1
|
Phillips ME, Marr H, Schöneich S, Robillard T, Ter Hofstede HM. Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini. J Exp Biol 2025; 228:jeb249877. [PMID: 39871696 DOI: 10.1242/jeb.249877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Many animals communicate using call and response signals, but the evolutionary origins of this type of communication are largely unknown. In most cricket species, males sing and females walk or fly to calling males. In the tribe Lebinthini, however, males produce calls that trigger a vibrational reply from females, and males use the substrate vibrations to find the responding female. Here, we assessed two hypotheses regarding the behavioral origin of this multimodal duet in the Lebinthini. We conducted playback experiments and measured behavioral and neuronal responses in multiple related cricket species to assess whether the precursor to the lebinthine duet was (1) a startle response to high-frequency sound or (2) an elaboration of a pre-existing courtship behavior. We found behavioral similarities between the vibrational response of Lebinthini females and the acoustic startle behavior in other gryllid crickets. Specifically, the amplitude of the vibrational reply increases with male song amplitude in Lebinthini, and the magnitude of vibrations produced by two gryllid species when startled with ultrasound also correlates with the stimulus amplitude. Like in-flight startle behavior, the startle vibrations produced by perched crickets are suppressed when low-frequency sound is played simultaneously. We also observed courtship behavior in four gryllid species and found few instances of female vibration. Vibrational signals observed in Gryllus pennsylvanicus females were not correlated with male calls and occurred more frequently in pairs that did not mate after courtship. Combined, accumulating evidence supports the hypothesis that the lebinthine duet more likely evolved from a startle precursor than from courtship behavior.
Collapse
Affiliation(s)
- Mia E Phillips
- Dartmouth College, Ecology, Evolution, Environment and Society Graduate Program, Hanover, NH 03755, USA
| | - Hannah Marr
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| | - Stefan Schöneich
- Friedrich Schiller University, Institute of Zoology and Evolutionary Research, 07743 Jena, Germany
| | - Tony Robillard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE-PSL, UA, Paris 75005, France
| | - Hannah M Ter Hofstede
- Dartmouth College, Ecology, Evolution, Environment and Society Graduate Program, Hanover, NH 03755, USA
- University of Windsor, Department of Integrative Biology, Windsor, ON, Canada, N9B 3P4
| |
Collapse
|
2
|
Zhang Q, Wu S, Xing Z, Wang H, Lei Z. Substrate-borne vibrational signals and stridulatory organs for sexual communication in leafminer, Liriomyza sativae (Diptera: Agromyzidae). INSECT SCIENCE 2023; 30:221-231. [PMID: 35557030 DOI: 10.1111/1744-7917.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
The vegetable leafminer (Liriomyza sativae [Burgess]) is a highly polyphagous pest that threatens vegetables and horticultural plants. Although sexual communication is a key component of the animal behavioral repertoire, the mechanism underlying sexual communication in L. sativae remains to be elucidated. Here, we used laser vibrometry to characterize the vibrational signals emitted by L. sativae during pair formation. By emitting trains of vibrational pulses (male calling) the male initiated communication on the host plant. The female then became immobile and responded to the male calling by emitting replies (female replies), which in turn triggered male replies consisting of a rapid series of chirps and trills. If the female replied, a continuous exchange of male and female replies ensued, representing a duet. In playback trials, a playback signal caused responses from the opposite sex. Moreover, scanning electron microscopy revealed vibration-producing stridulatory organs in both male and female individuals. The files in males were more developed than those in females, and older male specimens had more signs of abrasion. The results provide new insight into the mating biology of L. sativae.
Collapse
Affiliation(s)
- Qikai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengyong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenlong Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Haihong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongren Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Virant-Doberlet M, Stritih-Peljhan N, Žunič-Kosi A, Polajnar J. Functional Diversity of Vibrational Signaling Systems in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:191-210. [PMID: 36198397 DOI: 10.1146/annurev-ento-120220-095459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Communication by substrate-borne mechanical waves is widespread in insects. The specifics of vibrational communication are related to heterogeneous natural substrates that strongly influence signal transmission. Insects generate vibrational signals primarily by tremulation, drumming, stridulation, and tymbalation, most commonly during sexual behavior but also in agonistic, social, and mutualistic as well as defense interactions and as part of foraging strategies. Vibrational signals are often part of multimodal communication. Sensilla and organs detecting substrate vibration show great diversity and primarily occur in insect legs to optimize sensitivity and directionality. In the natural environment, signals from heterospecifics, as well as social and enemy interactions within vibrational communication networks, influence signaling and behavioral strategies. The exploitation of substrate-borne vibrational signaling offers a promising application for behavioral manipulation in pest control.
Collapse
Affiliation(s)
- Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Nataša Stritih-Peljhan
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Alenka Žunič-Kosi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| |
Collapse
|
4
|
Vibrational signalling, an underappreciated mode in cricket communication. Naturwissenschaften 2021; 108:41. [PMID: 34480654 DOI: 10.1007/s00114-021-01749-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Signalling via substrate vibration represents one of the most ubiquitous and ancient modes of insect communication. In crickets (Grylloidea) and other taxa of tympanate Ensifera, production and detection of acoustic and vibrational signals are closely linked functionally and evolutionarily. Male stridulation produces both acoustic and vibrational signal components, the joint perception of which improves song recognition and female orientation towards the signaller. In addition to stridulation, vibrational signalling mainly through body tremulation and/or drumming with body parts on the substrate has long been known to be part of crickets' close-range communication, including courtship, mate guarding and aggression. Such signalling is typically exhibited by males, independently or in conjunction with stridulation, and occurs literally in all cricket lineages and species studied. It is further also part of the aggressive behaviour of females, and in a few cricket groups, females respond vibrationally to acoustic and/or vibrational signals from males. The characteristics and function of these signals have remained largely unexplored despite their prevalence. Moreover, the communication potential and also ubiquity of cricket vibrational signals are underappreciated, limiting our understanding of the function and evolution of the cricket signalling systems. By providing a concise review of the existing knowledge of cricket perception of vibrations and vibrational signalling behaviour, we critically comment on these views, discuss the communication value of the emitted signals and give some methodological advice respecting their registration and control. The review aims to increase awareness, understanding and research interest in this ancient and widespread signalling mode in cricket communication.
Collapse
|
5
|
Sivalinghem S, Mason AC. Function of structured signalling in the black widow spider Latrodectus hesperus. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Sivalinghem S, Mason AC. Vibratory communication in a black widow spider (Latrodectus hesperus): signal structure and signalling mechanisms. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Hebets EA, Bern M, McGinley RH, Roberts A, Kershenbaum A, Starrett J, Bond JE. Sister species diverge in modality-specific courtship signal form and function. Ecol Evol 2021; 11:852-871. [PMID: 33520171 PMCID: PMC7820158 DOI: 10.1002/ece3.7089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Understanding the relative importance of different sources of selection (e.g., the environment, social/sexual selection) on the divergence or convergence of reproductive communication can shed light on the origin, maintenance, or even disappearance of species boundaries. Using a multistep approach, we tested the hypothesis that two presumed sister species of wolf spider with overlapping ranges and microhabitat use, yet differing degrees of sexual dimorphism, have diverged in their reliance on modality-specific courtship signaling. We predicted that male Schizocosa crassipalpata (no ornamentation) rely predominantly on diet-dependent vibratory signaling for mating success. In contrast, we predicted that male S. bilineata (black foreleg brushes) rely on diet-dependent visual signaling. We first tested and corroborated the sister-species relationship between S. crassipalpata and S. bilineata using phylogenomic scale data. Next, we tested for species-specific, diet-dependent vibratory and visual signaling by manipulating subadult diet and subsequently quantifying adult morphology and mature male courtship signals. As predicted, vibratory signal form was diet-dependent in S. crassipalpata, while visual ornamentation (brush area) was diet-dependent in S. bilineata. We then compared the species-specific reliance on vibratory and visual signaling by recording mating across artificially manipulated signaling environments (presence/absence of each modality in a 2 × 2 full factorial design). In accordance with our diet dependence results for S. crassipalpata, the presence of vibratory signaling was important for mating success. In contrast, the light and vibratory environment interacted to influence mating success in S. bilineata, with vibratory signaling being important only in the absence of light. We found no differences in overall activity patterns. Given that these species overlap in much of their range and microhabitat use, we suggest that competition for signaling space may have led to the divergence and differential use of sensory modalities between these sister species.
Collapse
Affiliation(s)
| | - Mitch Bern
- University of Nebraska‐LincolnLincolnNEUSA
| | | | - Andy Roberts
- The Ohio State University at Newark CampusNewarkOHUSA
| | | | | | | |
Collapse
|
8
|
Miller TE, Mortimer B. Control vs. Constraint: Understanding the Mechanisms of Vibration Transmission During Material-Bound Information Transfer. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.587846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Material-bound vibrations are ubiquitous in the environment and are widely used as an information source by animals, whether they are generated by biotic or abiotic sources. The process of vibration information transfer is subject to a wide range of physical constraints, especially during the vibration transmission phase. This is because vibrations must travel through materials in the environment and body of the animal before reaching embedded mechanosensors. Morphology therefore plays a key and often overlooked role in shaping information flow. Web-building spiders are ideal organisms for studying vibration information transfer due to the level of control they have over morphological traits, both within the web (environment) and body, which can give insights for bioinspired design. Here we investigate the mechanisms governing vibration information transfer, including the relative roles of constraints and control mechanisms. We review the known and theoretical contributions of morphological and behavioral traits to vibration transmission in these spiders, and propose an interdisciplinary framework for considering the effects of these traits from a biomechanical perspective. Whereas morphological traits act as a series of springs, dampers and masses arranged in a specific geometry to influence vibration transmission, behavioral traits influence these morphologies often over small timescales in response to changing conditions. We then explore the relative roles of constraints and control mechanisms in shaping the variation of these traits at various taxonomic levels. This analysis reveals the importance of morphology modification to gain control over vibration transmission to mitigate constraints and essentially promote information transfer. In particular, we hypothesize that morphological computation is used by spiders during vibration information transfer to reduce the amount of processing required by the central nervous system (CNS); a hypothesis that can be tested experimentally in the future. We can take inspiration from how spiders control vibration transmission and apply these insights to bioinspired engineering. In particular, the role of morphological computation for vibration control could open up potential developments for soft robots, which could use multi-scale vibration sensory systems inspired by spiders to quickly and efficiently adapt to changing environments.
Collapse
|
9
|
Rosenthal MF, Hebets EA, McGinley R, Raiza C, Starrett J, Yan L, Elias DO. Exploring a novel substrate‐borne vibratory signal in the wolf spider
Schizocosa floridana. Ethology 2020. [DOI: 10.1111/eth.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | - Cody Raiza
- University of California Berkeley CA USA
| | | | - Lin Yan
- University of California Berkeley CA USA
| | | |
Collapse
|
10
|
Menezes JCT, Santos ESA. Habitat structure drives the evolution of aerial displays in birds. J Anim Ecol 2019; 89:482-493. [DOI: 10.1111/1365-2656.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/20/2019] [Indexed: 01/17/2023]
Affiliation(s)
- João C. T. Menezes
- Programa de Pós‐graduação em Ecologia Universidade de São Paulo São Paulo Brazil
- BECO do Departamento de Zoologia Universidade de São Paulo São Paulo Brazil
| | - Eduardo S. A. Santos
- Programa de Pós‐graduação em Ecologia Universidade de São Paulo São Paulo Brazil
- BECO do Departamento de Zoologia Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
11
|
Raboin M, Elias DO. Anthropogenic noise and the bioacoustics of terrestrial invertebrates. ACTA ACUST UNITED AC 2019; 222:222/12/jeb178749. [PMID: 31217253 DOI: 10.1242/jeb.178749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise is an important issue of environmental concern owing to its wide-ranging effects on the physiology, behavior and ecology of animals. To date, research has focused on the impacts of far-field airborne noise (i.e. pressure waves) on vertebrates, with few exceptions. However, invertebrates and the other acoustic modalities they rely on, primarily near-field airborne and substrate-borne sound (i.e. particle motion and vibrations, respectively) have received little attention. Here, we review the literature on the impacts of different types of anthropogenic noise (airborne far-field, airborne near-field, substrate-borne) on terrestrial invertebrates. Using literature on invertebrate bioacoustics, we propose a framework for understanding the potential impact of anthropogenic noise on invertebrates and outline predictions of possible constraints and adaptations for invertebrates in responding to anthropogenic noise. We argue that understanding the impacts of anthropogenic noise requires us to consider multiple modalities of sound and to cultivate a broader understanding of invertebrate bioacoustics.
Collapse
Affiliation(s)
- Maggie Raboin
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Damian O Elias
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Ge J, Wei J, Zhang D, Hu C, Zheng D, Kang L. Pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) uses vibrational duets for efficient sexual communication. INSECT SCIENCE 2019; 26:510-522. [PMID: 29676516 PMCID: PMC7379950 DOI: 10.1111/1744-7917.12598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The pea leafminer (Liriomyza huidobrensis) is a notorious pest of vegetables and ornamental plants worldwide. Despite a large number of studies on its biology and ecology, the courtship behavior and sexual communication of this species remain unclear. Here, we studied vibrational communication in the sexual interaction of the pea leafminer. On host plant leaves, females and males behaviorally displayed the bobbing-quivering alternation, which finally led to copulation. Moreover, records of laser vibrometry revealed three-signal duets underlying the behavioral alternation. Sexually mature males spontaneously emitted calls (MCs) to initiate the duets. The females rapidly responded to MCs by emitting replies (FRs) that are longer in duration. The FRs further triggered male replies (MRs) in their search for potential partners. Leafminer-produced vibrational signals convey efficient information to partners and generate pair formation on stretched substrates, such as plant leaves and nylon mesh, but cannot elicit responses on dense substrates, such as glass and plastic. Vibrational playbacks of both MCs and FRs can elicit replies in females and males, respectively. This study completely characterizes substrate-borne vibrational duets in a dipteran insect. The discovery of vibrational sex signals in the pea leafminer provides new insights for the development of novel approaches to control the pest and its relative species.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jia‐Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ding‐Jie Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Chun Hu
- School of Instrumentation Science & Optoelectronics EngineeringBeihang UniversityBeijingChina
| | - De‐Zhi Zheng
- School of Instrumentation Science & Optoelectronics EngineeringBeihang UniversityBeijingChina
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Girard MB, Kasumovic MM, Elias DO. The role of red coloration and song in peacock spider courtship: insights into complex signaling systems. Behav Ecol 2018. [DOI: 10.1093/beheco/ary128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Madeline B Girard
- Department of Environmental Science, Policy and Management, University of California, Mulford Hall, Berkeley, CA, USA
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, Biological Sciences Building (D26) University of New South Wales, Kensington, Sydney, Australia
| | - Damian O Elias
- Department of Environmental Science, Policy and Management, University of California, Mulford Hall, Berkeley, CA, USA
| |
Collapse
|
14
|
On the spot: utilization of directional cues in vibrational communication of a stink bug. Sci Rep 2018; 8:5418. [PMID: 29615688 PMCID: PMC5882921 DOI: 10.1038/s41598-018-23710-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/19/2018] [Indexed: 11/08/2022] Open
Abstract
Although vibrational signalling is among the most ancient and common forms of communication, many fundamental aspects of this communication channel are still poorly understood. Here, we studied mechanisms underlying orientation towards the source of vibrational signals in the stink bug Nezara viridula (Hemiptera, Pentatomidae), where female vibrational song enables male to locate her on the bean plant. At the junction between the main stem and the leaf stalks, male placed his legs on different sides of the branching and orientation at the branching point was not random. Analyses of signal transmission revealed that only a time delay between the arrival of vibrational wave to receptors located in the legs stretched across the branching was a reliable directional cue underlying orientation, since, unexpectedly, the signal amplitude at the branching point was often higher on the stalk away from the female. The plant and the position of the vibrational source on the plant were the most important factors influencing the unpredictability of the amplitude cue. Determined time delays as short as 0.5 ms resulted in marked changes in interneuron activity and the decision model suggests that the behavioural threshold is in the range between 0.3 and 0.5 ms.
Collapse
|