1
|
The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 2009; 5:e1000618. [PMID: 19714214 PMCID: PMC2725324 DOI: 10.1371/journal.pgen.1000618] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/27/2009] [Indexed: 11/19/2022] Open
Abstract
The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.
Collapse
|
2
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
3
|
Perfectti F, Cabrero J, López-León MD, Muñoz E, Pardo MC, Camacho JP. Fitness effect analysis of a heterochromatic supernumerary segment in the grasshopper Eyprepocnemis plorans. Chromosome Res 2001; 8:425-33. [PMID: 10997782 DOI: 10.1023/a:1009214904031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several components of fitness were analysed in relation to the presence of a supernumerary chromosome segment (SCS) in two natural populations of the grasshopper Eyprepocnemis plorans, including clutch size, egg fertility, egg and embryo productivity and survivability from embryo to adult, and SCS transmission through males. The results have shown the absence of a significant relationship between SCS presence and these fitness components, with the single exception of egg fertility which decreases significantly in SCS females with mating shortage. This fertility decrease is thus expected to be relevant for the population dynamics of the SCS only in low-density populations, those in which it is difficult for females to find a male to copulate with before each egg-batch is ready to be laid. The analysis of the SCS transmission through males showed no significant differences between expected and observed SCS frequencies. The SCS polymorphism seems to be at a status close to neutrality in respect to fitness, but its slight disadvantage in transmission through females carrying B chromosomes predicts that the polymorphism should tend to disappear, unless SCS recurrent amplification, or another undiscovered force, counteracts this tendency.
Collapse
Affiliation(s)
- F Perfectti
- Departamento de Genética, Universidad de Granada, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Aragón-Alcaide L, Strunnikov AV. Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae. Nat Cell Biol 2000; 2:812-8. [PMID: 11056536 PMCID: PMC2673479 DOI: 10.1038/35041055] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Homologue pairing mediates both recombination and segregation of chromosomes at meiosis I. The recognition of nucleic-acid-sequence homology within the somatic nucleus has an impact on DNA repair and epigenetic control of gene expression. Here we investigate interchromosomal interactions using a non-invasive technique that allows tagging and visualization of DNA sequences in vegetative and meiotic live yeast cells. In non-meiotic cells, chromosomes are ordered in the nucleus, but preferential pairing between homologues is not observed. Association of tagged chromosomal domains occurs irrespective of their genomic location, with some preference for similar chromosomal positions. Here we describe a new phenomenon that promotes associations between sequence-identical ectopic tags with a tandem-repeat structure. These associations, termed interchromosome trans-associations, may underlie epigenetic phenomena.
Collapse
Affiliation(s)
- L Aragón-Alcaide
- Unit of Chromosome Structure and Function, NICHD, National Institutes of Health, 18T Library Drive, Bethesda, Maryland 20892-5430, USA.
| | | |
Collapse
|
5
|
Abstract
Although it is known today that transposons comprise a significant fraction of the genomes of many organisms, they eluded discovery through the first half century of genetic analysis and even once discovered, their ubiquity and abundance were not recognized for some time. This genetic invisibility of transposons focuses attention on the mechanisms that control not only transposition, but illegitimate recombination. The thesis is developed that the mechanisms that control transposition are a reflection of the more general capacity of eukaryotic organisms to detect, mark, and retain duplicated DNA through repressive chromatin structures.
Collapse
Affiliation(s)
- N Fedoroff
- The Pennsylvania State University, University Park, PA 16803, USA.
| |
Collapse
|
6
|
Stam M, Viterbo A, Mol JN, Kooter JM. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol 1998; 18:6165-77. [PMID: 9774634 PMCID: PMC109204 DOI: 10.1128/mcb.18.11.6165] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Posttranscriptional silencing of chalcone synthase (Chs) genes in petunia transformants occurs by introducing T-DNAs that contain a promoter-driven or promoterless Chs transgene. With the constructs we used, silencing occurs only by T-DNA loci which are composed of two or more T-DNA copies that are arranged as inverted repeats (IRs). Since we are interested in the mechanism by which these IR loci induce silencing, we have analyzed different IR loci and nonsilencing single-copy (S) T-DNA loci with respect to the expression and methylation of the transgenes residing in these loci. We show that in an IR locus, the transgenes located proximal to the IR center are much more highly methylated than are the distal genes. A strong silencing locus composed of three inverted T-DNAs bearing promoterless Chs transgenes was methylated across the entire locus. The host Chs genes in untransformed plants were moderately methylated, and no change in methylation was detected when the genes were silenced. Run-on transcription assays showed that promoter-driven transgenes located proximal to the center of a particular IR are transcriptionally more repressed than are the distal genes of the same IR locus. Transcription of the promoterless Chs transgenes could not be detected. In the primary transformant, some of the IR loci were detected together with an unlinked S locus. We observed that the methylation and expression characteristics of the transgenes of these S loci were comparable to those of the partner IR loci, suggesting that there has been cross talk between the two types of loci. Despite the similar features, S loci are unable to induce silencing, indicating that the palindromic arrangement of the Chs transgenes in the IR loci is critical for silencing. Since transcriptionally silenced transgenes in IRs can trigger posttranscriptional silencing of the host genes, our data are most consistent with a model of silencing in which the transgenes physically interact with the homologous host gene(s). The interaction may alter epigenetic features other than methylation, thereby impairing the regular production of mRNA.
Collapse
Affiliation(s)
- M Stam
- Department of Molecular Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
7
|
Henikoff S, Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 1998; 149:307-18. [PMID: 9584105 PMCID: PMC1460135 DOI: 10.1093/genetics/149.1.307] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chromodomains are thought to mediate protein-protein interactions between chromatin components. We have detected a chromodomain embedded within the catalytic region of a predicted Arabidopsis DNA methyltransferase that is diverged from other eukaryotic enzymes. The 791 residue "chromomethylase" (CMT1) is encoded by a floral transcript that is spliced from 20 exons and is present at only approximately 1/10(-7) of total mRNA. Genomic sequencing reveals an ancient haplotype split at CMT1 between Col-0 + Metz and the other ecotypes examined. In the Col-0 + Metz haplotype, alternative mRNA processing at intron 13 truncates the coding region. In Ler, RLD, and No-0, similar truncation is caused by insertion of an intact retrotransposon, Evelknievel, which is present as a single copy in Ler and RLD and is currently methylated and inactive. Evelknievel is found at this site on a single branch that connects the Ler, RLD, and No-0 ecotypes but is absent from the genomes of all other ecotypes examined. A stop codon within exon 6 of the Metz ecotype confirms that CMT1 is nonessential. Nevertheless, comparison to CMT1 of Cardaminopsis arenosa, an outcrossing relative, indicates conservation for DNA methyltransferase function. We discuss how allelic diversity of CMT1 may reflect loosened selective constraints in a self-fertilizing species such as Arabidopsis thaliana.
Collapse
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | |
Collapse
|
8
|
Mittelsten Scheid O, Afsar K, Paszkowski J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc Natl Acad Sci U S A 1998; 95:632-7. [PMID: 10939915 PMCID: PMC18472 DOI: 10.1073/pnas.95.2.632] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene silencing in plants inactivates trans-genes introduced into plants and/or endogenous homologous genes. This stable but potentially reversible loss of gene activity resembles epigenetic changes that occur in normal development. The stability of silencing implies the involvement of trans-acting components, although none of them have been identified so far. Here we report the finding of second-site mutations interfering with maintenance of the silent state. We mutagenized Arabidopsis thaliana plants carrying a silent transgene encoding hygromycin phosphotransferase (hpt) and therefore show a heritable hygromycin-sensitive phenotype. The M2 generation was screened for hygromycin resistance. Eight putative mutants (som1 to 8) were found that expressed the transgene and transmitted the expressed state to their progeny. All mutations were shown to reactivate a silent transgenic test locus in trans. The level of DNA methylation at the hpt locus and at centromeric repeats was found to be reduced in the som mutants. Complementation crosses indicated complex epigenetic interactions among the som mutant alleles and with the previously described ddm1 allele, which elicits DNA hypomethylation [Vongs, A., Kakutani, T, Martiensen, R.A. & Richards, E.J. (1993) Science 260, 1926-1928]. Som mutants can be classified into three groups: (i) allelic or interacting with ddm1 and with each other (som 1,4, and 5), (ii) nonallelic with ddm1 and som mutants of group A (som2), and (iii) mutants with slow resilencing after out-crosses, which hinders their classification (som 3, 6, 7 and 8).
Collapse
|
9
|
Gotta M, Strahl-Bolsinger S, Renauld H, Laroche T, Kennedy BK, Grunstein M, Gasser SM. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J 1997; 16:3243-55. [PMID: 9214640 PMCID: PMC1169941 DOI: 10.1093/emboj/16.11.3243] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In wild-type budding yeast strains, the proteins encoded by SIR3, SIR4 and RAP1 co-localize with telomeric DNA in a limited number of foci in interphase nuclei. Immunostaining of Sir2p shows that in addition to a punctate staining that coincides with Rap1 foci, Sir2p localizes to a subdomain of the nucleolus. The presence of Sir2p at both the spacer of the rDNA repeat and at telomeres is confirmed by formaldehyde cross-linking and immunoprecipitation with anti-Sir2p antibodies. In strains lacking Sir4p, Sir3p becomes concentrated in the nucleolus, by a pathway requiring SIR2 and UTH4, a gene that regulates life span in yeast. The unexpected nucleolar localization of Sir2p and Sir3p correlates with observed effects of sir mutations on rDNA stability and yeast longevity, defining a new site of action for silent information regulatory factors.
Collapse
Affiliation(s)
- M Gotta
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses, Epalinges/Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Hohn T, Corsten S, Rieke S, Müller M, Rothnie H. Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc Natl Acad Sci U S A 1996; 93:8334-9. [PMID: 8710871 PMCID: PMC38671 DOI: 10.1073/pnas.93.16.8334] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Derivatives of the cauliflower mosaic virus 35S promoter lacking CG and CNG methylation targets were constructed and used to direct transcription of reporter gene constructs in transiently transformed protoplasts. Such methylation-target-free (MTF) promoters, although weaker than the 35S promoter, retain significant activity despite mutation of the as-1 element. The effect of methylation on gene expression in MTF- and 35S-promoter driven constructs was examined. Even when the promoter region was free of methylation targets, reporter gene expression was markedly reduced when cytosine residues in CG dinucleotides were methylated in vitro prior to transformation. Mosaic methylation experiments, in which only specific parts of the plasmids were methylated, revealed that methylation of the coding region alone has a negative effect on reporter gene expression. Methylation nearer the 5' end of the coding region was more inhibitory, consistent with inhibition of transcription elongation.
Collapse
Affiliation(s)
- T Hohn
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Abstract
Homology-dependent gene silencing phenomena in plants have received considerable attention, especially when it was discovered that the presence of homologous sequences not only affected the stability of transgene expression, but that the activity of endogenous genes could be altered after insertion of homologous transgenes into the genome. Homology-mediated inactivation most likely comprises at least two different molecular mechanisms that induce gene silencing at the transcriptional or posttranscriptional level, respectively. In this review we discuss different mechanistic models for plant-specific inactivation mechanisms and their relationship with repeat-specific silencing phenomena in other species.
Collapse
Affiliation(s)
- P. Meyer
- Max-Delbruck-Laboratorium in der MPG, Carl-von-Linne Weg 10, Koln, D-50829 Germany, Centre for Plant Biochemistry & Biotechnology and Department of Genetics, University of Leeds, Leeds LS2 9JT, United Kingdom, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Line Weg 10, Koln, D-50829 Germany
| | | |
Collapse
|