1
|
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1217-1233. [PMID: 37991267 PMCID: PMC10901210 DOI: 10.1093/jxb/erad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Chiara Pucciariello
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| |
Collapse
|
2
|
Bakshi A, Choi WG, Kim SH, Gilroy S. The vacuolar Ca 2+ transporter CATION EXCHANGER 2 regulates cytosolic calcium homeostasis, hypoxic signaling, and response to flooding in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:1830-1847. [PMID: 37743731 DOI: 10.1111/nph.19274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short- or longer-term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding-triggered Ca2+ signaling. We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+ -related transcripts. We then focused on transporters likely to modulate Ca2+ signals. Candidates emerging from this analysis included AUTOINHIBITED Ca2+ ATPASE 1 and CATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding-related Ca2+ changes. Knockout mutants in CAX2 especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others. CAX2 mutants also generated larger and more sustained Ca2+ signals in response to both flooding and hypoxic challenges. CAX2 is a Ca2+ transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+ transport in the signaling systems that trigger flooding response.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Won-Gyu Choi
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Su-Hwa Kim
- Department of Biochemistry and Molecular Biology, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Dr., Madison, WI, 53706, USA
| |
Collapse
|
3
|
Nakamura M, Noguchi K. Tolerant mechanisms to O 2 deficiency under submergence conditions in plants. JOURNAL OF PLANT RESEARCH 2020; 133:343-371. [PMID: 32185673 PMCID: PMC7214491 DOI: 10.1007/s10265-020-01176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
Collapse
Affiliation(s)
- Motoka Nakamura
- Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
4
|
Boeckx J, Pols S, Hertog MLATM, Nicolaï BM. Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1384. [PMID: 31737012 PMCID: PMC6831743 DOI: 10.3389/fpls.2019.01384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 05/07/2023]
Abstract
After harvest, fruit remain metabolically active and continue to ripen. The main goal of postharvest storage is to slow down the metabolic activity of the detached fruit. In many cases, this is accomplished by storing fruit at low temperature in combination with low oxygen (O2) and high carbon dioxide (CO2) partial pressures. However, altering the normal atmospheric conditions is not without any risk and can induce low-O2 stress. This review focuses on the central carbon metabolism of apple fruit during postharvest storage, both under normal O2 conditions and under low-O2 stress conditions. While the current review is focused on apple fruit, most research on the central carbon metabolism, low-O2 stress, and O2 sensing has been done on a range of different model plants (e.g., Arabidopsis, potato, rice, and maize) using various plant organs (e.g., seedlings, tubers, roots, and leaves). This review pulls together this information from the various sources into a coherent overview to facilitate the research on the central carbon metabolism in apple fruit exposed to postharvest low-O2 stress.
Collapse
Affiliation(s)
| | | | | | - Bart M. Nicolaï
- KU Leuven, BIOSYST-MeBioS, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| |
Collapse
|
5
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
6
|
Cukrov D, Zermiani M, Brizzolara S, Cestaro A, Licausi F, Luchinat C, Santucci C, Tenori L, Van Veen H, Zuccolo A, Ruperti B, Tonutti P. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:146. [PMID: 26909091 PMCID: PMC4754620 DOI: 10.3389/fpls.2016.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/28/2016] [Indexed: 05/05/2023]
Abstract
The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest that ripe apple tissues finely and specifically modulate sensing and regulatory mechanisms in response to different hypoxic stress conditions.
Collapse
Affiliation(s)
- Dubravka Cukrov
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | - Monica Zermiani
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, University of PadovaPadova, Italy
| | | | - Alessandro Cestaro
- Centro Ricerca e Innovazione, Fondazione Edmund Mach di San Michele all'AdigeTrento, Italy
| | - Francesco Licausi
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | | | | | | | - Hans Van Veen
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | - Andrea Zuccolo
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
| | - Benedetto Ruperti
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, University of PadovaPadova, Italy
| | - Pietro Tonutti
- Istituto di Scienze della Vita, Scuola Superiore Sant'AnnaPisa, Italy
- *Correspondence: Pietro Tonutti
| |
Collapse
|
7
|
Voesenek LACJ, Bailey-Serres J. Flood adaptive traits and processes: an overview. THE NEW PHYTOLOGIST 2015; 206:57-73. [PMID: 25580769 DOI: 10.1111/nph.13209] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/30/2014] [Indexed: 05/18/2023]
Abstract
Unanticipated flooding challenges plant growth and fitness in natural and agricultural ecosystems. Here we describe mechanisms of developmental plasticity and metabolic modulation that underpin adaptive traits and acclimation responses to waterlogging of root systems and submergence of aerial tissues. This includes insights into processes that enhance ventilation of submerged organs. At the intersection between metabolism and growth, submergence survival strategies have evolved involving an ethylene-driven and gibberellin-enhanced module that regulates growth of submerged organs. Opposing regulation of this pathway is facilitated by a subgroup of ethylene-response transcription factors (ERFs), which include members that require low O₂ or low nitric oxide (NO) conditions for their stabilization. These transcription factors control genes encoding enzymes required for anaerobic metabolism as well as proteins that fine-tune their function in transcription and turnover. Other mechanisms that control metabolism and growth at seed, seedling and mature stages under flooding conditions are reviewed, as well as findings demonstrating that true endurance of submergence includes an ability to restore growth following the deluge. Finally, we highlight molecular insights obtained from natural variation of domesticated and wild species that occupy different hydrological niches, emphasizing the value of understanding natural flooding survival strategies in efforts to stabilize crop yields in flood-prone environments.
Collapse
Affiliation(s)
- Laurentius A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Julia Bailey-Serres
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|