1
|
Knaipp K, Kargl R, Makuc D, Plavec J, Žagar E, Stana Kleinschek K, Gescheidt G. Azo-Bridged Dextran: A Photoresponsive Sustainable Material with Photo-Tunable Mechanical Properties. Biomacromolecules 2025; 26:1737-1747. [PMID: 39912756 PMCID: PMC11898052 DOI: 10.1021/acs.biomac.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
We report on the synthesis, characterization, and properties of dextran polymers, which are covalently bridged/cross-linked by azobenzene moieties. The reversible photoactivity of the azo moiety is retained in the polymers, and the kinetics of the E/Z isomerization depend on the dextran/azobenzene ratio. Together with the simple preparation, our approach provides convenient access to photoresponsive sustainable materials. Moreover, based on the water-soluble polymers, we have prepared photoresponsive hydrogels, which soften upon UV irradiation. Our findings are based on spectroscopy (UV/vis, IR, and NMR/DOSY), size exclusion chromatography, and rheology.
Collapse
Affiliation(s)
- Konstantin Knaipp
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgase 9, A-8010 Graz, Austria
| | - Rupert Kargl
- Institute
of Chemistry and Technology of Biobased Systems, TU Graz, Stremayrgase
9, A-8010 Graz, Austria
| | - Damjan Makuc
- Slovenian
NMR Centre, National Institute of Chemistry, Hajdrihova 19, Sl-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian
NMR Centre, National Institute of Chemistry, Hajdrihova 19, Sl-1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
Pot 113, SI-1000 Ljubljana, Slovenia
- EN-FIST
Center of Excellence, Trg Osvobodilne Fronte 13, SI-1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, Sl-1000 Ljubljana, Slovenia
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased Systems, TU Graz, Stremayrgase
9, A-8010 Graz, Austria
- Institute
of Automatisation, Faculty of Electrical Engineering and Computer
Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
| | - Georg Gescheidt
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgase 9, A-8010 Graz, Austria
| |
Collapse
|
2
|
Murugaiyan K, Murali VP, Tamura H, Furuike T, Rangasamy J. Overview of chitin dissolution, hydrogel formation and its biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-32. [PMID: 39704399 DOI: 10.1080/09205063.2024.2442181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Chitin hydrogel and hydrogel-based products are some of the frequently reported biomaterials for biomedical applications. Yet there is a void in understanding chitin's dissolution mechanism and its most suitable solvent system(s). Chitin is a natural polysaccharide polymer which can be dissolved in solvents such as calcium chloride- methanol, sodium hydroxide/urea (NaOH/urea), lithium chloride diacetamide (LiCl/DMAc), ionic liquids and deep eutectic solvents. Among the alkali/urea dissolution systems such as NaOH/urea, KOH/urea, LiOH/urea for dissolution of chitin we will be focussing on NaOH-based system here for ease of comparison with the other systems. Chitin has been used for decades in the biomedical field; however, new solvent systems are still being explored even to this day to identify the most suitable chemical(s) for dissolving it. Chitin, due to its biocompatibility, allows us to use it for multifaceted purposes. Hence, it is important to consolidate the available studies for better understanding about the most sought-after biomaterial. This overview deeply delves into the mechanism of action of the existing solvent systems and highlights its merits and demerits. It discusses the rheological properties of the chitin gel from different solvent systems and puts forth the current biomedical applications of chitin gel in areas such as tissue engineering, drug delivery, biosensing, hemostasis and wound healing. It also outlines recent advances and highlights the potential gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, Suita, Osaka, Japan
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
3
|
Rana AK, Gupta VK, Hart P, Thakur VK. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications. ENVIRONMENTAL RESEARCH 2024; 243:117889. [PMID: 38086501 DOI: 10.1016/j.envres.2023.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In the last decade, both cellulose and alginate polysaccharides have been extensively utilized for the synthesis of biocompatible hydrogels because of their alluring characteristics like low cost, biodegradability, hydrophilicity, biodegradability, ease of availability and non-toxicity. The presence of abundant hydrophilic functional groups (like carboxyl and hydroxyl) on the surface of cellulose and alginate or their derivatives makes these materials promising candidates for the preparation of hydrogels with appealing structures and characteristics, leading to growing research in water treatment and biomedical fields. These two polysaccharides are typically blended together to improve hydrogels' desired qualities (mechanical strength, adsorption properties, cellulose/alginate yield). So, keeping in view their extensive applicability, in the present review article, recent advances in the development of cellulose/nanocellulose-alginate-based hydrogels and their relevance in water treatment (adsorption of dyes, heavy metals, etc.) and biomedical field (wound healing, tissue engineering, drug delivery) has been reviewed. Further, impact of other inorganic/organic additives in cellulose/nanocellulose-alginate-based hydrogels properties like contaminants adsorption, drug delivery, tissue engineering, etc., has also been studied. Moreover, the current difficulties and future prospects of nanocellulose-alginate-based hydrogels regarding their water purification and biomedical applications are also discussed at the end.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Phil Hart
- Renewable and Sustainable Energy Research Centre, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
4
|
Yadav D, Sharma PK, Malviya R, Mishra PS, Surendra AV, Rao GSNK, Rani BR. Stimuli-responsive Biomaterials for Tissue Engineering Applications. Curr Pharm Biotechnol 2024; 25:981-999. [PMID: 37594093 DOI: 10.2174/1389201024666230818121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transformation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | | | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy, NMIMS Deemed University, Mumbai, India
| | - Budha Roja Rani
- Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, A.P., India
| |
Collapse
|
5
|
Gwardys P, Marcisz K, Jagleniec D, Romanski J, Karbarz M. Electrochemically Controlled Release from a Thin Hydrogel Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49865-49873. [PMID: 37877416 PMCID: PMC10614182 DOI: 10.1021/acsami.3c11786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
In this study, we present a thermoresponsive thin hydrogel layer based on poly(N-isopropylacrylamide), functionalized with β-cyclodextrin groups (p(NIPA-βCD)), as a novel electrochemically controlled release system. This thin hydrogel layer was synthesized and simultaneously attached to the surface of a Au quartz crystal microbalance (QCM) electrode using electrochemically induced free radical polymerization. The process was induced and monitored using cyclic voltammetry and a quartz crystal microbalance with dissipation monitoring (QCM-D), respectively. The properties of the thin layer were investigated by using QCM-D and scanning electron microscopy (SEM). The incorporation of β-cyclodextrin moieties within the polymer network allowed rhodamine B dye modified with ferrocene (RdFc), serving as a model metallodrug, to accumulate in the p(NIPA-βCD) layer through host-guest inclusion complex formation. The redox properties of the electroactive p(NIPA-βCD/RdFc) layer and the dissociation of the host-guest complex triggered by changes in the oxidation state of the ferrocene groups were investigated. It was found that oxidation of the ferrocene moieties led to the release of RdFc. It was crucial to achieve precise control over the release of RdFc by applying the appropriate electrochemical signal, specifically, by applying the appropriate potential to the electrode. Importantly, the electrochemically controlled RdFc release process was performed at a temperature similar to that of the human body and monitored using a spectrofluorimetric technique. The presented system appears to be particularly suitable for transdermal delivery and delivery from intrabody implants.
Collapse
Affiliation(s)
- Paulina Gwardys
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Kamil Marcisz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Damian Jagleniec
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Jan Romanski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki i Wigury Av., WarsawPL 02-089, Poland
| |
Collapse
|
6
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
7
|
Lin X, Wang X, Cui H, Rao P, Meng Y, Ouyang G, Guo H. Hydrogels with ultra-highly additive adjustable toughness under quasi-isochoric conditions. MATERIALS HORIZONS 2023; 10:993-1004. [PMID: 36651348 DOI: 10.1039/d2mh01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bioinspired smart hydrogels with additive-switchable mechanical properties have been attracting increasing attention in recent years. However, most existing hydrogel systems suffer from limited stiffening amplitude and dramatic volume change upon response to environmental triggers. Herein, we propose a novel strategy to prepare additive-responsive hydrogels with ultra-highly adjustable toughness under quasi-isochoric conditions. The key point lies in tuning the softening transition temperature of the hydrogels with non-covalent interactions between the polymer networks and additives, shifting the hydrogels from glassy to rubbery states. As a proof of concept, a variety of glassy hydrogels are prepared and exposed to additives to trigger responsive performances. Young's modulus of the same hydrogel demonstrates up to 36 000 times ultra-broad-range tunability, ranging from 0.0042 to 150 MPa in response to different additives. Meanwhile, negligible volume changes occur, keeping the hydrogels in quasi-isochoric conditions. Interestingly, the mechanical behaviors of the hydrogels manifest remarkable dependence on the additive type and concentration since both the Hofmeister effect and hydrophobicity of the additives play pivotal roles according to mechanism investigations. Furthermore, the regulation with additives reveals satisfactory reversibility and universality. Taken together, this simple and effective approach provides a novel strategy to fabricate hydrogels with highly tunable toughness for versatile applications, including spatially patterned conductive gels and anti-icing coatings.
Collapse
Affiliation(s)
- Xinxing Lin
- School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Xiaolin Wang
- School of Pharmacy, Macau University of Science and Technology, Taipa, 999078, Macao
| | - Hongyuan Cui
- School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Ping Rao
- State Key Laboratory of Fluid Power & Mechatronic System, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Hui Guo
- School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, China.
| |
Collapse
|
8
|
Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022; 10:1075670. [PMID: 36588951 PMCID: PMC9800804 DOI: 10.3389/fbioe.2022.1075670] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Light is an easy acquired, effective and non-invasive external stimulus with great flexibility and focusability. Thus, light responsive hydrogels are of particular interests to researchers in developing accurate and controlled drug delivery systems. Light responsive hydrogels are obtained by incorporating photosensitive moieties into their polymeric structures. Drug release can be realized through three major mechanisms: photoisomerization, photochemical reaction and photothermal reaction. Recent advances in material science have resulted in great development of photosensitizers, such as rare metal nanostructures and black phosphorus nanoparticles, in order to respond to a variety of light sources. Hydrogels incorporated with photosensitizers are crucial for clinical applications, and the use of ultraviolet and near-infrared light as well as up-conversion nanoparticles has greatly increased the therapeutic effects. Existing light responsive drug delivery systems have been utilized in delivering drugs, proteins and genes for chemotherapy, immunotherapy, photodynamic therapy, gene therapy, wound healing and other applications. Principles associated with site-specific targeting, metabolism, and toxicity are used to optimize efficacy and safety, and to improve patient compliance and convenience. In view of the importance of this field, we review current development, challenges and future perspectives of light responsive hydrogels for controlled drug delivery.
Collapse
|
9
|
Chen WT, Zeng L, Li P, Liu Y, Huang JL, Guo H, Rao P, Li WH. Convenient hydrogel adhesion with crystalline zones. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance. Polymers (Basel) 2022; 14:polym14163376. [PMID: 36015632 PMCID: PMC9414575 DOI: 10.3390/polym14163376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) was introduced into a polyethylene terephthalate (PET) nonwoven fabric to develop novel support for polyamide (PA) thin-film composite (TFC) membranes without using a microporous support layer. First, temperature-responsive PNIPAAm hydrogel was prepared by reactive pore-filling to adjust the pore size of non-woven fabric, creating hydrophilic support. The developed PET-based support was then used to fabricate PA TFC membranes via interfacial polymerization. SEM–EDX and AFM results confirmed the successful fabrication of hydrogel-integrated non-woven fabric and PA TFC membranes. The newly developed PA TFC membrane demonstrated an average water permeability of 1 L/m2 h bar, and an NaCl rejection of 47.0% at a low operating pressure of 1 bar. The thermo-responsive property of the prepared membrane was studied by measuring the water contact angle (WCA) below and above the lower critical solution temperature (LCST) of the PNIPAAm hydrogel. Results proved the thermo-responsive behavior of the prepared hydrogel-filled PET-supported PA TFC membrane and the ability to tune the membrane flux by changing the operating temperature was confirmed. Overall, this study provides a novel method to fabricate TFC membranes and helps to better understand the influence of the support layer on the separation performance of TFC membranes.
Collapse
|
11
|
Lacroce E, Rossi F. Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 2022; 19:1203-1215. [PMID: 35575265 DOI: 10.1080/17425247.2022.2078806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION controlled drug delivery through hydrogels is generally limited by the poor barrier that polymeric network can create to diffusion mechanism. Stimuli responsive polymers can help in this way guaranteeing that delivery can be sustained and finely controlled using an external stimulus. AREA COVERED this review provides an overview of recent studies about the use of temperature as an external stimulus able to work as an efficient new route of drug's administration. Thermoresponsive hydrogels are discussed and compared in terms of physical properties and mechanism of drug release considering their classification in intrinsically (formed by thermosensitive polymers) and non-intrinsically (polymers with thermosensitive moieties) hydrogels. EXPERT OPINION thermoresponsive hydrogels can be developed by using different polymers added or not with micro/nanoparticles of organic or inorganic origin. In both cases the final system represents an innovative way for the local and sustained drug delivery in a specific site of the body. In particular, it is possible to obtain an on-demand release of drug by applying a local increase of temperature to the system.
Collapse
Affiliation(s)
- Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
12
|
Khan R, Jolly R, Fatima T, Shakir M. Extraction processes for deriving cellulose: A comprehensive review on green approaches. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ruheen Khan
- Inorganic Chemistry Laboratory, Department of Chemistry Aligarh Muslim University Aligarh India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory, Department of Chemistry Aligarh Muslim University Aligarh India
| | - Tooba Fatima
- Inorganic Chemistry Laboratory, Department of Chemistry Aligarh Muslim University Aligarh India
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry Aligarh Muslim University Aligarh India
| |
Collapse
|
13
|
Nuisin R, Siripongpreda T, Watcharamul S, Siralertmukul K, Kiatkamjornwong S. Facile Syntheses of Physically Crosslinked Carboxymethyl Cellulose Hydrogels and Nanocomposite Hydrogels for Enhancing Water Absorbency and Adsorption of Sappan Wood Dye. ChemistrySelect 2022. [DOI: 10.1002/slct.202104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roongkan Nuisin
- Environmental Science Faculty of Science Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Tatiya Siripongpreda
- Environmental Science Faculty of Science Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Supawin Watcharamul
- Environmental Science Faculty of Science Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Krisana Siralertmukul
- The Metallurgy and Materials Science Research Institute Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Suda Kiatkamjornwong
- Office of the Research Affairs Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
- Fellow the Academy of Science, The Royal Society of Bangkok 10300 Thailand
| |
Collapse
|
14
|
Abstract
Hydrogels are 3D crosslinked polymer matrices having a colossal tendency to imbibe water and exhibit swelling under physiological conditions without deformation in their hydrophilic network. Hydrogels being biodegradable and biocompatible, gained consideration due to some unique characteristics: responsiveness to external stimuli (pH, temperature) and swelling in aqueous solutions. Hydrogels offer a promising option for various pharmaceutical and biomedical applications, including tissue-specific drug delivery at a predetermined, controlled rate. This article presents a brief review of the recent and fundamental advances to design hydrogels, the swelling and deswelling mechanism, various crosslinking methods and their use as an intelligent carrier in the pharmaceutical field. Recent applications of hydrogels are also briefly discussed and exemplified.
Collapse
|
15
|
Tanan W, Panpinit S, Saengsuwan S. Comparison of microwave-assisted and thermal-heated synthesis of P(HEMA-co-AM)/PVA interpenetrating polymer network (IPN) hydrogels for Pb(II) removal from aqueous solution: Characterization, adsorption and kinetic study. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Mehra S, Nisar S, Chauhan S, Singh G, Singh V, Rattan S. A dual stimuli responsive natural polymer based superabsorbent hydrogel engineered through a novel cross-linker. Polym Chem 2021. [DOI: 10.1039/d0py01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An intelligent dual stimuli (pH and thermo) responsive, highly porous grafted SPI hydrogel.
Collapse
Affiliation(s)
- Saloni Mehra
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
- Jubilant Biosys Limited
| | - Safiya Nisar
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| | - Sonal Chauhan
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| | - Gurmeet Singh
- Light Stock Processing Division
- CSIR-Indian Institute of Petroleum
- Dehradun
- India
| | - Virender Singh
- Department of Chemistry
- Central University of Punjab
- Bathinda
- India
| | - Sunita Rattan
- Amity Institute of Applied Sciences
- Amity University Uttar Pradesh
- Noida 201303
- India
| |
Collapse
|
17
|
Op 't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:230-248. [PMID: 31928151 DOI: 10.1089/ten.teb.2019.0281] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound dressings are traditionally used to protect a wound and to facilitate healing. Currently, their function is expanding. There is an urgent need for new smart products that not only act as a protective barrier but also actively support the wound healing process. Hydrogel dressings are an example of such innovative products and typically facilitate wound healing by providing a hospitable and moist environment in which cells can thrive, while the wound can still breathe and exudate can be drained. These dressings also tend to be less painful or have a soothing effect and allow for additional drug delivery. In this review, various strategic and molecular design considerations are discussed that are relevant for developing a hydrogel into a wound dressing product. These considerations vary from material choice to ease of use and determine the dressing's final properties, application potential, and benefits for the patient. The focus of this review lies on identifying and explaining key aspects of hydrogel wound dressings and their relevance in the different phases of wound repair. Molecular targets of wound healing are discussed that are relevant when tailoring hydrogels toward specific wound healing scenarios. In addition, the potential of hydrogels is reviewed as medicine advances from a repair-based wound healing approach toward a regenerative-based one. Hydrogels can play a key role in the transition toward personal wound care and facilitating regenerative medicine strategies by acting as a scaffold for (stem) cells and carrier/source of bioactive molecules and/or drugs. Impact statement Improved wound healing will lead to a better quality of life around the globe. It can be expected that this coincides with a reduction in health care spending, as the duration of treatment decreases. To achieve this, new and modern wound care products are desired that both facilitate healing and improve comfort and outcome for the patient. It is proposed that hydrogel wound dressings can play a pivotal role in improving wound care, and to that end, this review aims to summarize the various design considerations that can be made to optimize hydrogels for the purpose of a wound dressing.
Collapse
Affiliation(s)
- Roel C Op 't Veld
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - X Frank Walboomers
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Behera S, Mahanwar PA. Superabsorbent polymers in agriculture and other applications: a review. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1647239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sabyasachi Behera
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prakash A. Mahanwar
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
Morphological Characterization of Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
|
21
|
Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A 2018; 106:2762-2776. [DOI: 10.1002/jbm.a.36449] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| | - Pawe Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| |
Collapse
|
22
|
Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 2018; 7:153-174. [PMID: 30182344 PMCID: PMC6173681 DOI: 10.1007/s40204-018-0095-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022] Open
Abstract
Hydrogels based on cellulose comprising many organic biopolymers including cellulose, chitin, and chitosan are the hydrophilic material, which can absorb and retain a huge proportion of water in the interstitial sites of their structures. These polymers feature many amazing properties such as responsiveness to pH, time, temperature, chemical species and biological conditions besides a very high-water absorption capacity. Biopolymer hydrogels can be manipulated and crafted for numerous applications leading to a tremendous boom in research during recent times in scientific communities. With the growing environmental concerns and an emergent demand, researchers throughout the globe are concentrating particularly on naturally derived hydrogels due to their biocompatibility, biodegradability and abundance. Cellulose-based hydrogels are considered as useful biocompatible materials to be used in medical devices to treat, augment or replace any tissue, organ, or help function of the body. These hydrogels also hold a great promise for applications in agricultural activity, as smart materials and some other useful industrial purposes. This review offers an overview of the recent and contemporary research regarding physiochemical properties of cellulose-based hydrogels along with their applications in multidisciplinary areas including biomedical fields such as drug delivery, tissue engineering and wound healing, healthcare and hygienic products as well as in agriculture, textiles and industrial applications as smart materials.
Collapse
Affiliation(s)
- S M Fijul Kabir
- Department of Textiles, Apparel Design and Merchandising, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Partha P Sikdar
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA
| | - B Haque
- College of Textile Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
| | - M A Rahman Bhuiyan
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - A Ali
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - M N Islam
- Department of Chemistry, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| |
Collapse
|
23
|
Afzal S, Maswal M, Dar AA. Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: Characterization and its use in encapsulation of citral. Colloids Surf B Biointerfaces 2018; 169:99-106. [DOI: 10.1016/j.colsurfb.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
|
24
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
25
|
Isabettini S, Stucki S, Massabni S, Baumgartner ME, Reckey PQ, Kohlbrecher J, Ishikawa T, Windhab EJ, Fischer P, Kuster S. Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8926-8936. [PMID: 29460620 DOI: 10.1021/acsami.7b17134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln3+)-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH2)-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm3+ and Dy3+. These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide numerous perspectives for future development of tomorrow's smart materials and technologies.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Sandro Stucki
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Sarah Massabni
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Mirjam E Baumgartner
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Pernille Q Reckey
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | | | | | - Erich J Windhab
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering , ETH Zürich , Schmelzbergstrasse 7 , 8092 Zurich , Switzerland
| |
Collapse
|
26
|
Kostova B, Georgieva D, Dundarova M, Ivanova S, Ivanova-Mileva K, Tzankova V, Christova D. Design and study of the potential of crosslinked cationic polymers as drug delivery systems for dermal application. J Appl Polym Sci 2018. [DOI: 10.1002/app.46420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bistra Kostova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | - Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | - Maria Dundarova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | - Sijka Ivanova
- Institute of Polymers-Bulgarian Academy of Sciences; Sofia 1113 Bulgaria
| | | | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | - Darinka Christova
- Institute of Polymers-Bulgarian Academy of Sciences; Sofia 1113 Bulgaria
| |
Collapse
|
27
|
Zdravković A, Nikolić L, Ilić-Stojanović S, Nikolić V, Najman S, Mitić Ž, Ćirić A, Petrović S. The removal of heavy metal ions from aqueous solutions by hydrogels based on N-isopropylacrylamide and acrylic acid. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2295-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Singh R, Veer B. Hydrogels: Promising Energy Storage Materials. ChemistrySelect 2018; 3:1309-1320. [DOI: 10.1002/slct.201702515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
Abstract
AbstractEnergy is essential for the economic growth of any country. There is a strong demand for the development of materials that can show potential towards higher power density and energy density. In this article, a promising class of polymeric materials, hydrogels have been discussed as an energy storage material. The hydrogels are advantageous as they possess in them the unique combination of organic conductors and conventional polymers. The article covers the synthetic approach of hydrogels which includes both the conventional synthesis and the new routes adopted followed by the application of hydrogels as energy storage materials. Finally, the future opportunities and prospects in the development of hydrogels as advanced energy storage materials are highlighted.
Collapse
Affiliation(s)
- Ram Singh
- Department of Applied Chemistry Delhi Technological University Bawana Road Delhi - 110042 India
| | - Babita Veer
- Department of Applied Chemistry Delhi Technological University Bawana Road Delhi - 110042 India
| |
Collapse
|
29
|
Techno-Economic Analysis of Chitosan-Based Hydrogels Production. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2018. [DOI: 10.1007/978-3-319-76573-0_58-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Yoon S, Chen B. Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly(glycerol sebacate) pre-polymer and gelatin. Polym Chem 2018. [DOI: 10.1039/c8py00544c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis and biomedical applications of novel elastomeric, pH-responsive, biocompatible and biodegradable copolymer hydrogels based on poly(glycerol sebacate) and gelatin.
Collapse
Affiliation(s)
- Sungkwon Yoon
- School of Mechanical and Aerospace Engineering
- Queen's University Belfast
- Belfast
- UK
- Department of Materials Science and Engineering
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering
- Queen's University Belfast
- Belfast
- UK
| |
Collapse
|
31
|
Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 2017; 8:371. [PMID: 28851858 PMCID: PMC5575316 DOI: 10.1038/s41467-017-00418-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023] Open
Abstract
A major challenge in tissue engineering is the development of materials that can support angiogenesis, wherein endothelial cells from existing vasculature invade the surrounding matrix to form new vascular structures. To identify material properties that impact angiogenesis, here we have developed an in vitro model whereby molded tubular channels inside a synthetic hydrogel are seeded with endothelial cells and subjected to chemokine gradients within a microfluidic device. To accomplish precision molding of hydrogels and successful integration with microfluidics, we developed a class of hydrogels that could be macromolded and micromolded with high shape and size fidelity by eliminating swelling after polymerization. Using this material, we demonstrate that matrix degradability switches three-dimensional endothelial cell invasion between two distinct modes: single-cell migration and the multicellular, strand-like invasion required for angiogenesis. The ability to incorporate these tunable hydrogels into geometrically constrained settings will enable a wide range of previously inaccessible biomedical applications. The fabrication of vascularized 3D tissues requires an understanding of how material properties govern endothelial cell invasion into the surrounding matrix. Here the authors integrate a non-swelling synthetic hydrogel with a microfluidic device to study chemokine gradient-driven angiogenic sprouting and find that matrix degradability modulates the collectivity of cell migration.
Collapse
|
32
|
Dehne H, Hecht FM, Bausch AR. The mechanical properties of polymer-colloid hybrid hydrogels. SOFT MATTER 2017; 13:4786-4790. [PMID: 28676866 DOI: 10.1039/c7sm00628d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The incorporation of monodisperse colloidal particles in hydrogels is a promising approach to create hybrid gels with unique structural, mechanical and functional properties. However, the colloidal structure formation within the hydrogels often remains uncontrolled, leaving behind possible mechanically synergetic effects of the polymeric and the colloidal system. Here we show that colloidal structure formation within the hybrid gels has a significant influence on the elasticity and toughness of the hybrid gels. We combine a polyacrylamide hydrogel with DNA coated colloids (DNAcc), where structure formation can be triggered independently at different points in time. Consequently, we are able to create hybrid gels that are composed of the same components, but do differ in explicit colloidal structure. While monodisperse colloids enhance the storage modulus of the gels, the yield strain is simultaneously drastically reduced. The toughness of these brittle hybrid gels is rescued by colloidal structure formation at higher polyacrylamide concentrations. The toughness is increased at lower polyacrylamide concentrations. We show that the toughness of the hydrogels at 10% (w/v) polyacrylamide and 4% (v/v) DNAcc can be increased by a factor of approx. 35, indicating that control over colloidal structure formation yields access to significant synergetic effects in polymer-colloid hybrid gels.
Collapse
Affiliation(s)
- H Dehne
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| | - F M Hecht
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| | - A R Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
33
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|