1
|
Revishchin A, Moiseenko L, Kust N, Bazhenova N, Teslia P, Panteleev D, Kovalzon V, Pavlova G. Effects of striatal transplantation of cells transfected with GDNF gene without pre- and pro-regions in mouse model of Parkinson's disease. BMC Neurosci 2016; 17:34. [PMID: 27286696 PMCID: PMC4902902 DOI: 10.1186/s12868-016-0271-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/03/2016] [Indexed: 11/26/2022] Open
Abstract
Background Previously, we have shown that transgenic cells bearing the GDNF gene with deleted pre- and pro-regions (mGDNF) can release transgenic GDNF. The medium conditioned by transgenic cells with mGDNF induced axonal growth in rat embryonic spinal ganglion in vitro. Here we demonstrate a neurotrophic effect of mGDNF on PC12 cells in vitro as well as its neuroprotective effect on dopaminergic neurons in the substantia nigra pars compacta in vivo as indicated by improved motor coordination and sleep-wakefulness cycle in the MPTP mouse model of Parkinson’s disease. Results HEK293 cells were transfected with a vector encoding an isoform of the human GDNF gene with deleted pre- and pro-regions (mGDNF). This factor in the medium conditioned by the transfected cells was shown to induce axonal growth in PC12 cells. The early Parkinson’s disease model was established by injection of the dopaminergic pro-neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57Bl/6 mice. Transgenic HEK293/mGDNF/GFP cells were transplanted into the striatum (caudate-putamen) of experimental mice. The sleep-wakefulness cycle was studied by continuous EEG and motor activity monitoring 1 and 2 weeks after MPTP injection. After the experiment, the motor coordination of experimental animals was evaluated in the rotarod test, and dopaminergic neurons in the substantia nigra pars compacta were counted in cross-sections of the midbrain. MPTP administration lowered the number of tyrosine hydroxylase immunopositive cells in the substantia nigra pars compacta, decreased motor coordination, and increased the total wake time during the dark period. The transplantation of HEK293/mGDNF cells into the caudate-putamen 3 days prior to MPTP injection smoothed these effects, while the control transplantation of HEK293 cells showed no notable impact. Conclusions Transplantation of transgenic cells with the GDNF gene lacking the pre- and pro-sequences can protect dopaminergic neurons in the mouse midbrain from the subsequent administration of the pro-neurotoxin MPTP, which is confirmed by polysomnographic, behavioral and histochemical data. Hence it is released from transfected cells and preserves the differentiation activity and neuroprotective properties.
Collapse
Affiliation(s)
- A Revishchin
- Laboratory of Neurogenetic and Developmental Genetic, Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, Russia, 119334.,Ltd Apto-pharm, Kolomensky Road, 13A, Moscow, Russia, 115446
| | - L Moiseenko
- Department of Higher Nervous Activity, Faculty of Biology, M.V. Lomonosov Moscow State University, Lenin Hills d. 1, pp. 12, Moscow, Russia, 119234.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - N Kust
- Laboratory of Neurogenetic and Developmental Genetic, Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, Russia, 119334.,Ltd Apto-pharm, Kolomensky Road, 13A, Moscow, Russia, 115446
| | - N Bazhenova
- Department of Higher Nervous Activity, Faculty of Biology, M.V. Lomonosov Moscow State University, Lenin Hills d. 1, pp. 12, Moscow, Russia, 119234.,Research Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia, 125315
| | - P Teslia
- Laboratory of Neurogenetic and Developmental Genetic, Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, Russia, 119334
| | - D Panteleev
- Laboratory of Neurogenetic and Developmental Genetic, Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, Russia, 119334
| | - V Kovalzon
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., Moscow, Russia, 119071
| | - G Pavlova
- Laboratory of Neurogenetic and Developmental Genetic, Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, Russia, 119334. .,Ltd Apto-pharm, Kolomensky Road, 13A, Moscow, Russia, 115446.
| |
Collapse
|
2
|
Tovar-Y-Romo LB, Ramírez-Jarquín UN, Lazo-Gómez R, Tapia R. Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci 2014; 8:61. [PMID: 24616665 PMCID: PMC3937589 DOI: 10.3389/fncel.2014.00061] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/11/2014] [Indexed: 12/12/2022] Open
Abstract
Motor neuron physiology and development depend on a continuous and tightly regulated trophic support from a variety of cellular sources. Trophic factors guide the generation and positioning of motor neurons during every stage of the developmental process. As well, they are involved in axon guidance and synapse formation. Even in the adult spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and protection from noxious stimuli. Among the trophic factors that have been demonstrated to participate in motor neuron physiology are vascular endothelial growth factor (VEGF), glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and insulin-like growth factor 1 (IGF-1). Upon binding to membrane receptors expressed in motor neurons or neighboring glia, these trophic factors activate intracellular signaling pathways that promote cell survival and have protective action on motor neurons, in both in vivo and in vitro models of neuronal degeneration. For these reasons these factors have been considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, although their efficacy in human clinical trials have not yet shown the expected protection. In this minireview we summarize experimental data on the role of these trophic factors in motor neuron function and survival, as well as their mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic factors and why these therapies may have not been yet successful in the clinical use.
Collapse
Affiliation(s)
- Luis B Tovar-Y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Rafael Lazo-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| |
Collapse
|
3
|
Injury-induced accumulation of glial cell line-derived neurotrophic factor in the rostral part of the injured rat spinal cord. Int J Mol Sci 2012. [PMID: 23202963 PMCID: PMC3497337 DOI: 10.3390/ijms131013484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The spinal cord of a 7-week-old female Wistar rat was hemi-transected at thoracic position 10 with a razor blade, and changes in glial cell line-derived neurotrophic factor (GDNF) protein and mRNA expression levels in the spinal cord were examined. GDNF protein and mRNA expression levels were evaluated by enzyme immunoassay and reverse transcription polymerase chain reaction, respectively. Although GDNF is distributed in the healthy spinal cord from 150 to 400 pg/g tissue in a regionally dependent manner, hemi-transection (left side) of the spinal cord caused a rapid increase in GDNF content in the ipsilateral rostral but not in the caudal part of the spinal cord. On the other hand, injury-induced GDNF mRNA was distributed limitedly in both rostral and caudal stumps. These observations suggest the possibility that increased GDNF in the rostral part is responsible for the accumulation of GDNF that may be constitutively transported from the rostral to caudal side within the spinal cord. Although such local increase of endogenous GDNF protein may not be sufficient for nerve regeneration and locomotor improvement, it may play a physiological role in supporting spinal neurons including motoneurons.
Collapse
|
4
|
Fan Y, Kong H, Shi X, Sun X, Ding J, Wu J, Hu G. Hypersensitivity of aquaporin 4-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine and astrocytic modulation. Neurobiol Aging 2008; 29:1226-36. [PMID: 17353068 DOI: 10.1016/j.neurobiolaging.2007.02.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/15/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Aquaporin 4 (AQP4) is a predominant water channel protein in mammalian brains, which is localized in the astrocyte plasma membrane. AQP4 has gained much attraction due to its involvement in the physiopathology of cerebral disorders including stroke, tumor, infection, hydrocephalus, epilepsy, and traumatic brain injury. But there is almost no evidence whether abnormal AQP4 levels are associated with degenerative diseases, such as Parkinson's disease (PD). In our studies, we established PD animal models by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to test the hypothesis that abnormal AQP4 expression is involved in the pathophysiology of this disease. We show that mutant mice lacking AQP4 were significantly more prone to MPTP-induced neurotoxicity than their wild-type littermates. Furthermore, after administration of MPTP, astroglial proliferation and GDNF protein synthesis were inhibited by AQP4 deficiency. This study demonstrates that AQP4 is important in the MPTP neurotoxic process and indicates that the therapeutic strategy targeted to astrocytic modulation with AQP4 may offer a great potential for the development of new treatment for PD.
Collapse
Affiliation(s)
- Yi Fan
- Laboratory of Neuropharmacology, Department of Anatomy, Histology & Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | | | | | | | | | | | | |
Collapse
|
5
|
Lee YJ, Jin JK, Jeong BH, Carp RI, Kim YS. Increased expression of glial cell line-derived neurotrophic factor (GDNF) in the brains of scrapie-infected mice. Neurosci Lett 2006; 410:178-82. [PMID: 17101222 DOI: 10.1016/j.neulet.2006.09.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/27/2022]
Abstract
Prion diseases, also called transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders characterized by neuronal loss, astrogliosis, and spongiform changes in the brain. It is postulated that appearance of astrogliosis may provide the neurotrophic factors to prevent or reduce neuronal cell loss in the pathogenesis of prion diseases. To investigate the role of the glial cell line-derived neurotrophic factor (GDNF), we studied the expression levels of GDNF mRNA and protein in an animal model of prion diseases. The expression levels of GDNF mRNA and protein were significantly increased in the brains of scrapie-infected mice at 100 and 160 days after inoculation with scrapie strain compared with those of control mice. In addition, we found more intensive immunoreactivity of GDNF in the brains of scrapie-infected mice, specifically in the hippocampal astrocytes, than was seen in control mice. These results suggest that GDNF participates in protection against neuronal cell loss and atrophy in neurodegenerative disorders, which may play one of the important roles in the pathogenic mechanisms of prion diseases.
Collapse
Affiliation(s)
- Yun-Jung Lee
- Ilsong Institute of Life Science, College of Medicine, Hallym University, Anyang, Kyonggi-do 431-060, South Korea
| | | | | | | | | |
Collapse
|
6
|
Schmidt KM, Repine MJ, Hicks SD, DeFranco DB, Callaway CW. Regional changes in glial cell line-derived neurotrophic factor after cardiac arrest and hypothermia in rats. Neurosci Lett 2004; 368:135-9. [PMID: 15351435 DOI: 10.1016/j.neulet.2004.06.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 02/09/2023]
Abstract
Hypothermia after resuscitation from cardiac arrest reduces functional and histological brain injury. Stimulation of neurotrophic factors may contribute to the beneficial effects of hypothermia. This study examined the effects of cardiac arrest and induced hypothermia on regional levels of glial cell line-derived neurotrophic factor (GDNF) over the first 24 h after rat cardiac arrest. Hypothermia increased GDNF in hippocampus at 6 h, but did not prevent a subsequent decline in hippocampal GDNF. In contrast, hypothermia prevented early increases in cortical levels of GDNF at 3 and 6 h. Cerebellar GDNF increased slightly over 24 h in hypothermia-treated rats, but brainstem levels of GDNF did not change in response to cardiac arrest or hypothermia. These results suggest that temperature after resuscitation produces regionally specific changes of GNDF levels in brain.
Collapse
Affiliation(s)
- Katherine M Schmidt
- Department of Emergency Medicine, University of Pittsburgh, 230 McKee Place, Suite 400, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|