2
|
Kim H, Jeon Y, Lee W, Jang G, Yoon Y. Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3093. [PMID: 32486164 PMCID: PMC7309064 DOI: 10.3390/s20113093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
It has recently been discovered that organic and inorganic arsenics could be detrimental to human health. Although organic arsenic is less toxic than inorganic arsenic, it could form inorganic arsenic through chemical and biological processes in environmental systems. In this regard, the availability of tools for detecting organic arsenic species would be beneficial. Because As-sensing biosensors employing arsenic responsive genetic systems are regulated by ArsR which detects arsenics, the target selectivity of biosensors could be obtained by modulating the selectivity of ArsR. In this study, we demonstrated a shift in the specificity of E. coli cell-based biosensors from the detection of inorganic arsenic to that of organic arsenic, specifically phenylarsine oxide (PAO), through the genetic engineering of ArsR. By modulating the number and location of cysteines forming coordinate covalent bonds with arsenic species, an E. coli cell-based biosensor that was specific to PAO was obtained. Despite its restriction to PAO at the moment, it offers invaluable evidence of the potential to generate new biosensors for sensing organic arsenic species through the genetic engineering of ArsR.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| | - Yangwon Jeon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| | - Woonwoo Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; (H.K.); (Y.J.); (W.L.)
| |
Collapse
|
3
|
Brutesco C, Prévéral S, Escoffier C, Descamps ECT, Prudent E, Cayron J, Dumas L, Ricquebourg M, Adryanczyk-Perrier G, de Groot A, Garcia D, Rodrigue A, Pignol D, Ginet N. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:52-65. [PMID: 27234828 DOI: 10.1007/s11356-016-6952-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.
Collapse
Affiliation(s)
- Catherine Brutesco
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Sandra Prévéral
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Camille Escoffier
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Elodie C T Descamps
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Elsa Prudent
- Université de Lyon, Lyon, 69003, France
- INSA de Lyon, Villeurbanne, 69621, France
- CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France
| | - Julien Cayron
- Université de Lyon, Lyon, 69003, France
- INSA de Lyon, Villeurbanne, 69621, France
- CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France
| | - Louis Dumas
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Manon Ricquebourg
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Géraldine Adryanczyk-Perrier
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Arjan de Groot
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Daniel Garcia
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Agnès Rodrigue
- Université de Lyon, Lyon, 69003, France
- INSA de Lyon, Villeurbanne, 69621, France
- CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France
| | - David Pignol
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France
| | - Nicolas Ginet
- CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France.
- CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.
- Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.
| |
Collapse
|
4
|
Durand MJ, Hua A, Jouanneau S, Cregut M, Thouand G. Detection of Metal and Organometallic Compounds with Bioluminescent Bacterial Bioassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015:77-99. [PMID: 26475470 DOI: 10.1007/10_2015_332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Chemical detection of metal and organometallic compounds is very specific and sensitive, but these techniques are time consuming and expensive. Although these techniques provide information about the concentrations of compounds, they fail to inform us about the toxicity of a sample. Because the toxic effects of metals and organometallic compounds are influenced by a multitude of environmental factors, such as pH, the presence of chelating agents, speciation, and organic matter, bioassays have been developed for ecotoxicological studies. Among these bioassays, recombinant luminescent bacteria have been developed over the past 20 years, and many of them are specific for the detection of metals and metalloids. These bioassays are simple to use, are inexpensive, and provide information on the bioavailable fraction of metals and organometals. Thus, they are an essential complementary tool for providing information beyond chemical analysis. In this chapter, we propose to investigate the detection of metals and organometallic compounds with bioluminescent bacterial bioassays and the applications of these bioassays to environmental samples. Graphical Abstract.
Collapse
Affiliation(s)
- M J Durand
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, 85000, La Roche sur Yon, France.
| | - A Hua
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, 85000, La Roche sur Yon, France
| | - S Jouanneau
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, 85000, La Roche sur Yon, France
| | - M Cregut
- Capacités SAS, 26 Bd Vincent Gâche, 44200, Nantes, France
| | - G Thouand
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, 85000, La Roche sur Yon, France
| |
Collapse
|