 1-nitronaphthalene is highly localized in the airway epithelium. Target cells comprise but a fraction of the total lung cell mass; measurements from whole lung homogenates are not likely to reflect what occurs at the target site. Additionally, the use of generic microarrays to measure expression in airway epithelium may not provide a good representation of transcripts present at the site of toxic action. cDNA libraries from airway and alveolar subcompartments of rat lung were sequenced for the development of a custom microarray representative of these lung regions. We identified 7,460 nonredundant rat lung sequences. Nearly 30% of the sequences on this array are not present on the Affymetrix Rat GeneChip 230. A 20,000-element microarray was developed that delineates differences in gene expression between subcompartments. This is the first in a series of articles employing this microarray for detecting gene expression changes during acute injury produced by 1-nitronaphthalene and subsequent repair.
Collapse
Affiliation(s)
- Michael A Shultz
- Global Research, American Biosciences (SV) Corp., Sunnyvale, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.
Collapse
Affiliation(s)
- Thresia Thomas
- Department of Environmental & Community Medicine, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | |
Collapse
|
24
|
Mustafa A, Gado AM, Al-Shabanah OA, Al-Bekairi AM. Protective effect of aminoguanidine against paraquat-induced oxidative stress in the lung of mice. Comp Biochem Physiol C Toxicol Pharmacol 2002; 132:391-7. [PMID: 12161173 DOI: 10.1016/s1532-0456(02)00095-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of aminoguanidine (AG) against toxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice was investigated. A single dose of PQ (50 mg/kg, i.p.) induced lung-toxicity, manifested by significant decrease of the activity of angiotensin converting enzyme (ACE) in lung tissue indicating pulmonary capillary endothelial cell damage. Lung toxicity was further evidenced by significant decrease of total sulfhydryl (-SH) content and significant increase in lipid peroxidation measured as malondialdehyde (MDA) in lung tissues. Oral pretreatment of mice with AG (50 mg/kg) in drinking water, starting 5 days before PQ injection and continuing during the experimental period, ameliorated the lung toxicity induced by PQ. This was evidenced by a significant increase in the levels of ACE activity, a significant decrease in lung MDA content and a significant increase in the total sulfhydryl content 24 h after PQ administration. Moreover, pretreatment of mice with AG leads to an increase of the LD(50) value of paraquat. These results indicate that AG is an efficient cytoprotective agent against PQ-induced lung toxicity.
Collapse
Affiliation(s)
- Adel Mustafa
- Departments of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
25
|
Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K, Hayase N, Kimura K, Shiono H. Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain Res 2001; 906:135-42. [PMID: 11430870 DOI: 10.1016/s0006-8993(01)02577-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to the structural similarity to N-methyl-4-phenyl pyridinium (MPP(+)), paraquat might induce dopaminergic toxicity in the brain. However, its blood--brain barrier (BBB) penetration has not been well documented. We studied the manner of BBB penetration and neural cell uptake of paraquat using a brain microdialysis technique with HPLC/UV detection in rats. After subcutaneous administration, paraquat appeared dose-dependently in the dialysate. In contrast, MPP(+) could not penetrate the BBB in either control or paraquat pre-treated rats. These data indicated that the penetration of paraquat into the brain would be mediated by a specific carrier process, not resulting from the destruction of BBB function by paraquat itself or a paraquat radical. To examine whether paraquat was carried across the BBB by a certain amino acid transporter, L-valine or L-lysine was pre-administered as a co-substrate. The pre-treatment of L-valine, which is a high affinity substrate for the neutral amino acid transporter, markedly reduced the BBB penetration of paraquat. When paraquat was administered to the striatum through a microdialysis probe, a significant amount of paraquat was detected in the striatal cells after a sequential 180-min washout with Ringer's solution. This uptake was significantly inhibited by a low Na(+) condition, but not by treatment with putrescine, a potent uptake inhibitor of paraquat into lung tissue. These findings indicated that paraquat is possibly taken up into the brain by the neutral amino acid transport system, then transported into striatal, possibly neuronal, cells in a Na(+)-dependent manner.
Collapse
Affiliation(s)
- K Shimizu
- Department of Legal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hoet PH, Nemery B. Polyamines in the lung: polyamine uptake and polyamine-linked pathological or toxicological conditions. Am J Physiol Lung Cell Mol Physiol 2000; 278:L417-33. [PMID: 10710513 DOI: 10.1152/ajplung.2000.278.3.l417] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The natural polyamines putrescine, cadaverine, spermidine, and spermine are found in all cells. These (poly)cations exert interactions with anions, e.g., DNA and RNA. This feature represents their best-known direct physiological role in cellular functions: cell growth, division, and differentiation. The lung and, more specifically, alveolar epithelial cells appear to be endowed with a much higher polyamine uptake system than any other major organ. In the lung, the active accumulation of natural polyamines in the epithelium has been studied in various mammalian species including rat, hamster, rabbit, and human. The kinetic parameters (Michaelis-Menten constant and maximal uptake) of the uptake system are the same order of magnitude regardless of the polyamine or species studied and the in vitro system used. Also, other pulmonary cells accumulate polyamines but never to the same extent as the epithelium. Although different uptake systems exist for putrescine, spermidine, and spermine in the lung, neither the nature of the carrier protein nor the reason for its existence is known. Some pulmonary toxicological and/or pathological conditions have been related to polyamine metabolism and/or polyamine content in the lung. Polyamines possess an important intrinsic toxicity. From in vitro studies with nonpulmonary cells, it has been shown that spermidine and spermine can be metabolized to hydrogen peroxide, ammonium, and acrolein, which can all cause cellular toxicity. In hyperoxia or after ozone exposure, the increased polyamine synthesis and polyamine content of the rat lung is correlated with survival of the animals. Pulmonary hypertension induced by monocrotaline or hypoxia has also been linked to the increased polyamine metabolism and polyamine content of the lung. In a small number of studies, it has been shown that polyamines can contribute to the suppression of immunologic reactions in the lung.
Collapse
Affiliation(s)
- P H Hoet
- Unit of Lung Toxicology, Laboratory of Pneumology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
27
|
Day BJ, Patel M, Calavetta L, Chang LY, Stamler JS. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci U S A 1999; 96:12760-5. [PMID: 10535996 PMCID: PMC23088 DOI: 10.1073/pnas.96.22.12760] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paraquat (PQ) is a well described pneumotoxicant that produces toxicity by redox cycling with cellular diaphorases, thereby elevating intracellular levels of superoxide (O-(2)). NO synthase (NOS) has been shown to participate in PQ-induced lung injury. Current theory holds that NO reacts with O-(2) generated by PQ to produce the toxin peroxynitrite. We asked whether NOS might alternatively function as a PQ diaphorase and reexamined the question of whether NO/O-(2) reactions were toxic or protective. Here, we show that: (i) neuronal NOS has PQ diaphorase activity that inversely correlates with NO formation; (ii) PQ-induced endothelial cell toxicity is attenuated by inhibitors of NOS that prevent NADPH oxidation, but is not attenuated by those that do not; (iii) PQ inhibits endothelium-derived, but not NO-induced, relaxations of aortic rings; and (iv) PQ-induced cytotoxicity is potentiated in cytokine-activated macrophages in a manner that correlates with its ability to block NO formation. These data indicate that NOS is a PQ diaphorase and that toxicity of such redox-active compounds involves a loss of NO-related activity.
Collapse
Affiliation(s)
- B J Day
- Department of Medicine, National Jewish Medical and Research Center, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
28
|
Corasaniti MT, Strongoli MC, Rotiroti D, Bagetta G, Nisticò G. Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. PHARMACOLOGY & TOXICOLOGY 1998; 83:1-7. [PMID: 9764419 DOI: 10.1111/j.1600-0773.1998.tb01434.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present article reviews the results of experimental studies on paraquat neurotoxicity, started by our group several years ago--when clinical and experimental reports had increased the interest for the possibility that environmental chemicals, including paraquat, may be related to the development of Parkinson's disease-, and which are still continuing since paraquat appears to be a promising tool to study the mechanisms of neuronal cell death in vivo. Our observations have demonstrated that paraquat causes evident neurotoxic effects after intracerebroventricular or intracerebral injection in experimental animals; however, it seems that the herbicide does not exibit a selective neurotoxicity towards the dopaminergic nigro-striatal system since potent behavioural and electrocortical changes are induced by paraquat after injection in brain areas other than the substantia nigra and caudate nucleus. By studying the mechanisms through which paraquat induces neurotoxic effects in vivo, it was shown that either free radical production and activation of cholinergic and glutamatergic transmission may be regarded as related events which play a crucial role in paraquat-induced neurotoxicity. In addition, it was observed that in rats paraquat penetrates the blood-brain barrier following systemic administration to give rise to a differential brain regional distribution; the latter observation rises some concern over the hazard of paraquat as a potential environmental neurotoxin. Indeed, paraquat, administered systemically in rats produces behavioural excitation and brain damage. The brain damage appears to be selective for the pyriform cortex and this does not seem to be strictly related to the high concentrations reached by the herbicide in this area but to the higher vulnerability of this cortical area to the enhanced cholinergic transmission. The recent observation that paraquat, injected into the rat hippocampus, induces the expression of apoptotic neuronal cell death, appears of valuable interest also with a view to paraquat as an useful experimental model in the development of neuroprotective drugs able to block the molecular events which, once activated, are responsible for the induction of neuronal cell death.
Collapse
Affiliation(s)
- M T Corasaniti
- Chair of Pharmacology, Faculty of Pharmacy, University of Catanzaro, Italy
| | | | | | | | | |
Collapse
|
29
|
Nwabisi VC, Nwanze EA. Biochemical studies on the toxicity of 1, 1'-dimethyl-4, 4'-bipyridylium dichloride in the rat. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1997; 117:103-9. [PMID: 9185332 DOI: 10.1016/s0742-8413(96)00166-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of intraperitoneal administration of lethal dose (50 mg/kg) of paraquat on the microsomal cysteine levels in the plasma, liver and lung of adult male Wistar rats has been investigated using Rank Chromaspek amino acid analyzer. The microsomal alanine levels were also determined to help in assessing the extent of paraquat interference with cellular protein. DL-Buthionine-[S,R]-Sulfoximine (BSO) and Diethyl maleate (DEM) were used to potentiate the toxic effect of the bipyridyl. The microsomal cysteine levels were significantly (P < or = 0.05) depressed in the plasma, liver and lung of the paraquat-treated rats compared with the saline-injected group but the alanine levels were not similarly affected. Probably, paraquat poisoning interferes specifically with the cellular cysteine content in the rat. These findings could provide a valuable information on the biochemical mechanism of paraquat intoxication.
Collapse
Affiliation(s)
- V C Nwabisi
- Department of Biochemistry, University of Benin, Nigeria
| | | |
Collapse
|
30
|
van Klaveren RJ, Hoet PH, Demedts M, Nemery B. Putrescine uptake in rat type II pneumocytes correlates with gamma-glutamyltransferase activity. Int J Biochem Cell Biol 1997; 29:605-9. [PMID: 9363638 DOI: 10.1016/s1357-2725(97)00005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
gamma-Glutamyltransferase (gamma GT) is a key enzyme in glutathione metabolism and it is thought also to play a role in the uptake of polyamines such as putrescine. The aim of our study was to investigate if changes in gamma GT activity would alter total putrescine uptake [P(up)(tot)], as well as more specific uptake via the gamma GT pathway [P(up)(gamma GT)]. Forty-eight hours after their isolation, rat type II cells were exposed to 30, 60 or 125 microM L-buthionine-[SR]-sulfoximine (BSO) for 3 hr; 200 or 800 microM tertiary-butylhydroperoxide (t-BOOH) for 40 min; 10, 100 or 1000 microM paraquat (PQ) for 1 hr; and 60 or 85% O2 for 48 hr. The gamma GT activity, P(up)(tot) and P(up)(gamma GT) (assessed by inhibiting gamma GT) were measured immediately after the exposure to hyperoxia, or 24 hr after treatment with BSO, t-BOOH or PQ. From previous studies, it is known that these experimental conditions increased (BSO, 200 microM t-BOOH) or decreased (800 microM t-BOOH, PQ, hyperoxia) gamma GT activity. There was a strong correlation between the changes in gamma GT activity and the changes in P(up)(gamma GT) (r = 0.81, p < 0.001). These findings support the hypothesis that gamma GT partly regulates the uptake of putrescine, one of the polyamines required for cell growth and differentiation.
Collapse
Affiliation(s)
- R J van Klaveren
- Laboratory of Pneumology, Unit of Lung Toxicology, Leuven, Belgium
| | | | | | | |
Collapse
|
31
|
Nordquist RE, Nguyen H, Poyer JL, Carubelli R. The role of free radicals in paraquat-induced corneal lesions. Free Radic Res 1995; 23:61-71. [PMID: 7647920 DOI: 10.3109/10715769509064020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Paraquat is a synthetic bipyridylium salt widely used as herbicide and defoliant. Enzyme-catalyzed redoxcycling of paraquat generates oxygen radicals. The toxic, even lethal, effects of paraquat are due to free radical-mediated tissue injury. Ocular lesions, sometimes quite severe, have been observed following accidental splashing of paraquat solutions onto the eyes. These studies were designed to document the generation of paraquat free radicals in corneal tissue, and to describe the histological nature of the corneal injuries in experimental animals (rabbits and monkeys). The EPR spectrum of rabbit corneas, 30 min. after intrastromal injection of paraquat, showed the signal of the free radical of paraquat. Ultrastructural studies of corneas 8 days after intrastromal injections (100 microliters) of paraquat solutions showed that the initial lesions occur at the epithelium/basement membrane interface. In rabbit cornea, dose dependent lesions were observed, i.e. whereas 50 mM paraquat caused only minimal damage to the epithelial basement membrane, 75 mM caused complete dissolution to the basement membrane with some damage to stromal collagen, and loss of epithelium with stromal ulceration and severe inflammatory response were observed with 150 mM paraquat. Monkey corneas were less susceptible than those of rabbits to the effects of paraquat. No lesions were observed following intrastromal injections of 50 mM or 75 mM paraquat. With higher concentrations of paraquat (100 mM and 150 mM) the primary injuries were to the proximal and lateral plasma membranes of basal epithelial cells; basement membrane alterations were detected only adjacent to areas of significant plasma membrane damage. The underlying Bowman's membrane and stroma were not affected. Anatomical differences between the corneas of rabbit and monkeys as well as possible biochemical differences may account for the species differences observed.
Collapse
Affiliation(s)
- R E Nordquist
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
32
|
Sharma R, Kodavanti UP, Smith LL, Mehendale HM. The uptake and metabolism of cystamine and taurine by isolated perfused rat and rabbit lungs. Int J Biochem Cell Biol 1995; 27:655-64. [PMID: 7648421 DOI: 10.1016/1357-2725(95)00038-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cystamine has been reported to be taken up and metabolized to taurine by the rat lung slices. The objectives of the present study were to compare the uptake and metabolism of cystamine and taurine in isolated perfused lungs of rats and rabbits and examine the action of glutathione (GSH) on these processes. The uptake and metabolism of [14C]cystamine and [14C]taurine were studied at 20 microM concentrations each in isolated, ventilated, perfused rat and rabbit lungs. In some experiments, 1 microM GSH was included in the perfusate prior to the addition of cystamine. The perfusate and lung homogenate samples were analyzed for cystamine and its metabolites. [14C]cystamine uptake with and without GSH was 13 and 14% in rat lungs and 37 and 32% in rabbit lungs. [14C]taurine uptake was 10% in rat and 37% in rabbit lungs. The levels of radiolabeled cystamine and its metabolites were (nmol/g lung): 20.0 +/- 10.0 and 11.5 +/- 7.0 cystamine, 4.7 +/- 0.5 and 3.2 +/- 0.5 hypotaurine and 56.0 +/- 16.0 and 49.4 +/- 6.0 taurine, for rat and rabbit lungs, respectively, when perfused without GSH; and 18.0 +/- 1.0 and 2.5 +/- 0.5 cystamine, 6.6 +/- 0.5 and 18 +/- 10 hypotaurine and 60.0 +/- 12.0 and 33.6 +/- 9.0 taurine, when perfused with GSH, for rats and rabbit lungs, respectively. Taurine did not undergo any further metabolism in either of the lungs. These studies show that cystamine is taken up and metabolized to taurine via hypotaurine by both rat and rabbit lungs in a manner similar to that seen in rat lung slices. However, rat lungs have much greater capacity to metabolize cystamine to taurine than rabbit. Inclusion of GSH did not significantly alter the ability of lungs to sequester cystamine from the perfusate but the metabolism of hypotaurine to taurine was markedly decreased in rabbit lungs. Taurine was not metabolized any further. It is concluded that rat and rabbit lungs take up cystamine from the systemic circulation, metabolize it via hypotaurine to taurine, and effuse most of the latter in to the circulation.
Collapse
Affiliation(s)
- R Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-1067, USA
| | | | | | | |
Collapse
|
33
|
Brackett DJ, McCay PB. Free radicals in the pathophysiology of pulmonary injury and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 366:147-63. [PMID: 7771249 DOI: 10.1007/978-1-4615-1833-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D J Brackett
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | |
Collapse
|
34
|
Hoet PH, Dinsdale D, Lewis CP, Verbeken EK, Lauweryns JM, Nemery B. Kinetics and cellular localisation of putrescine uptake in human lung tissue. Thorax 1993; 48:1235-41. [PMID: 8303630 PMCID: PMC464981 DOI: 10.1136/thx.48.12.1235] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The polyamines (putrescine, spermidine, and spermine) are involved in cellular growth, proliferation, and differentiation. In the lungs of various species, polyamines are accumulated by an active uptake system which also mediates the uptake of cystamine and paraquat. In the rat lung putrescine uptake has been shown to be cell-specific, occurring predominantly in the alveolar epithelium. The aim of this study was to characterise the uptake of putrescine in human lung. METHODS Lung tissue was obtained from 31 patients undergoing surgery for lung cancer. Slices (0.7 mm thick) from non-tumour containing lung parenchyma were incubated for 15-60 minutes in Krebs-Ringer phosphate buffer with various concentrations of putrescine (2.5 to 80 mumol/l) containing 0.1 microCi [1,4-14C]-putrescine. Uptake was assessed from tissue radioactivity. For autoradiographic imaging, slices were incubated for 30 minutes with 2.5 mumol/l putrescine containing 2.5 mCi [1,4n-3H]-putrescine. RESULTS The accumulation of [14C]-putrescine into slices was time-dependent and energy-dependent, and obeyed saturation kinetics, with mean calculated values for Vmax (maximal rate of uptake) of 414 nmol/g/hour and for Km (medium concentration at which the rate of uptake is half Vmax) of 7.2 mumol/l, with a large interindividual variation. Competitive inhibition was observed on incubation with cystamine, which appears to have a high affinity for the uptake system since its calculated Ki (concentration of inhibitor at which the Km is doubled) was 3.2 mumol/l. Ultrastructural autoradiography showed labelling over both type I and type II cells of the alveolar epithelium, but not over the endothelium or any cells of the interstitium. Alveolar macrophages were also devoid of label. CONCLUSIONS These results show that the human lung possesses an active uptake system for putrescine, and probably also cystamine, which is located in both cell types of the alveolar epithelium. These findings may be used to develop tests for the assessment of the alveolar epithelium.
Collapse
Affiliation(s)
- P H Hoet
- Laboratory of Pneumology, KU Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Watanabe S, Sato S, Nagase S, Tomita M, Saito T. Change of polyamine level in various tissues of male rats intoxicated with paraquat. Toxicol Lett 1993; 69:163-70. [PMID: 8212058 DOI: 10.1016/0378-4274(93)90101-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of paraquat (PQ) on the contents of putrescine (PUT), spermidine (SPD) and spermine (SPM) in the various tissues and organs were examined by means of high-performance liquid chromatography in rats intoxicated with the toxin by three intraperitoneal infusions of PQ for 6 days on every other day. The contents of PUT, SPD and SPM in the large intestine per mg of wet weight showed statistically significant decreases of 39 (P < 0.01), 73 (P < 0.01) and 27% (P < 0.05), respectively. In the liver, however, they showed statistically significant increases of 214 (P < 0.01), 39 (P < 0.05) and 78% (P < 0.01).
Collapse
Affiliation(s)
- S Watanabe
- Department of Pharmacology, Kawasaki Medical School, Okayama, Japan
| | | | | | | | | |
Collapse
|
36
|
Corasaniti MT, Nisticò G. Determination of paraquat in rat brain by high-performance liquid chromatography. J Chromatogr A 1993; 643:419-25. [PMID: 8360310 DOI: 10.1016/0021-9673(93)80578-v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The applications of a method based on ion-pair solid-phase extraction and reversed-phase HPLC are reported. The method was used to measure paraquat concentrations in discrete brain areas at different times after its systemic administration in rats. In addition, the method was employed in the determination of paraquat levels in whole-brain samples from rats of various ages systemically treated with several doses of the herbicide.
Collapse
Affiliation(s)
- M T Corasaniti
- Chair of Pharmacology, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
37
|
|
38
|
|
39
|
Tamaru N, Watanabe K, Yoshida M. PGI2 production and angiotensin converting enzyme activity in cultured porcine pulmonary artery endothelial cells treated with paraquat. Prostaglandins Leukot Essent Fatty Acids 1993; 48:291-6. [PMID: 8388564 DOI: 10.1016/0952-3278(93)90218-l] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The herbicide paraquat (PQ) is known to cause acute pulmonary edema at toxic dose and to induce morphologic changes in alveolar epithelial cells, even in the early phase of toxicity. However, whether the pulmonary vascular endothelial cells are specifically vulnerable to PQ is still controversial. To investigate the direct toxic and metabolic effects of PQ on pulmonary vascular endothelial cells, cultured porcine pulmonary artery endothelial cells (PPAEC) were evaluated. A dose of 10(-4) M of PQ inhibited the growth of endothelial cells. The thrombin- and bradykinin-stimulated production of prostacyclin (PGI2) by PPAEC was significantly enhanced, and the angiotensin converting enzyme (ACE) activity of cell lysate of PPAEC was significantly suppressed after incubation for 24 h with 10(-4) M PQ. No further enhancement of PGI2 production in response to thrombin after 48 h of incubation was demonstrated. These alterations in arachidonic acid metabolism and ACE activity did not result from the cytotoxicity of PQ, because the release of lactate dehydrogenase (LDH) into the culture medium increased only after 72 h incubation with PQ. Incubation for more than 48 h induced an obvious toxis effect on PPAEC.
Collapse
Affiliation(s)
- N Tamaru
- 2nd Department of Internal Medicine, School of Medicine, Fukuoka University, Japan
| | | | | |
Collapse
|
40
|
Hardwick SJ, Skamarauskas JT, Smith LL, Upshall DG, Cohen GM. Protection of rats against the effects of alpha-naphthylthiourea (ANTU) by elevation of non-protein sulphydryl levels. Biochem Pharmacol 1991; 42:1203-8. [PMID: 1909526 DOI: 10.1016/0006-2952(91)90255-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have investigated the influence of the elevation of pulmonary glutathione (GSH) levels on the toxicity of the rodenticide alpha-naphthylthiourea (ANTU) to rat lung. Administration of phorone (diisopropylidene acetone; 200 mg/kg i.p.) caused an initial depletion of both pulmonary and hepatic GSH followed after 48 hr by a marked elevation in both tissues, due most probably to a compensatory rebound synthesis. In control rats, ANTU produced a dose-dependent lethality, hydrothorax and loss of ability of lung tissue to accumulate adenosine and spermidine (markers of endothelial and epithelial cell function, respectively). These effects were prevented or markedly ameliorated when ANTU was given 48 hr after pretreatment with phorone. The mechanism of the protection by phorone pretreatment against ANTU-induced pulmonary toxicity is unclear. It may be due, in part, to elevated GSH levels in pulmonary endothelial cells and, in addition, to increased detoxification of ANTU in the liver, resulting in a decreased availability to the lung.
Collapse
Affiliation(s)
- S J Hardwick
- Toxicology Unit, School of Pharmacy, University of London, U.K
| | | | | | | | | |
Collapse
|
41
|
O'Sullivan MC, Golding BT, Smith LL, Wyatt I. Molecular features necessary for the uptake of diamines and related compounds by the polyamine receptor of rat lung slices. Biochem Pharmacol 1991; 41:1839-48. [PMID: 1645551 DOI: 10.1016/0006-2952(91)90122-l] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The influence of 17 putrescine analogues on the uptake of putrescine and/or paraquat by rat lung slices has been determined. Most of these compounds are competitive inhibitors of putrescine and/or paraquat uptake, but three show no inhibiting activity. Apparent Ki values of the putrescine derivatives increase, and thus the inhibitory effects decrease, with increasing N-methylation. Comparison of N-methyl-1,4-diaminobutane (Ki = 8 microM) with N,N'-bis-methyl-1,4-diaminobutane (Ki = 25.5 microM) shows that a single primary amino group is desirable for high inhibiting activity. Dimethylation at one amino function does not greatly decrease inhibitory potential (thus N,N-dimethyl-1,4-diaminobutane has Ki = 11.5 microM). Increasing the size of N-alkyl substituents in putrescine derivatives, decreased their inhibitory action on the uptake of putrescine. Investigation of the effect of conformationally-restricted analogues of putrescine shows that both (E) and (Z) isomers of 1,4-diaminobut-2-ene are poor inhibitors of putrescine uptake. Analogues of putrescine with bulky substituents on the butyl chain, i.e. the meso- and rac-isomers of 1,1-dichloro-2,3-diaminomethylcyclopropane, do not inhibit putrescine uptake. Inhibiting putrescine derivatives which contain aziridine groups are competitive inhibitors of putrescine and paraquat uptake. Surprisingly, N-(4-aminobutyl)aziridine is the most effective inhibitor of putrescine uptake studied, and is a better inhibitor of paraquat uptake than the endogenous polyamine, putrescine. N-(4-Aminobutyl)aziridine binds reversibly to the polyamine transporter and its inhibitory effects do not appear to be due to any cytotoxic activity of the aziridine. The parameter A (mM)-1 defined as 1000/Ki (where Ki units are microM) was taken as a measure of the affinity of a compound for the polyamine receptor in this paper.
Collapse
Affiliation(s)
- M C O'Sullivan
- Department of Chemistry, The University, Newcastle Upon Tyne, U.K
| | | | | | | |
Collapse
|
42
|
Abstract
Lung epithelial type II cells are responsible for synthesising and secreting pulmonary surfactant which reduces surface tension and prevents lung collapse. Type II cells replace type I cells and can proliferate in response to alveolar injury. An important aspect of this proliferation may be the ability of type II cells to accumulate amines actively, particularly the endogenous diamine putrescine. Putrescine is accumulated into isolated alveolar type II cells by an energy-dependent process. The uptake obeys saturation kinetics for which an apparent Km of 14.7 microM and Vmax of 130 pmol/micrograms DNA/hr was derived. The inhibitory effects of structurally similar amines on putrescine accumulation are described. As the herbicide paraquat has been suggested to share the same uptake system as putrescine from lung slice studies, this phenomenon was investigated in type II cell cultures. The results demonstrated that paraquat is a partially competitive inhibitor of putrescine accumulation in the cells. The Ki for the inhibition of putrescine uptake by paraquat in type II cells was calculated to be 69 microM, a value which closely matches the Km for paraquat (70 microM) predicted from lung slice studies. In molecular terms, the partial nature of the competition indicates that paraquat and putrescine do not occupy identical sites. Saturation of its site by paraquat reduced the affinity of putrescine 3.6-fold, but did not abolish it.
Collapse
Affiliation(s)
- V I Oreffo
- Department of Biochemistry, University of Wales, College of Cardiff, U.K
| | | | | |
Collapse
|
43
|
Zer H, Freedman JH, Peisach J, Chevion M. Inverse correlation between resistance towards copper and towards the redox-cycling compound paraquat: a study in copper-tolerant hepatocytes in tissue culture. Free Radic Biol Med 1991; 11:9-16. [PMID: 1937132 DOI: 10.1016/0891-5849(91)90182-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The essential mediatory role of copper or iron in the manifestation of paraquat toxicity has been demonstrated (Kohen and Chevion (1985) Free Rad. Res. Commun. 1, 79-88; Korbashi, P. et al. (1986) J. Biol. Chem. 261, 12472-12476). Several liver cell lines, characterized by their resistance to copper, were challenged with paraquat and their cross-resistance to paraquat and copper was studied. Cell growth and survival data showed that copper-resistant cells, containing elevated copper, are more sensitive towards paraquat than wild type cells. Copper-deprived resistant cells did not have this sensitivity. Paraquat was also shown to cause a marked degradation of cellular glutathione in all cell lines. Albeit the fact that the basal glutathione levels are higher in copper-resistant than in wild type cells, there is more paraquat-induced degradation of cellular glutathione (GSH + GSSG) in resistant cells. It is suggested that in copper-resistant cells which contain elevated levels of copper, paraquat-induced cellular injury is potentiated even where glutathione levels are elevated. Additionally, in vitro experiments are presented that support the in vivo findings demonstrating a role for copper in glutathione degradation.
Collapse
Affiliation(s)
- H Zer
- Department of Cellular Biochemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
44
|
Adam A, Smith LL, Cohen GM. An evaluation of the redox cycling potencies of paraquat and nitrofurantoin in microsomal and lung slice systems. Biochem Pharmacol 1990; 40:1533-9. [PMID: 2222508 DOI: 10.1016/0006-2952(90)90451-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The redox cycling abilities of the pulmonary toxins paraquat and nitrofurantoin have been compared with those of the potent redox cyclers, diquat and menadione in lung and liver microsomes by using the oxidation of NADPH and consumption of oxygen. The relative potencies of these compounds to undergo redox cycling were in the order: diquat approximately menadione much greater than paraquat congruent to nitrofurantoin. This was partly attributed to the much lower affinity (Km) of lung and liver microsomes for paraquat and nitrofurantoin than for diquat and menadione. The potential to redox cycle was assessed in an intact cellular system by determining the oxygen consumption of rat lung slices in the presence (10(-6), 10(-5) and 10(-4) M) or absence of each of the four substrates. At concentrations of paraquat (10(-5) M) known to be accumulated by lung slices, a small but significant stimulation of lung slice oxygen uptake was observed. Nitrofurantoin (10(-4)-10(-6) M) did not affect lung slice oxygen uptake in lung slices, an observation consistent with its being a poor redox cycling compound, which is not actively accumulated into lung cells. This data has important implications in assessing the risk of exposure to paraquat. Low levels of paraquat would not be expected to cause lung damage because insufficient compound is present in the lung to exert its toxicity by redox cycling (due to the high Km observed).
Collapse
Affiliation(s)
- A Adam
- Department of Pharmacology, School of Pharmacy, University of London, U.K
| | | | | |
Collapse
|
45
|
Abstract
Paraquat is a bipyridyl compound with no known chronic toxicity or teratogenicity. It is poorly absorbed when inhaled, but causes severe illness when ingested orally, death usually occurring within 2 days of ingestion of 50 mg/kg. At lower doses death may be delayed for several weeks. The toxic compound accumulates in lung tissue where free radicals are formed, lipid peroxidation is induced and nicotinamide adenine dinucleotide phosphate (NADPH) is depleted. This produces diffuse alveolitis followed by extensive pulmonary fibrosis. The most important prognostic indicator is the quantity of paraquat absorbed, as shown by the plasma paraquat concentration. While renal failure will develop in the majority of those patients who eventually die, it may not, if present alone, indicate a fatal outcome. The absence of caustic burns in the upper digestive tract indicates a good prognosis. Treatment of paraquat poisoning remains ineffective, but Fuller's earth, activated charcoal and resins may prevent some absorption of the toxin. When tubular necrosis occurs, renal excretion of the compound decreases rapidly. A 3-compartment pharmacokinetic model has been described following ingestion of tracer doses including a 'deep' compartment for active pulmonary accumulation. Haemodialysis, haemoperfusion and forced dialysis have been attempted, with no clear improvement in survival rates. Superoxide dismutase, glutathione peroxidase, N-acetylcysteine and other 'free radical scavengers' have failed to alter the outcome in poisoned patients. Other theoretical treatments, such as deferoxamine, immunotherapy, NADPH repletion and lung transplantation still require clinical validation.
Collapse
Affiliation(s)
- C Bismuth
- Clinique Toxicologique, Hôpital Fernand Widal, Paris, France
| | | | | | | | | |
Collapse
|
46
|
van der Wal NA, van Oirschot JF, van Dijk A, Verhoef J, van Asbeck BS. Mechanism of protection of alveolar type II cells against paraquat-induced cytotoxicity by deferoxamine. Biochem Pharmacol 1990; 39:1665-71. [PMID: 2160815 DOI: 10.1016/0006-2952(90)90109-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paraquat toxicity has been associated with the generation of free radicals in alveolar epithelial cells in which paraquat specifically accumulates via a polyamine uptake system. In the present study we investigated whether deferoxamine (DF), an iron chelator that has antioxidant capacity and that also has a polyamine-like structure, could protect alveolar type II cells (ATTC) against injury by paraquat. Radiolabeled [3H]adenine ATTC were incubated in a medium containing 75 microM paraquat in the absence or presence of DF (500 microM). After 3 hr of incubation paraquat-mediated cytotoxicity of ATTC, as measured by [3H]adenine release, was significantly (P less than 0.005) decreased by addition of DF (26.6 +/- 2.6% vs 7.4 +/- 1.7%). Accumulation of radiolabeled [14C]paraquat at a concentration of 75 microM was also decreased (70%) by 500 microM DF from 94.8 +/- 2.1 to 28.9 +/- 6.7 nmoles paraquat/2.5 x 10(5) ATTC. This effect of DF was dose dependent and comparable with the protective effect of equimolar concentrations of putrescine. However, per cent uptake of paraquat at a concentration of 500 microM was not significantly inhibited by DF (1 mM), whereas paraquat-induced injury was still markedly reduced (36.2 +/- 2.5% vs 2.6 +/- 4.2%). This indicated that the protective effect of DF could not be explained by its competition with paraquat on uptake alone. In the same series of experiments using another iron chelator, pyridoxal benzoyl hydrazone (PBH), which has antioxidant properties similar to DF but does not show its polyamine-like structure, ATTC lysis was also prevented although paraquat uptake was not reduced. These in vitro data indicate that the mechanism of protection by DF against paraquat toxicity in lung epithelial type II cells is two-fold: inhibition of paraquat uptake through its compliance with the structural requirements necessary for transport, and inhibition of paraquat-induced iron-catalysed free radical generation.
Collapse
Affiliation(s)
- N A van der Wal
- Department of Internal Medicine, University Hospital Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Lewis CP, Cohen GM, Smith LL. The identification and characterization of an uptake system for taurine into rat lung slices. Biochem Pharmacol 1990; 39:431-7. [PMID: 1689575 DOI: 10.1016/0006-2952(90)90047-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The objective of this study was to determine whether taurine was accumulated by rat lung slices and if so, to establish the role of this uptake as a source of pulmonary taurine. We have shown that taurine is accumulated into rat lung by an active uptake process that was both ATP and Na(+)-dependent and obeyed saturation kinetics, exhibiting an apparent Km of 186 microM and Vmax of 970 nmol/g wet wt/hr. Substrate specificity of the system was high and only compounds possessing anionic and cationic groups separated by two methylene groups were able to competitively inhibit taurine uptake. Subsequent to its uptake, taurine was not significantly metabolized, and since the apparent Km for the uptake process is similar to the known plasma concentration of taurine, it can be inferred that this system will contribute to pulmonary taurine uptake in vivo. Taurine has been suggested to possess antioxidant and antiinflammatory properties, and we suggest that this uptake system may contribute to the defence of pulmonary tissue against oxidative stress.
Collapse
Affiliation(s)
- C P Lewis
- Biochemical Toxicology Section, Imperial Chemical Industries PLC, Macclesfield, Cheshire, U.K
| | | | | |
Collapse
|
49
|
Thioureas react with superoxide radicals to yield a sulfhydryl compound. Explanation for protective effect against paraquat. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40014-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Abstract
Bronchoalveolar lavage (BAL) recovers the epithelial lung fluid of the lower respiratory tract. In this study, we have used BAL to detect early pulmonary injury in beagle dogs following an intravenous infusion of 10 mg paraquat dichloride/kg bodyweight. Bronchoalveolar lavage was performed twice in 11 dogs, 60 hr before and 34 hr after an intravenous infusion of paraquat dichloride (n = 8) or saline (n = 3). The dogs were studied in three groups: (1) paraquat only (n = 4); (2) paraquat plus hemoperfusion (n = 4); and (3) hemoperfusion only (n = 3). Because hemoperfusion, a treatment used for paraquat poisoning, could have effects on BAL independent of paraquat, we evaluated the effects on BAL fluid of this procedure performed separately from and together with administration of paraquat. We examined cytology, proteins, enzymes, and glutathione in the BAL fluid and expressed all results per milliliter of aspirated lavage fluid. Hemoperfusion did not alter the BAL fluid. In contrast, in dogs studied 34 hr after administration of paraquat, total cell counts, alveolar macrophage and neutrophil counts, and concentrations of total protein, albumin, ACE, LDH, and ALP were increased. Bronchoalveolar lavage in the dog provides an excellent tool with which to detect early paraquat-induced pulmonary injury. The same technique could be useful for sequential monitoring of other types of pulmonary disease and injury.
Collapse
Affiliation(s)
- E C Hampson
- Department of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
| | | | | |
Collapse
|