1
|
Banyal A, Thakur R, Thakur P, Thakur V, Chand D, Kumar P. Sustainable vinblastine production by Alternaria alternata, an endophytic fungus isolated from Catharanthus roseus in the Northern Himalayan Region. 3 Biotech 2025; 15:187. [PMID: 40433565 PMCID: PMC12104121 DOI: 10.1007/s13205-025-04351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Vinblastine, a potent anticancer drug, is traditionally extracted from Catharanthus roseus, but its low yield and high production costs necessitate alternative sources. In this study, twelve endophytic fungi were isolated from Catharanthus roseus collected in Himachal Pradesh, India. Among these, isolate VPF-2, identified as Alternaria alternata through morphological and molecular analysis, demonstrated significant vinblastine production (8.673 mg/L) in M3 medium broth. PCR screening confirmed the presence of key biosynthetic genes, desacetoxyvindoline-4-hydroxylase (D4H) and tryptophan decarboxylase (TDC), in VPF-2. The fungal-derived vinblastine exhibited cytotoxic activity against MDCK cancer cells, with an IC50 value of 69.03 µg/mL. Structural characterization using HPTLC, UV, FTIR, LC-ESI-MS/MS, and NMR confirmed the compound's identity. This study reports the highest vinblastine yield from A. alternata to date, highlighting its potential as a sustainable and scalable alternative for industrial vinblastine production.
Collapse
Affiliation(s)
- Aditya Banyal
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229 India
| | - Rahul Thakur
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133203 India
| | - Pryanka Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012 India
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Centre of Emphasis On Infectious Diseases, Texas Tech University Health Sciences Center El Paso, 130 Rick Francis St., Texas, 79905 USA
| | - Duni Chand
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229 India
- Department of Forensic Science, Himachal Pradesh University, Shimla, 171005 India
| |
Collapse
|
2
|
Bjørklund G, Cruz-Martins N, Goh BH, Mykhailenko O, Lysiuk R, Shanaida M, Lenchyk L, Upyr T, Rusu ME, Pryshlyak A, Shanaida V, Chirumbolo S. Medicinal Plant-derived Phytochemicals in Detoxification. Curr Pharm Des 2024; 30:988-1015. [PMID: 37559241 DOI: 10.2174/1381612829666230809094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana 8610, Norway
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Victoria, Malaysia
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
- Department of Pharmaceutical Technologies and Quality of Medicines, Institute for Advanced Training of Pharmacy Specialists, National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonina Pryshlyak
- Department of Human Anatomy, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
3
|
Irving MR, Goolsby EW, Stanford H, Lim-Hing S, Urrea M, Mason CM. Temperature alters the toxicological impacts of plant terpenoids on the polyphagous model herbivore Vanessa cardui. J Chem Ecol 2023; 49:666-680. [PMID: 37695522 PMCID: PMC10781811 DOI: 10.1007/s10886-023-01449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Terpenes are a major class of secondary metabolites present in all plants, and long hypothesized to have diversified in response to specific plant-herbivore interactions. Herbivory is a major biotic interaction that plays out across broad temporal and spatial scales that vary dramatically in temperature regimes, both due to climatic variation across geographic locations as well as the effect of seasonality. In addition, there is an emerging understanding that global climate change will continue to alter the temperature regimes of nearly every habitat on Earth over the coming centuries. Regardless of source, variation in temperature may influence herbivory, in particular via changes in the efficacy and impacts of plant defensive chemistry. This study aims to characterize temperature-driven variation in toxicological effects across several structural classes of terpenes in the model herbivore Vanessa cardui, the painted lady butterfly. We observed a general increase in monoterpene toxicity to larvae, pupa, and adults at higher temperatures, as well as an increase in development time as terpene concentration increased. Results obtained from this study yield insights into possible drivers of seasonal variation in plant terpene production as well as inform effects of rising global temperatures on plant-insect interactions. In the context of other known effects of climate change on plant-herbivore interactions like carbon fertilization and compensatory feeding, temperature-driven changes in plant chemical defense efficacy may further complicate the prediction of climate change impacts on the fundamental ecological process of herbivory.
Collapse
Affiliation(s)
- Mari R Irving
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA.
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Hannah Stanford
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Simone Lim-Hing
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Maria Urrea
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
4
|
Ochola JB, Mutero CM, Marubu RM, Haller BF, Hassanali A, Lwande W. Mosquitoes Larvicidal Activity of Ocimum kilimandscharicum Oil Formulation under Laboratory and Field-Simulated Conditions. INSECTS 2022; 13:203. [PMID: 35206778 PMCID: PMC8877965 DOI: 10.3390/insects13020203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
Mosquitoes are vectors of many severe diseases, including malaria, yellow as well as dengue fever, and lymphatic filariasis. The use of synthetic chemical insecticides for mosquito control has been associated with resistance development and detrimental human, and ecological effects. For a safer alternative, the emulsified Ocimum kilimandscharicum oil formulation was evaluated for its larvicidal activity. The oil was analyzed by GC and GC/MS. The formulations were evaluated against third instar mosquito larvae in the laboratory and later compared with Bacillus thuringiensis subsp. israelensis against An. gambiae under field-simulated conditions. Thirty-nine compounds were identified in the oil, the main ones being D-camphor (36.6%) and limonene (18.6%). The formulation showed significant larval mortalities against An. gambiae and An. arabiensis larvae with LC50 of 0.07 and 0.31 ppm, respectively, at 24 h. Under the field-simulated trial, within 24 h, the formulation showed 98% mortality while Bti had achieved 54%. On day three, it caused 100% mortality while Bti achieved 76.5%. The high bioactivity and sublethal toxic effects to offspring of treated mosquito larvae, in terms of disruption of larval morphological aspects, suggest the high potential of the formulation as a botanical larvicide. The formulation, thus, may provide a valuable alternative for the effective and eco-friendly control of disease vectors.
Collapse
Affiliation(s)
- John Bwire Ochola
- Bioprospecting Program, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya; (C.M.M.); (R.M.M.); (B.F.H.); (W.L.)
- Chemistry Department, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Clifford Maina Mutero
- Bioprospecting Program, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya; (C.M.M.); (R.M.M.); (B.F.H.); (W.L.)
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Pretoria 0001, South Africa
| | - Rose Muthoni Marubu
- Bioprospecting Program, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya; (C.M.M.); (R.M.M.); (B.F.H.); (W.L.)
| | - Barbara Frei Haller
- Bioprospecting Program, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya; (C.M.M.); (R.M.M.); (B.F.H.); (W.L.)
- Institute of Pharmaceutical Sciences, ETH Zurich Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Ahmed Hassanali
- Chemistry Department, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Wilber Lwande
- Bioprospecting Program, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya; (C.M.M.); (R.M.M.); (B.F.H.); (W.L.)
| |
Collapse
|
5
|
Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022; 10:microorganisms10020360. [PMID: 35208814 PMCID: PMC8876476 DOI: 10.3390/microorganisms10020360] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Plant-associated endophytes define an important symbiotic association in nature and are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal tissues of a plant without causing any disease symptoms or apparent changes. Recently, there has been a growing interest in endophytes because of their beneficial effects on the production of novel metabolites of pharmacological significance. Studies have highlighted the socio-economic implications of endophytic fungi in agriculture, medicine, and the environment, with considerable success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol was a landmark in endophyte biology/research and established new paradigms for the metabolic potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively studied as a “production platform” of novel pharmacological metabolites, the molecular mechanisms of plant–endophyte dynamics remain less understood/explored for their efficient utilization in drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery forms the underlying theme of this article.
Collapse
|
6
|
Fazili MA, Bashir I, Ahmad M, Yaqoob U, Geelani SN. In vitro strategies for the enhancement of secondary metabolite production in plants: a review. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:35. [PMID: 35221660 PMCID: PMC8857880 DOI: 10.1186/s42269-022-00717-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants are the prime source of vital secondary metabolites (SMs) which are medicinally important for drug development, and these secondary metabolites are often used by plants in the various important tasks like defense against herbivory, interspecies defenses and against different types of stresses. For humans, these secondary metabolites are important as medicines, pigments, flavorings and drugs. Because most of the pharmaceutical industries are highly dependent on medicinal plants and their extraction, these medicinal plants are getting endangered. MAIN BODY Plant cell culture technologies are introduced as a viable mechanism for producing and studying SMs of plants. Various types of in vitro strategies (elicitation, hairy root culture system, suspension culture system, etc.) have been considerably used for the improvement of the production of SMs of plants. For the enhancement of SM production, suspension culture and elicitation are mainly used, but hairy root culture and other organ cultures are proved to satisfy the demand of secondary metabolites. Now, it is easy to control and manipulate the pathways that produce the plant secondary metabolites. CONCLUSIONS Techniques like plant cell, tissue and organ cultures provide a valuable method for the production of medicinally significant SMs. In recent years, most of the in vitro strategies are used due to knowledge and regulation of SM pathway in commercially valuable plants. In future, these things will provide a valuable method to sustain the feasibility of medicinal plants as the renewable sources of medicinally important compounds, and these methods will provide successful production of desired, important, valuable and also unknown compounds.
Collapse
Affiliation(s)
- Mohammad Afaan Fazili
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, UP India
| | - Irfan Bashir
- Plant Biotechnology and Tissue Culture Section, Department of Botany, Aligarh Muslim University, Aligarh, UP India
| | - Mudasar Ahmad
- Department of Botany, GDC Boys Pulwama, Pulwama, J&K 192301 India
| | - Ubaid Yaqoob
- Department of Botany, Sri Pratap College, M. A. Road, Srinagar, J&K 190001 India
| | - Syed Naseem Geelani
- Division of Social and Basic Sciences, Faculty of Forestry, SKAUST-K, Benhama, Ganderbal, J&K India
| |
Collapse
|
7
|
Daley SK, Cordell GA. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. JOURNAL OF NATURAL PRODUCTS 2021; 84:871-897. [PMID: 33534564 DOI: 10.1021/acs.jnatprod.0c01195] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A selection of the established and recently characterized alkaloids from the exploration of plant- and some marine-associated endophytic fungi is reviewed, with reference to alkaloids of biological significance.
Collapse
Affiliation(s)
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
8
|
Devi J, Kumar R, Singh K, Gehlot A, Bhushan S, Kumar S. In vitro adventitious roots: a non-disruptive technology for the production of phytoconstituents on the industrial scale. Crit Rev Biotechnol 2021; 41:564-579. [PMID: 33586555 DOI: 10.1080/07388551.2020.1869690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current trends of consumer-driven demands for natural therapeutics and the availability of evidence-based phytopharmaceuticals from traditional knowledge has once again brought the medicinal plants into forefront of health. In 2019, World Health Organization global report on traditional and complementary medicine has also substantiated the revival of herbal medicine including its convergence with conventional medicine for the management and prevention of diseases. It means these industries need plenty of plant materials to meet the unprecedented demands of herbal formulations. However, it is pertinent to mention here that around 70-80% medicinal plants are sourced from the wild and most of such highly acclaimed plants are listed under Rare, Endangered and Threatened species by IUCN. Additionally, over 30% traditional health formulations are based on underground plant parts, which lead to the uprooting of plants. Overharvesting from limited plant populations, meager conventional cultivation and a rising fondness for natural products exerting enormous pressure on natural habitats. Therefore, the nondestructive means of phytochemical production employing biotechnological tools could be used for sustainable production and consumption patterns. In recent years, a number of reports described the use of adventitious roots induced under in vitro conditions for the extraction of phytochemicals on a sustainable basis. In this article, efforts are made to review recent developments in this area as well as understand the induction mechanisms of adventitious roots, their in vitro cultivation, probable factors that affect the growth and metabolite production, and assess the possibility of industrial scale production to meet the rising demands of natural herbs.
Collapse
Affiliation(s)
- Jyoti Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Roushan Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khem Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Ashok Gehlot
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Shashi Bhushan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Dietetics and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| |
Collapse
|
9
|
Ibrahim M, Arafa N, Aly U. Antioxidant activity, phenol and flavonoid contents of plant and callus cultures of Plectranthus barbatus andrews. EGYPTIAN PHARMACEUTICAL JOURNAL 2018. [DOI: 10.4103/epj.epj_38_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Santos DCD, Schneider LR, da Silva Barboza A, Diniz Campos Â, Lund RG. Systematic review and technological overview of the antimicrobial activity of Tagetes minuta and future perspectives. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:8-15. [PMID: 28668646 DOI: 10.1016/j.jep.2017.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antimicrobial potential of Tagetes minuta was correlated with its traditional use as antibacterial, insecticidal, biocide, disinfectant, anthelminthic, antifungal, and antiseptic agent as well as its use in urinary tract infections. AIM OF THE STUDY This study aimed to systematically review articles and patents regarding the antimicrobial activity of T. minuta and give rise to perspectives on this plant as a potential antimicrobial agent. MATERIALS AND METHODS A literature search of studies published between 1997 and 2015 was conducted over five databases: MedLine (PubMed), Web of Science, Scopus, Google Scholar, Portal de Periódicos Capes and SciFinder, grey literature was explored using the System for Information on Dissertations database, and theses were searched using the ProQuest Dissertations and Theses Full text database and the Periódicos Capes Theses database. Additionally, the following databases for patents were analysed: United States Patent and Trademark Office (USPTO), Google Patents, National Institute of Industrial Property (INPI) and Espacenet patent search (EPO). The data were tabulated and analysed using Microsoft Office Excel 2010. RESULTS After title screening, 51 studies remained and this number decreased to 26 after careful examinations of the abstracts. The full texts of these 26 studies were assessed to check if they were eligible. Among them, 3 were excluded for not having full text access, and 11 were excluded because they did not fit the inclusion criteria, which left 10 articles for this systematic review. The same process was conducted for the patent search, resulting in 4 patents being included in this study. CONCLUSION Recent advances highlighted by this review may shed light on future directions of studies concerning T. minuta as a novel antimicrobial agent, which should be repeatedly proven in future animal and clinical studies. Although more evidence on its specificity and clinical efficacy are necessary to support its clinical use, T. minuta is expected to be a highly effective, safe and affordable treatment for infectious diseases.
Collapse
Affiliation(s)
- Daniela Coelho Dos Santos
- Post-graduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lara Rodrigues Schneider
- Post-graduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Andressa da Silva Barboza
- Laboratory of Oral Microbiology, Pelotas Dental School, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela Diniz Campos
- Brazilian Agricultural Research Corporation, Embrapa Temperate Climate, Monte Bonito, RS, Brazil
| | - Rafael Guerra Lund
- Post-graduate Program in Biochemistry and Bioprospection, Federal University of Pelotas, Pelotas, RS, Brazil; Laboratory of Oral Microbiology, Pelotas Dental School, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Alamgir ANM. Cultivation of Herbal Drugs, Biotechnology, and In Vitro Production of Secondary Metabolites, High-Value Medicinal Plants, Herbal Wealth, and Herbal Trade. PROGRESS IN DRUG RESEARCH 2017. [DOI: 10.1007/978-3-319-63862-1_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Chauhan N, Malik A, Sharma S, Dhiman RC. Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi. Parasitol Res 2016; 115:2223-31. [DOI: 10.1007/s00436-016-4965-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
|
13
|
Johnson M, Wesely EG, Zahir Hussain MI, Selvan N. In vivo and in vitro phytochemical and antibacterial efficacy of Baliospermum montanum(Wïlld.) Muell. Arg. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60215-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Abstract
The usage of essential oils as such or of volatile fractions thereof is widespread in the flavor and fragrance industry to aromatize perfumery and cosmetic products, foodstuffs, and many household and pharmaceutical products. The increased market share of convenience food together with consumers’ request for constant high quality and natural products have established a lasting increase in the demand for natural flavorings that cannot be satisfied by the traditional plant materials. This review summarizes selected work on terpene bioconversion / transformation and focuses on recently published papers dealing with novel strains and products, high product yields, intriguing genetic engineering approaches, and integrated bioprocesses. The future perspectives of an industrial realization of a biotechnological production of terpene-derived natural flavors are critically evaluated.
Collapse
Affiliation(s)
- Ulrich Krings
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie, Gottfried-Wilhelm-Leibniz Universität Hannover, Callinstraβe 5, D-30167 Hannover, Germany
| | - Ralf Guenter Berger
- Institut für Lebensmittelchemie im Zentrum Angewandte Chemie, Gottfried-Wilhelm-Leibniz Universität Hannover, Callinstraβe 5, D-30167 Hannover, Germany
| |
Collapse
|
15
|
. TA, . NI, . MNUH, . IF, . QF, . IG, . NK. Essential Trace Metal (Zinc, Manganese, Copper and Iron) Levels in Plants of Medicinal Importance. ACTA ACUST UNITED AC 2004. [DOI: 10.3923/jbs.2004.95.99] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Affiliation(s)
- A D Kinghorn
- Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, USA
| |
Collapse
|