1
|
Izawati AMD, Masani MYA, Ismanizan I, Parveez GKA. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOG(R)1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2015; 6:727. [PMID: 26442041 PMCID: PMC4585222 DOI: 10.3389/fpls.2015.00727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/28/2015] [Indexed: 05/30/2023]
Abstract
DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.
Collapse
Affiliation(s)
| | | | - Ismail Ismanizan
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan MalaysiaSelangor, Malaysia
- Institute of System Biology (INBIOSIS), University Kebangsaan MalaysiaSelangor, Malaysia
| | | |
Collapse
|
2
|
Hall KJ, Parker JS, Ellis TH, Turner L, Knox MR, Hofer JM, Lu J, Ferrandiz C, Hunter PJ, Taylor JD, Baird K. The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 2012; 40:755-69. [PMID: 18464863 DOI: 10.1139/g97-798] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cytogenetic analysis of inbred lines that have been used to generate genetic maps of pea is presented. Mitotic karyotyping of the inbred lines and meiotic studies of their F1 hybrids have been used to test the prediction that structural differences exist between the parental lines. The results are not compatible with the previously published molecular data. A reordered and updated linkage map of pea is presented that is consistent with the cytogenetic data.
Collapse
|
3
|
Novák K, Biedermannová E, Vondrys J. Functional markers delimiting a Medicago orthologue of pea symbiotic gene NOD3. EUPHYTICA 2012; 186:761-777. [PMID: 0 DOI: 10.1007/s10681-011-0586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 11/12/2011] [Indexed: 05/21/2023]
|
4
|
Novák K. Early action of pea symbiotic gene NOD3 is confirmed by adventitious root phenotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:472-478. [PMID: 21802605 DOI: 10.1016/j.plantsci.2010.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 05/31/2023]
Abstract
A supernodulating and Nts (nitrate-tolerant symbiosis) symbiotic mutation of pea (Pisum sativum L.) line RisfixC was found to retain its expression in the distant genetic background of pea lines Afghanistan L1268, Zhodino E900, and cv. Arvika. This finding allowed for reliable scoring for the trait in mapping crosses. The RisfixC mutation was localized 8.2cM apart from SYM2 and cosegregated with molecular markers for SYM2-NOD3 region Psc923 and OA-1. Grafting experiments showed that supernodulation is root-determined, consistently with mutants in the NOD3 locus. Therefore, the mutation of RisfixC can be localized in gene NOD3. Like in other published nod3 alleles, the RisfixC mutation determines supernodulation when it is expressed in the root but not in the shoot. Supernodulated adventitious roots that are spontaneously formed in the wild-type scions on mutant rootstocks indicate that the descending systemic signal, which is inhibitory to nodule formation, is absent in this type of chimeric plants. Since the descending signal production in the wild-type shoot reflects the presence of the ascending root signal, the nod3-associated lesion must be located in the beginning of the systemic circuit regulating nodule number.
Collapse
Affiliation(s)
- Karel Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská l083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
5
|
Bogdanova VS, Lester DR, Berdnikov VA, Andersson I. Structure of allelic variants of subtype 5 of histone H1 in pea Pisum sativum L. Heredity (Edinb) 2005; 94:582-8. [PMID: 15726112 DOI: 10.1038/sj.hdy.6800650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The pea genome contains seven histone H1 genes encoding different subtypes. Previously, the DNA sequence of only one gene, His1, coding for the subtype H1-1, had been identified. We isolated a histone H1 allele from a pea genomic DNA library. Data from the electrophoretic mobility of the pea H1 subtypes and their N-bromosuccinimide cleavage products indicated that the newly isolated gene corresponded to the H1-5 subtype encoded by His5. We confirmed this result by sequencing the gene from three pea lines with H1-5 allelic variants of altered electrophoretic mobility. The allele of the slow H1-5 variant differed from the standard allele by a nucleotide substitution that caused the replacement of the positively charged lysine with asparagine in the DNA-interacting domain of the histone molecule. A temperature-related occurrence had previously been demonstrated for this H1-5 variant in a study on a worldwide collection of pea germplasm. The variant tended to occur at higher frequencies in geographic regions with a cold climate. The fast allelic variant of H1-5 displayed a deletion resulting in the loss of a duplicated pentapeptide in the C-terminal domain.
Collapse
Affiliation(s)
- V S Bogdanova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | | | | | | |
Collapse
|
6
|
Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB. A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A. PLANT PHYSIOLOGY 2004; 135:2186-95. [PMID: 15286297 PMCID: PMC520789 DOI: 10.1104/pp.103.036103] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 04/14/2004] [Accepted: 04/29/2004] [Indexed: 05/18/2023]
Abstract
Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA. The mutant carries a single base substitution in the PHYA gene that is genetically inseparable from the mutant phenotype. This substitution is predicted to direct the replacement of a conserved Ala in an N-terminal region of PHYA that is highly divergent between phyA and other phytochromes. This result identifies a region of the phyA photoreceptor molecule that may play an important role in its fate after photoconversion.
Collapse
Affiliation(s)
- James L Weller
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Gao Z, Eyers S, Thomas C, Ellis N, Maule A. Identification of markers tightly linked to sbm recessive genes for resistance to Pea seed-borne mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:488-94. [PMID: 15067509 DOI: 10.1007/s00122-004-1652-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 02/25/2004] [Indexed: 05/18/2023]
Abstract
Two virus resistance loci on linkage groups II and VI have provided the only sources of natural resistance against Pea seed-borne mosaic virus (PSbMV, Potyviridae) in the important crop plant Pisum sativum L. A combination of parallel approaches was used to collate linked markers, particularly for sbm-1 resistance on linkage group VI. We have identified sequences derived from the genes for the eukaryotic translation initiation factors eIF4E and eIF(iso)4E as being very tightly linked to the resistance gene clusters on linkage groups VI and II, respectively. In particular, no recombinants between sbm-1 and eIF4E were found amongst 500 individuals of an F2 cross between the BC4 resistant line (JI1405) and its recurrent susceptible parent 'Scout'. In a different mapping population, the gene eIF(iso)4E was also shown to be linked to sbm-2 on linkage group II. A parallel cDNA-AFLP comparison of pairs of resistant and susceptible lines also identified an expressed tag marker just 0.7 cM from sbm-1. eIF4E and eIF(iso)4E have been associated with resistance to related viruses in other hosts. This correlation strengthens the use of our markers as valuable tools to assist in breeding multiple virus resistances into peas, and identifies potential targets for resistance gene identification in pea.
Collapse
Affiliation(s)
- Z Gao
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | | | | | | |
Collapse
|
8
|
Weller JL, Batge SL, Smith JJ, Kerckhoffs LHJ, Sineshchekov VA, Murfet IC, Reid JB. A Dominant Mutation in the Pea PHYA Gene Confers Enhanced Responses to Light and Impairs the Light-Dependent Degradation of Phytochrome A. PLANT PHYSIOLOGY 2004; 135:2186-2195. [DOI: https:/doi.org/10.1104/pp.103.036103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Abstract
Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA. The mutant carries a single base substitution in the PHYA gene that is genetically inseparable from the mutant phenotype. This substitution is predicted to direct the replacement of a conserved Ala in an N-terminal region of PHYA that is highly divergent between phyA and other phytochromes. This result identifies a region of the phyA photoreceptor molecule that may play an important role in its fate after photoconversion.
Collapse
Affiliation(s)
- James L. Weller
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Shona L. Batge
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Jennifer J. Smith
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - L. Huub J. Kerckhoffs
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Vitaly A. Sineshchekov
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - Ian C. Murfet
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| | - James B. Reid
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.L.W., S.L.B., J.J.S., L.H.J.K., I.C.M., J.B.R.); and Biology Department, M.V. Lomonosov Moscow State University, Moscow 119899, Russia (V.A.S.)
| |
Collapse
|
9
|
Davidson SE, Smith JJ, Helliwell CA, Poole AT, Reid JB. The pea gene LH encodes ent-kaurene oxidase. PLANT PHYSIOLOGY 2004; 134:1123-34. [PMID: 14988475 PMCID: PMC389936 DOI: 10.1104/pp.103.032706] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 10/03/2003] [Accepted: 12/03/2003] [Indexed: 05/17/2023]
Abstract
The pea (Pisum sativum) homolog, PsKO1, of the Arabidopsis GA3 gene was isolated. It codes for a cytochrome P450 from the CYP701A subfamily and has ent-kaurene oxidase (KO) activity, catalyzing the three step oxidation of ent-kaurene to ent-kaurenoic acid in the gibberellin (GA) biosynthetic pathway when expressed in yeast (Saccharomyces cerevisiae). PsKO1 is encoded by the LH gene because in three independent mutant alleles, lh-1, lh-2, and lh-3, PsKO1 has altered sequence, and the lh-1 allele, when expressed in yeast, failed to metabolize ent-kaurene. The lh mutants of pea are GA deficient and have reduced internode elongation and root growth. One mutant (lh-2) also causes a large increase in seed abortion. PsKO1 (LH) is expressed in all tissues examined, including stems, roots, and seeds, and appears to be a single-copy gene. Differences in sensitivity to the GA synthesis inhibitor, paclobutrazol, between the mutants appear to result from the distinct nature of the genetic lesions. These differences may also explain the tissue-specific differences between the mutants.
Collapse
Affiliation(s)
- Sandra E Davidson
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | | | | | | | | |
Collapse
|
10
|
Escaler M, Aranda MA, Roberts IM, Thomas CL, Maule AJ. A comparison between virus replication and abiotic stress (heat) as modifiers of host gene expression in pea. MOLECULAR PLANT PATHOLOGY 2000; 1:159-167. [PMID: 20572962 DOI: 10.1046/j.1364-3703.2000.00020.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract Pea embryonic tissues respond to active replication of pea seed-borne mosaic potyvirus (PSbMV) by the down-regulation of a range of genes and the induction of others. Both of these responses can be seen when tissues are subjected to abiotic stress, particularly heat. We have compared the effects of the two inducers to assess whether the host alterations following virus replication represent generic responses to stress, or more specific effects. Five classes of response were identified: (i) genes induced by both stresses (e.g. heat shock protein 70, hsp70); (ii) genes induced by virus replication but unaffected by heat (e.g. glutathione reductase 2, gor2); (iii) genes induced by heat but unaffected by virus replication (e.g. heat shock factor, hsf); (iv) genes down-regulated by virus replication and unaffected by heat (e.g. vicilin, vic); and (v) genes unaffected by both inducers (e.g. actin, act and beta-tubulin, tub). A change in the appearance and organization of the endoplasmic reticulum (ER) was also seen in cells actively replicating PSbMV RNA. Heat treatment of pea embryonic tissues also produced altered ER, although the changes were different from those seen following virus infection. Collectively, these data show that, while there are some common features of the responses to virus infection and heat, there are also substantial differences. Hence, it appears that the host response to virus replication is not a general stress response.
Collapse
Affiliation(s)
- M Escaler
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
11
|
Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis TH, Flavell AJ. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:711-717. [PMID: 10571856 DOI: 10.1046/j.1365-313x.1999.00556.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The terminal sequences of long-terminal repeat (LTR) retrotransposons are a source of powerful molecular markers for linkage mapping and biodiversity studies. The major factor limiting the widespread application of LTR retrotransposon-based molecular markers is the availability of new retrotransposon terminal sequences. We describe a PCR-based method for the rapid isolation of LTR sequences of Ty1-copia group retrotransposons from the genomic DNA of potentially any higher plant species. To demonstrate the utility of this technique, we have identified a variety of new retrotransposon LTR sequences from pea, broad bean and Norway spruce. Primers specific for three pea LTRs have been used to reveal polymorphisms associated with the corresponding retrotransposons within the Pisum genus.
Collapse
Affiliation(s)
- S R Pearce
- Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Flavell AJ, Knox MR, Pearce SR, Ellis TH. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:643-50. [PMID: 10036780 DOI: 10.1046/j.1365-313x.1998.00334.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two assays based upon PCR detection of a polymorphic PDR1 retrotransposon insertion in Pisum sativum have been developed. Both methods involve PCR with primers derived from the transposon and flanking DNA. The first method uses a dot assay for PCR product detection which could be fully automated for handling thousands of samples. The second method, which is designed to handle lower numbers, requires a single PCR and gel lane per sample. Both methods yield co-dominant markers, with presence and absence of the transposon insertion independently scorable, and both could in principle be applied to any transposable element in any plant species.
Collapse
Affiliation(s)
- A J Flavell
- Department of Biochemistry, University of Dundee, UK.
| | | | | | | |
Collapse
|
13
|
Jones AL, Thomas CL, Maule AJ. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J 1998; 17:6385-93. [PMID: 9799246 PMCID: PMC1170963 DOI: 10.1093/emboj/17.21.6385] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The relationship between co-suppression and DNA methylation was explored in transgenic plants showing inducible co-suppression following infection with a cytoplasmically replicating RNA virus. Induction resulted in a loss of transgene mRNA and resistance to further infection, factors typical of post-transcriptional gene silencing. In infected plants, de novo methylation of the transgene appeared to precede the onset of resistance and only occurred in plants where the outcome was co-suppression. The methylation was limited to sequences homologous to the viral RNA and occurred at both symmetric and non-symmetric sites on the DNA. Although methylation is predicted to occur in mitotic cells, the virus was found not to access the meristem. A diffusible sequence-specific signal may account for the epigenetic changes in those tissues.
Collapse
Affiliation(s)
- A L Jones
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
14
|
Bean SJ, Gooding PS, Mullincaux PM, Davies DR. A simple system for pea transformation. PLANT CELL REPORTS 1997; 16:513-519. [PMID: 30727570 DOI: 10.1007/bf01142315] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/1995] [Revised: 07/16/1996] [Accepted: 08/15/1996] [Indexed: 06/09/2023]
Abstract
The lateral cotyledonary meristems of germinatingPisum sativum cv. Puget seeds were used to develop a reproducibleAgrobacterium tumefaciens-mediated transformation system. This procedure exhibits distinct advantages over those previously reported, in that it uses dry seed as starting material, and the highly regenerable cotyledonary meristems rapidly produce transgenic shoots without an intermediate callus phase. This transformation regime facilitates the rapid generation of phenotypically normal, self-fertile plants containing functional transgenes inherited in a Mendelian fashion.
Collapse
Affiliation(s)
- S J Bean
- John Innes Centre, Norwich Research Park, NR4 7UH, Colney, Norwich, UK
| | - P S Gooding
- John Innes Centre, Norwich Research Park, NR4 7UH, Colney, Norwich, UK
| | - P M Mullincaux
- John Innes Centre, Norwich Research Park, NR4 7UH, Colney, Norwich, UK
| | - D R Davies
- John Innes Centre, Norwich Research Park, NR4 7UH, Colney, Norwich, UK
| |
Collapse
|