1
|
Okochi Y, Jinno Y, Okamura Y. Dimerization is required for the glycosylation of S1-S2 linker of sea urchin voltage-gated proton channel Hv1. Biophys J 2024; 123:4221-4232. [PMID: 39086135 DOI: 10.1016/j.bpj.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Multimerization of ion channels is essential for establishing the ion-selective pathway and tuning the gating regulated by membrane potential, second messengers, and temperature. Voltage-gated proton channel, Hv1, consists of voltage-sensor domain and coiled-coil domain. Hv1 forms dimer, whereas voltage-dependent channel activity is self-contained in monomer unlike many ion channels, which assemble to form ion-conductive pathways among multiple subunits. Dimerization of Hv1 is necessary for cooperative gating, but other roles of dimerization in physiological aspects are still largely unclear. In this study, we show that dimerization of Hv1 takes place in ER. Sea urchin Hv1 (Strongylocentrotus purpuratus Hv1: SpHv1) was glycosylated in the consensus sequence for N-linked glycosylation within the S1-S2 extracellular loop. However, glycosylation was not observed in the monomeric SpHv1 that lacks the coiled-coil domain. A version of mHv1 in which the S1-S2 loop was replaced by that of SpHv1 showed glycosylation and its monomeric form was not glycosylated. Tandem dimer of monomeric SpHv1 underwent glycosylation, suggesting that dimerization of Hv1 is required for glycosylation. Moreover, when monomeric Hv1 has a dilysine motif in the C-terminal end, which is known to act as a retrieval signal from Golgi to ER, prolonging the time of residency in ER, it was glycosylated. Overall, our results suggest that monomeric SpHv1 does not stay long in ER, thereby escaping glycosylation, while the dimerization causes the proteins to stay longer in ER. Thus, the findings highlight the novel significance of dimerization of Hv1: regulation of biogenesis and maturation of the proteins in intracellular compartments.
Collapse
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yuka Jinno
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
3
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Puthumana EA, Muhamad L, Young LA, Chu XP. TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci 2024; 25:7903. [PMID: 39063144 PMCID: PMC11276833 DOI: 10.3390/ijms25147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a naturally occurring methylxanthine that acts as a potent central nervous system stimulant found in more than 60 different plants and fruits. Although caffeinated beverages are widely and casually consumed, the application of caffeine beyond dietary levels as pharmacologic therapy has been recognized since the beginning of its recorded use. The analgesic and vasoactive properties of caffeine are well known, but the extent of their molecular basis remains an area of active research. There is existing evidence in the literature as to caffeine's effect on TRP channels, the role of caffeine in pain management and analgesia, as well as the role of TRP in pain and analgesia; however, there has yet to be a review focused on the interaction between caffeine and TRP channels. Although the influence of caffeine on TRP has been demonstrated in the lab and in animal models, there is a scarcity of data collected on a large scale as to the clinical utility of caffeine as a regulator of TRP. This review aims to prompt further molecular research to elucidate the specific ligand-host interaction between caffeine and TRP by validating caffeine as a regulator of transient receptor potential (TRP) channels-focusing on the transient receptor potential vanilloid 1 (TRPV1) receptor and transient receptor potential ankyrin 1 (TRPA1) receptor subtypes-and its application in areas of pain.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Departments of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (E.A.P.); (L.M.); (L.A.Y.)
| |
Collapse
|
5
|
Gou R, Liu Y, Gou L, Mi S, Li X, Yang Y, Cheng X, Zhang Y. Transient Receptor Potential Channels in Sensory Mechanisms of the Lower Urinary Tract. Urol Int 2024; 108:464-476. [PMID: 38657590 DOI: 10.1159/000538855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Urine storage and excretion require a network of interactions in the urinary tract and the central nervous system, which is mediated by a reservoir of water in the bladder and the outlet to the bladder neck, urethra, and external urethral sphincter. Through communicating and coordinating each other, micturition system eventually showed a switch-like activity pattern. SUMMARY At cervicothoracic and lumbosacral spine, the spinal reflex pathway of the lower urinary tract (LUT) received mechanosensory input from the urothelium to regulate the bladder contraction activity, thereby controlled urination voluntarily. Impairment of above-mentioned any level could result in lower urinary tract dysfunction, placed a huge burden on patients and society. Specific expression of purinergic receptors and transient receptor potential (TRP) channels are thought to play an important role in urinary excretion in the LUT. KEY MESSAGES This article reviewed the knowledge about the voiding reflex and described the role and function of TRP channels during voiding.
Collapse
Affiliation(s)
- Ruiqiang Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,
| | - Yuanyuan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shengyan Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaonan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaorong Cheng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yibao Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
7
|
Onódi Z, Koch S, Rubinstein J, Ferdinandy P, Varga ZV. Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. Br J Pharmacol 2023; 180:685-700. [PMID: 36484549 DOI: 10.1111/bph.16001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The available pharmacological options in the management of cardiovascular diseases such as ischaemic heart disease and subsequent heart failure are effective in slowing the progression of this condition. However, the long-term prognosis is still poor, raising the demand for new therapeutic strategies. Drug repurposing is a time- and cost-effective drug development strategy that offers approved and abandoned drugs a new chance for new indications. Recently, drugs used for the management of gout-related inflammation such as canakinumab or colchicine have been considered for drug repurposing in cardiovascular indications. The old uricosuric drug, probenecid, has been identified as a novel therapeutic option in the management of specific cardiac diseases as well. Probenecid can modulate myocardial contractility and vascular tone and exerts anti-inflammatory properties. The mechanisms behind these beneficial effects might be related inhibition of inflammasomes, and to modulation purinergic-pannexin-1 signalling and TRPV2 channels, which are recently identified molecular targets of probenecid. In this review, we provide an overview on repurposing probenecid for ischaemic heart disease and subsequent heart failure by summarizing the related experimental and clinical data and propose its potential repurposing to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Sheryl Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.,MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Moretti M, Limongi T, Testi C, Milanetti E, De Angelis MT, Parrotta EI, Scalise S, Santamaria G, Allione M, Lopatin S, Torre B, Zhang P, Marini M, Perozziello G, Candeloro P, Pirri CF, Ruocco G, Cuda G, Di Fabrizio E. Direct Visualization and Identification of Membrane Voltage-Gated Sodium Channels from Human iPSC-Derived Neurons by Multiple Imaging and Light Enhanced Spectroscopy. SMALL METHODS 2022; 6:e2200402. [PMID: 35595684 DOI: 10.1002/smtd.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, transmission electron microscopy atomic force microscopy, and surface enhanced Raman spectroscopy are combined through a direct imaging approach, to gather structural and chemical information of complex molecular systems such as ion channels in their original plasma membrane. Customized microfabricated sample holder allows to characterize Nav channels embedded in the original plasma membrane extracted from neuronal cells that are derived from healthy human induced pluripotent stem cells. The identification of the channels is accomplished by using two different approaches, one of them widely used in cryo-EM (the particle analysis method) and the other based on a novel Zernike Polynomial expansion of the images bitmap. This approach allows to carry out a whole series of investigations, one complementary to the other, on the same sample, preserving its state as close as possible to the original membrane configuration.
Collapse
Affiliation(s)
- Manola Moretti
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Maria Teresa De Angelis
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Elvira I Parrotta
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Stefania Scalise
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Gianluca Santamaria
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Marco Allione
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- King Abdullah University of Science and Technology, Imaging and Characterization Core lab, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bruno Torre
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peng Zhang
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Gerardo Perozziello
- BionNEM lab and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Patrizio Candeloro
- BionNEM lab and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Giovanni Cuda
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Enzo Di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
9
|
Cai R, Chen XZ. Roles of Intramolecular Interactions in the Regulation of TRP Channels. Rev Physiol Biochem Pharmacol 2022; 186:29-56. [PMID: 35882668 DOI: 10.1007/112_2022_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1-S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4-S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.
Collapse
Affiliation(s)
- Ruiqi Cai
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
11
|
Zergane M, Kuebler WM, Michalick L. Heteromeric TRP Channels in Lung Inflammation. Cells 2021; 10:cells10071654. [PMID: 34359824 PMCID: PMC8307017 DOI: 10.3390/cells10071654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review.
Collapse
Affiliation(s)
- Meryam Zergane
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| | - Laura Michalick
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
12
|
Roles of TRP Channels in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289194. [PMID: 32963700 PMCID: PMC7492880 DOI: 10.1155/2020/7289194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Transient receptor potential (TRP) proteins consist of a superfamily of cation channels that have been involved in diverse physiological processes in the brain as well as in the pathogenesis of neurological disease. TRP channels are widely expressed in the brain, including neurons and glial cells, as well as in the cerebral vascular endothelium and smooth muscle. Members of this channel superfamily show a wide variety of mechanisms ranging from ligand binding to voltage, physical, and chemical stimuli, implying the promising therapeutic potential of TRP in neurological diseases. In this review, we focus on the physiological functions of TRP channels in the brain and the pathological roles in neurological disorders to explore future potential neuroprotective strategies.
Collapse
|
13
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Int J Mol Sci 2019; 20:ijms20174186. [PMID: 31461845 PMCID: PMC6747279 DOI: 10.3390/ijms20174186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Collapse
|
15
|
Abstract
Transient receptor potential (TRP) ion channels are molecular sensors of a large variety of stimuli including temperature, mechanical stress, voltage, small molecules including capsaicin and menthol, and lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). Since the same TRP channels may respond to different physical and chemical stimuli, they can serve as signal integrators. Many TRP channels are calcium permeable and contribute to Ca2+ homeostasis and signaling. Although the TRP channel family was discovered decades ago, only recently have the structures of many of these channels been solved, largely by cryo-electron microscopy (cryo-EM). Complimentary to cryo-EM, X-ray crystallography provides unique tools to unambiguously identify specific atoms and can be used to study ion binding in channel pores. In this review we describe crystallographic studies of the TRP channel TRPV6. The methodology used in these studies may serve as a template for future structural analyses of different types of TRP and other ion channels.
Collapse
Affiliation(s)
- Appu K Singh
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Luke L McGoldrick
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY.,b Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University , New York , NY
| | - Kei Saotome
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Alexander I Sobolevsky
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| |
Collapse
|
16
|
Polat OK, Uno M, Maruyama T, Tran HN, Imamura K, Wong CF, Sakaguchi R, Ariyoshi M, Itsuki K, Ichikawa J, Morii T, Shirakawa M, Inoue R, Asanuma K, Reiser J, Tochio H, Mori Y, Mori MX. Contribution of Coiled-Coil Assembly to Ca 2+/Calmodulin-Dependent Inactivation of TRPC6 Channel and its Impacts on FSGS-Associated Phenotypes. J Am Soc Nephrol 2019; 30:1587-1603. [PMID: 31266820 DOI: 10.1681/asn.2018070756] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.
Collapse
Affiliation(s)
- Onur K Polat
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Masatoshi Uno
- Department of Biophysics, Graduate School of Science.,Department of Molecular Engineering, Graduate School of Engineering
| | - Terukazu Maruyama
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Ha Nam Tran
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Department of Technology and Ecology, Laboratory of Environmental Systems Biology, Graduate School of Global Environmental Studies
| | - Kayo Imamura
- Department of Biophysics, Graduate School of Science
| | - Chee Fah Wong
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Perak, Malaysia
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Mariko Ariyoshi
- Department of Molecular Engineering, Graduate School of Engineering
| | - Kyohei Itsuki
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Jun Ichikawa
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
| | | | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, School of Medicine, Chiba University, Chiba, Japan
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
| |
Collapse
|
17
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
18
|
González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent Progress in TRPM8 Modulation: An Update. Int J Mol Sci 2019; 20:ijms20112618. [PMID: 31141957 PMCID: PMC6600640 DOI: 10.3390/ijms20112618] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.
Collapse
Affiliation(s)
| | - M Angeles Bonache
- Instituto de Química Médica, IQM-CSIC. Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
19
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
20
|
Gorbunov AS, Maslov LN, Jaggi AS, Singh N, De Petrocellis L, Boshchenko AA, Roohbakhsh A, Bezuglov VV, Oeltgen PR. Physiological and Pathological Role of TRPV1, TRPV2 and TRPV4 Channels in Heart. Curr Cardiol Rev 2019; 15:244-251. [PMID: 30848206 PMCID: PMC8142357 DOI: 10.2174/1573403x15666190307112326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential vanilloid channel 2 (TRPV2) is required for normal cardiac contractility. The stimulation of TRPV1 in isolated cardiomyocytes can aggravate the effect of hypoxia/ reoxygenation (H/R) on H9C2 cells. The knockout of the TRPV1 gene promotes increased tolerance of the isolated perfused heart to the impact of ischemia/reperfusion (I/R). However, activation of TRPV1 increases the resistance of the heart to I/R due to calcitonin gene-related peptide (CGRP) release from afferent nerve endings. It has been established that TRPV1 and TRPV2 are involved in the pathogenesis of myocardial infarction and, in all likelihood, ensure the cardiac tolerance to the ischemia/reperfusion. It has also been documented that the activation of TRPV4 negatively affects the stability of cardiomyocytes to the H/R. The blockade of TRPV4 can be considered as a new approach to the prevention of I/R injury of the heart. Studies also indicate that TRPV1 is involved in the pathogenesis of cardiac hypertrophy and that TRPV2 channels participate in the pathogenesis of dilated cardiomyopathy. Excessive expression of TRPV2 leads to chronic Ca2+- overload of cardiomyocytes, which may contribute to the development of cardiomyopathy.
Collapse
Affiliation(s)
| | - Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Singh AK, McGoldrick LL, Sobolevsky AI. Expression, Purification, and Crystallization of the Transient Receptor Potential Channel TRPV6. Methods Mol Biol 2019; 1987:23-37. [PMID: 31028671 DOI: 10.1007/978-1-4939-9446-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are polymodal sensory transducers that respond to chemicals, temperature, mechanical stress, and membrane voltage and are involved in vision, taste, olfaction, hearing, touch, thermal perception, and nociception. TRP channels are implicated in numerous devastating diseases, including various forms of cancer, and represent important drug targets. The large sizes, low expression levels, and conformational dynamics of TRP channels make them challenging targets for structural biology. Here, we present the methodology used in structural studies of TRPV6, a TRP channel that is highly selective for calcium and mediates Ca2+ uptake in epithelial tissues. We provide a protocol for the expression, purification, and crystallization of TRPV6. Similar approaches can be used to determine crystal structures of other membrane proteins, including different members of the TRP channel family.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat Struct Mol Biol 2018; 26:40-49. [PMID: 30598551 PMCID: PMC6458597 DOI: 10.1038/s41594-018-0168-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022]
Abstract
Cation channels of the TRP family serve important physiological roles by opening in response to diverse intra-and extra-cellular stimuli which regulate their lower or upper gates. Despite extensive studies, the mechanism coupling these gates has remained obscure. Previous structures have failed to resolve extracellular loops, known in the TRPV subfamily as “pore turrets,” which are proximal to the upper gates. We establish the importance of the pore turret through activity assays and by solving structures of rat TRPV2 both with and without an intact turret at resolutions of 4.0 Å and 3.6 Å respectively. These structures resolve the full-length pore turret and reveal fully open and partially open states of TRPV2, both with unoccupied vanilloid pockets. Our results suggest a mechanism by which physiological signals, such as lipid binding, can regulate the lower gate and couple to the upper gate through a pore turret-facilitated mechanism.
Collapse
|
23
|
Smani T, Gómez LJ, Regodon S, Woodard GE, Siegfried G, Khatib AM, Rosado JA. TRP Channels in Angiogenesis and Other Endothelial Functions. Front Physiol 2018; 9:1731. [PMID: 30559679 PMCID: PMC6287032 DOI: 10.3389/fphys.2018.01731] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the growth of blood vessels mediated by proliferation, migration, and spatial organization of endothelial cells. This mechanism is regulated by a balance between stimulatory and inhibitory factors. Proangiogenic factors include a variety of VEGF family members, while thrombospondin and endostatin, among others, have been reported as suppressors of angiogenesis. Transient receptor potential (TRP) channels belong to a superfamily of cation-permeable channels that play a relevant role in a number of cellular functions mostly derived from their influence in intracellular Ca2+ homeostasis. Endothelial cells express a variety of TRP channels, including members of the TRPC, TRPV, TRPP, TRPA, and TRPM families, which play a relevant role in a number of functions, including endothelium-induced vasodilation, vascular permeability as well as sensing hemodynamic and chemical changes. Furthermore, TRP channels have been reported to play an important role in angiogenesis. This review summarizes the current knowledge and limitations concerning the involvement of particular TRP channels in growth factor-induced angiogenesis.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Luis J Gómez
- Department of Animal Medicine, University of Extremadura, Cáceres, Spain
| | - Sergio Regodon
- Department of Animal Medicine, University of Extremadura, Cáceres, Spain
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | | | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
24
|
Abstract
Cryo-electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.
Collapse
Affiliation(s)
- Yifan Cheng
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Fluorescence-Based Measurements of the CRAC Channel Activity in Cell Populations. Methods Mol Biol 2018. [PMID: 30203278 DOI: 10.1007/978-1-4939-8704-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytosolic Ca2+ plays an important role in cellular biology, and since its identification as a second messenger, a number of techniques and methods to analyze the changes in cytosolic Ca2+ concentration ([Ca2+]c) induced by physiological agonists have been developed. Changes in [Ca2+]c might be determined in single cells or in cell populations. Measurement in single cells allows to determine changes in [Ca2+]c at a subcellular level but often results in heterogeneous responses among cells. Determination of intracellular Ca2+ mobilization at the cell population level reduces this heterogeneity and allows [Ca2+]c measurements in small cells that load little amounts of indicator. Here, we describe the measurement of agonist-evoked changes in [Ca2+]c associated with Ca2+ influx in cell populations.
Collapse
|
26
|
Toxins as tools: Fingerprinting neuronal pharmacology. Neurosci Lett 2018; 679:4-14. [DOI: 10.1016/j.neulet.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
27
|
Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells 2018; 7:cells7060062. [PMID: 29914130 PMCID: PMC6025450 DOI: 10.3390/cells7060062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential cation channel subfamily M member 4 (TRPM4) channel influences calcium homeostasis during many physiological activities such as insulin secretion, immune response, respiratory reaction, and cerebral vasoconstriction. This calcium-activated, monovalent, selective cation channel also plays a key role in cardiovascular pathophysiology; for example, a mutation in the TRPM4 channel leads to cardiac conduction disease. Recently, it has been suggested that the TRPM4 channel is also involved in the development of cardiac ischemia-reperfusion injury, which causes myocardial infarction. In the present review, we discuss the physiological function of the TRPM4 channel, and assess its role in cardiovascular pathophysiology.
Collapse
|
28
|
Di Paola S, Scotto-Rosato A, Medina DL. TRPML1: The Ca (2+)retaker of the lysosome. Cell Calcium 2017; 69:112-121. [PMID: 28689729 DOI: 10.1016/j.ceca.2017.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022]
Abstract
Efficient functioning of lysosome is necessary to ensure the correct performance of a variety of intracellular processes such as degradation of cargoes coming from the endocytic and autophagic pathways, recycling of organelles, and signaling mechanisms involved in cellular adaptation to nutrient availability. Mutations in lysosomal genes lead to more than 50 lysosomal storage disorders (LSDs). Among them, mutations in the gene encoding TRPML1 (MCOLN1) cause Mucolipidosis type IV (MLIV), a recessive LSD characterized by neurodegeneration, psychomotor retardation, ophthalmologic defects and achlorhydria. At the cellular level, MLIV patient fibroblasts show enlargement and engulfment of the late endo-lysosomal compartment, autophagy impairment, and accumulation of lipids and glycosaminoglycans. TRPML1 is the most extensively studied member of a small family of genes that also includes TRPML2 and TRPML3, and it has been found to participate in vesicular trafficking, lipid and ion homeostasis, and autophagy. In this review we will provide an update on the latest and more novel findings related to the functions of TRPMLs, with particular focus on the emerging role of TRPML1 and lysosomal calcium signaling in autophagy. Moreover, we will also discuss new potential therapeutic approaches for MLIV and LSDs based on the modulation of TRPML1-mediated signaling.
Collapse
Affiliation(s)
- Simone Di Paola
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Anna Scotto-Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli ,NA, Italy.
| |
Collapse
|
29
|
Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, Woodard GE, Redondo PC, Salido GM, Smani T, Rosado JA. TRPs in Pain Sensation. Front Physiol 2017. [PMID: 28649203 PMCID: PMC5465271 DOI: 10.3389/fphys.2017.00392] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
According to the International Association for the Study of Pain (IASP) pain is characterized as an "unpleasant sensory and emotional experience associated with actual or potential tissue damage". The TRP super-family, compressing up to 28 isoforms in mammals, mediates a myriad of physiological and pathophysiological processes, pain among them. TRP channel might be constituted by similar or different TRP subunits, which will result in the formation of homomeric or heteromeric channels with distinct properties and functions. In this review we will discuss about the function of TRPs in pain, focusing on TRP channles that participate in the transduction of noxious sensation, especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a large number of physical and chemical stimuli.
Collapse
Affiliation(s)
- Isaac Jardín
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José J López
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Raquel Diez
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José Sánchez-Collado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Carlos Cantonero
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Letizia Albarrán
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Pedro C Redondo
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Ginés M Salido
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Sevilla, University of SevilleSevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| |
Collapse
|
30
|
Abstract
TRPC channels are the first identified members in the TRP family. They function as either homo- or heterotetramers regulating intracellular Ca2+ concentration in response to numerous physiological or pathological stimuli. TRPC channels are nonselective cation channels permeable to Ca2+. The properties and the functional domains of TRPC channels have been identified by electrophysiological and biochemical methods. However, due to the large size, instability, and flexibility of their complexes, the structures of the members in TRPC family remain unrevealed. More efforts should be made on structure analysis and generating good tools, including specific antibodies, agonist, and antagonist.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
31
|
De Petrocellis L, Arroyo FJ, Orlando P, Schiano Moriello A, Vitale RM, Amodeo P, Sánchez A, Roncero C, Bianchini G, Martín MA, López-Alvarado P, Menéndez JC. Tetrahydroisoquinoline-Derived Urea and 2,5-Diketopiperazine Derivatives as Selective Antagonists of the Transient Receptor Potential Melastatin 8 (TRPM8) Channel Receptor and Antiprostate Cancer Agents. J Med Chem 2016; 59:5661-83. [PMID: 27232526 DOI: 10.1021/acs.jmedchem.5b01448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydroisoquinoline derivatives containing embedded urea functions were identified as selective TRPM8 channel receptor antagonists. Structure-activity relationships were investigated, with the following conclusions: (a) The urea function and the tetrahydroisoquinoline system are necessary for activity. (b) Bis(1-aryl-6,7dimethoxy-1,2,3,4-tetrahydroisoquinolyl)ureas are more active than compounds containing one tetrahydroisoquinoline ring and than an open phenetylamine ureide. (c) Trans compounds are more active than their cis isomers. (d) Aryl substituents are better than alkyls at the isoquinoline C-1 position. (e) Electron-withdrawing substituents lead to higher activities. The most potent compound is the 4-F derivative, with IC50 in the 10(-8) M range and selectivities around 1000:1 for most other TRP receptors. Selected compounds were found to be active in reducing the growth of LNCaP prostate cancer cells. TRPM8 inhibition reduces proliferation in the tumor cells tested but not in nontumor prostate cells, suggesting that the activity against prostate cancer is linked to TRPM8 inhibition.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Francisco J Arroyo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Pierangelo Orlando
- Endocannabinoid Research Group, Institute of Protein Biochemistry, National Research Council , Via P. Castellino 111, 80131 Naples, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Rosa Maria Vitale
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Pietro Amodeo
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Cesáreo Roncero
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Giulia Bianchini
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - M Antonia Martín
- S.D. Química Analítica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Pilar López-Alvarado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - J Carlos Menéndez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| |
Collapse
|
32
|
Constantine M, Liew CK, Lo V, Macmillan A, Cranfield CG, Sunde M, Whan R, Graham RM, Martinac B. Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer. Sci Rep 2016; 6:19352. [PMID: 26785754 PMCID: PMC4726259 DOI: 10.1038/srep19352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/11/2015] [Indexed: 11/24/2022] Open
Abstract
Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel.
Collapse
Affiliation(s)
- Maryrose Constantine
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Chu Kong Liew
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
| | - Victor Lo
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006
| | - Alex Macmillan
- Biomedical Imaging Facility, Lowy Cancer Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia
| | | | - Margaret Sunde
- School of Medical Sciences, The Bosch Institute, The University of Sydney, NSW 2006
| | - Renee Whan
- Biomedical Imaging Facility, Lowy Cancer Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, NSW 2010
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
33
|
Perspectives of TRPV1 Function on the Neurogenesis and Neural Plasticity. Neural Plast 2016; 2016:1568145. [PMID: 26881090 PMCID: PMC4736371 DOI: 10.1155/2016/1568145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The development of new strategies to renew and repair neuronal networks using neural plasticity induced by stem cell graft could enable new therapies to cure diseases that were considered lethal until now. In adequate microenvironment a neuronal progenitor must receive molecular signal of a specific cellular context to determine fate, differentiation, and location. TRPV1, a nonselective calcium channel, is expressed in neurogenic regions of the brain like the subgranular zone of the hippocampal dentate gyrus and the telencephalic subventricular zone, being valuable for neural differentiation and neural plasticity. Current data show that TRPV1 is involved in several neuronal functions as cytoskeleton dynamics, cell migration, survival, and regeneration of injured neurons, incorporating several stimuli in neurogenesis and network integration. The function of TRPV1 in the brain is under intensive investigation, due to multiple places where it has been detected and its sensitivity for different chemical and physical agonists, and a new role of TRPV1 in brain function is now emerging as a molecular tool for survival and control of neural stem cells.
Collapse
|
34
|
TRPA1 channels as targets for resveratrol and related stilbenoids. Bioorg Med Chem Lett 2015; 26:899-902. [PMID: 26750258 DOI: 10.1016/j.bmcl.2015.12.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022]
Abstract
A series of twenty resveratrol analogues was synthesized and tested on TRPA1 and TRPV1 channels. None was able to significantly modulate TRPV1 channels. Conversely, most of them exhibited remarkably higher TRPA1 modulating activity than resveratrol. Optimal potency was observed with ortho monoxygenated stilbenes 6 and 17.
Collapse
|
35
|
Characterization of the part of N-terminal PIP2 binding site of the TRPM1 channel. Biophys Chem 2015; 207:135-42. [DOI: 10.1016/j.bpc.2015.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
|
36
|
Carson C, Raman P, Tullai J, Xu L, Henault M, Thomas E, Yeola S, Lao J, McPate M, Verkuyl JM, Marsh G, Sarber J, Amaral A, Bailey S, Lubicka D, Pham H, Miranda N, Ding J, Tang HM, Ju H, Tranter P, Ji N, Krastel P, Jain RK, Schumacher AM, Loureiro JJ, George E, Berellini G, Ross NT, Bushell SM, Erdemli G, Solomon JM. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation. PLoS One 2015; 10:e0127498. [PMID: 26098886 PMCID: PMC4476799 DOI: 10.1371/journal.pone.0127498] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 01/19/2023] Open
Abstract
Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.
Collapse
Affiliation(s)
- Cheryl Carson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Pichai Raman
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jennifer Tullai
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Lei Xu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Martin Henault
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Emily Thomas
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sarita Yeola
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jianmin Lao
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Mark McPate
- Novartis Institutes for Biomedical Research, Horsham, United Kingdom
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research, Horsham, United Kingdom
| | - George Marsh
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jason Sarber
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Adam Amaral
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Scott Bailey
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Danuta Lubicka
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Helen Pham
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nicolette Miranda
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jian Ding
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Hai-Ming Tang
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey, United States of America
| | - Haisong Ju
- Novartis Institutes for Biomedical Research, East Hanover, New Jersey, United States of America
| | - Pamela Tranter
- Novartis Institutes for Biomedical Research, Horsham, United Kingdom
| | - Nan Ji
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Philipp Krastel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rishi K. Jain
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Andrew M. Schumacher
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Joseph J. Loureiro
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Elizabeth George
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Giuliano Berellini
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nathan T. Ross
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Simon M. Bushell
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gül Erdemli
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Jonathan M. Solomon
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Singh VK, Doharey PK, Kumar V, Saxena JK, Siddiqi MI, Rathaur S, Narender T. Synthesis, molecular docking and Brugia malayi thymidylate kinase (BmTMK) enzyme inhibition study of novel derivatives of [6]-shogaol. Eur J Med Chem 2015; 93:74-82. [PMID: 25659753 DOI: 10.1016/j.ejmech.2015.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/03/2023]
Abstract
[6]-Shogaol (1) was isolated from Zingiber officinale. Twelve novel compounds have been synthesized and evaluated for their Brugia malayi thymidylate kinase (BmTMK) inhibition activity, which plays important role for the DNA synthesis in parasite. [6]-Shogaol (1) and shogaol with thymine head group (2), 5-bromouracil head group (3), adenine head group (4) and 2-amino-3-methylpyridine head group (5) showed potential inhibitory effect on BmTMK activity. Further molecular docking studies were carried out to explore the putative binding mode of compounds 1-5.
Collapse
Affiliation(s)
- Vinay Kr Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pawan K Doharey
- Biochemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Vikash Kumar
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - J K Saxena
- Biochemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - M I Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Sushma Rathaur
- Department of Biochemistry, Banaras Hindu University, Varanasi 221005, India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.
| |
Collapse
|
38
|
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses 2015; 7:709-38. [PMID: 25690795 PMCID: PMC4353913 DOI: 10.3390/v7020709] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023] Open
Abstract
Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.
Collapse
Affiliation(s)
- Michael H Herbert
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Christopher J Squire
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
39
|
Abstract
We have come a long way in the 55 years since Edmond Fischer and the late Edwin Krebs discovered that the activity of glycogen phosphorylase is regulated by reversible protein phosphorylation. Many of the fundamental molecular mechanisms that operate in biological signaling have since been characterized and the vast web of interconnected pathways that make up the cellular signaling network has been mapped in considerable detail. Nonetheless, it is important to consider how fast this field is still moving and the issues at the current boundaries of our understanding. One must also appreciate what experimental strategies have allowed us to attain our present level of knowledge. We summarize here some key issues (both conceptual and methodological), raise unresolved questions, discuss potential pitfalls, and highlight areas in which our understanding is still rudimentary. We hope these wide-ranging ruminations will be useful to investigators who carry studies of signal transduction forward during the rest of the 21st century.
Collapse
|
40
|
Ortar G, Schiano Moriello A, Morera E, Nalli M, Di Marzo V, De Petrocellis L. Effect of acyclic monoterpene alcohols and their derivatives on TRP channels. Bioorg Med Chem Lett 2014; 24:5507-11. [PMID: 25455494 DOI: 10.1016/j.bmcl.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
A series of thirty-six geraniol, nerol, citronellol, geranylamine, and nerylamine derivatives was synthesized and tested on TRPA1, TRPM8, and TRPV1 channels. Most of them acted as strong modulators of TRPA1 channels with EC50 and/or IC50 values <1 μM. None was able to significantly activate TRPM8 channels, while thirteen of them behaved as 'true' TRPM8 antagonists. Little or no effect was generally observed on TRPV1 channels. Some of the compounds examined, that is, compounds 1d,g,n, 2c,d,h,i,o, 3b,e exhibited an appreciable selectivity for TRPA1 subtype.
Collapse
Affiliation(s)
- Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy.
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via dei Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy
| | - Enrico Morera
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marianna Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via dei Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via dei Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.
| |
Collapse
|
41
|
Abstract
It has been exciting times since the identification of polycystic kidney disease 1 (PKD1) and PKD2 as the genes mutated in autosomal dominant polycystic kidney disease (ADPKD). Biological roles of the encoded proteins polycystin-1 and TRPP2 have been deduced from phenotypes in ADPKD patients, but recent insights from vertebrate and invertebrate model organisms have significantly expanded our understanding of the physiological functions of these proteins. The identification of additional TRPP (TRPP3 and TRPP5) and polycystin-1-like proteins (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) has added yet another layer of complexity to these fascinating cellular signalling units. TRPP proteins assemble with polycystin-1 family members to form receptor-channel complexes. These protein modules have important biological roles ranging from tubular morphogenesis to determination of left-right asymmetry. The founding members of the polycystin family, TRPP2 and polycystin-1, are a prime example of how studying human disease genes can provide insights into fundamental biological mechanisms using a so-called "reverse translational" approach (from bedside to bench). Here, we discuss the current literature on TRPP ion channels and polycystin-1 family proteins including expression, structure, physical interactions, physiology, and lessons from animal model systems and human disease.
Collapse
Affiliation(s)
- Mariam Semmo
- Renal Division, Department of Medicine, University Medical Centre Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany,
| | | | | |
Collapse
|
42
|
Hiriart M, Velasco M, Larqué C, Diaz-Garcia CM. Metabolic Syndrome and Ionic Channels in Pancreatic Beta Cells. THE PANCREATIC BETA CELL 2014; 95:87-114. [DOI: 10.1016/b978-0-12-800174-5.00004-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY. Structural insight into the assembly of TRPV channels. Structure 2013; 22:260-8. [PMID: 24373766 DOI: 10.1016/j.str.2013.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/01/2013] [Accepted: 11/21/2013] [Indexed: 11/25/2022]
Abstract
Transient receptor potential (TRP) proteins are a large family of polymodal nonselective cation channels. The TRP vanilloid (TRPV) subfamily consists of six homologous members with diverse functions. TRPV1-TRPV4 are nonselective cation channels proposed to play a role in nociception, while TRPV5 and TRPV6 are involved in epithelial Ca²⁺ homeostasis. Here we present the cryo-electron microscopy (cryo-EM) structure of functional, full-length TRPV2 at 13.6 Å resolution. The map reveals that the TRPV2 cytoplasmic domain displays a 4-fold petal-like shape in which high-resolution N-terminal ankyrin repeat domain (ARD) structures can be unambiguously fitted. Fitting of the available ARD structures for other TRPV subfamily members into the TRPV2 EM map suggests that TRPV subfamily members have highly homologous structural topologies. These results allowed us to postulate a structural explanation for the functional diversity among TRPV channels and their differential regulation by proteins and ligands.
Collapse
Affiliation(s)
- Kevin W Huynh
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Matthew R Cohen
- Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sudha Chakrapani
- Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heather A Holdaway
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Deparment of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Expression, purification, and projection structure by single particle electron microscopy of functional human TRPM4 heterologously expressed in Xenopus laevis oocytes. Protein Expr Purif 2013; 95:169-76. [PMID: 24333049 DOI: 10.1016/j.pep.2013.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 01/23/2023]
Abstract
Despite efforts implicating the cationic channel transient receptor potential melastatin member 4 (TRPM4) to cardiac, nervous, and immunological pathologies, little is known about its structure and function. In this study, we optimized the requirements for purification and extraction of functional human TRPM4 protein and investigated its supra-molecular assembly. We selected the Xenopus laevis oocyte expression system because it lacks endogenous TRPM4 expression, it is known to overexpress functional human membrane channels, can be used for structure-function analysis within the same system, and is easily scaled to improve yield and develop moderate throughput capabilities through the use of robotics. Negative-stain electron microscopy (EM) revealed various sized low-resolution particles. Single particle analysis identified the majority of the projections represented the monomeric form with additional oligomeric structures potentially characterized as tetramers. Two-electrode voltage clamp electrophysiology demonstrated that human TRPM4 is functionally expressed at the oocyte plasma membrane. This study opens the door for medium-throughput screening and structure-function determination of this important therapeutically relevant target.
Collapse
|
45
|
Winter Z, Buhala A, Ötvös F, Jósvay K, Vizler C, Dombi G, Szakonyi G, Oláh Z. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel--an overview of the current mutational data. Mol Pain 2013; 9:30. [PMID: 23800232 PMCID: PMC3707783 DOI: 10.1186/1744-8069-9-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Zoltán Winter
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Perálvarez-Marín A, Doñate-Macian P, Gaudet R. What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J 2013; 280:5471-87. [PMID: 23615321 DOI: 10.1111/febs.12302] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/22/2013] [Accepted: 04/14/2013] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) ion channels are emerging as a new set of membrane proteins involved in a vast array of cellular processes and regulated by a large number of physical and chemical stimuli, which involves them with sensory cell physiology. The vanilloid TRP subfamily (TRPV) named after the vanilloid receptor 1 (TRPV1) consists of six members, and at least four of them (TRPV1-TRPV4) have been related to thermal sensation. One of the least characterized members of the TRP subfamily is TRPV2. Although initially characterized as a noxious heat sensor, TRPV2 now seems to have little to do with temperature sensing but a much more complex physiological profile. Here we review the available information and research progress on the structure, physiology and pharmacology of TRPV2 in an attempt to shed some light on the physiological and pharmacological deorphanization of TRPV2.
Collapse
Affiliation(s)
- Alex Perálvarez-Marín
- Centre d'Estudis en Biofísica, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | | | | |
Collapse
|
47
|
Beck A, Speicher T, Stoerger C, Sell T, Dettmer V, Jusoh SA, Abdulmughni A, Cavalié A, Philipp SE, Zhu MX, Helms V, Wissenbach U, Flockerzi V. Conserved gating elements in TRPC4 and TRPC5 channels. J Biol Chem 2013; 288:19471-83. [PMID: 23677990 DOI: 10.1074/jbc.m113.478305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca(2+)-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4-S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca(2+) of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4-S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.
Collapse
Affiliation(s)
- Andreas Beck
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smani T, Dionisio N, López JJ, Berna-Erro A, Rosado JA. Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:658-64. [PMID: 23333715 DOI: 10.1016/j.bbamem.2013.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/30/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca(2+) homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Tarik Smani
- Institute of Biomedicine of Seville, Seville, Spain
| | - Natalia Dionisio
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - José J López
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain.
| |
Collapse
|
49
|
Boukalova S, Teisinger J, Vlachova V. Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:520-8. [PMID: 23220012 DOI: 10.1016/j.bbamcr.2012.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/29/2012] [Accepted: 11/20/2012] [Indexed: 12/29/2022]
Abstract
The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating.
Collapse
Affiliation(s)
- Stepana Boukalova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
50
|
Ortar G, De Petrocellis L, Moriello AS, Allarà M, Morera E, Nalli M, Di Marzo V. Tetrahydro-β-carboline derivatives targeting fatty acid amide hydrolase (FAAH) and transient receptor potential (TRP) channels. Bioorg Med Chem Lett 2012. [PMID: 23206861 DOI: 10.1016/j.bmcl.2012.10.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A series of twenty-five derivatives of tetrahydro-β-carbolines 1-3 was synthesized and assayed on FAAH and TRPV1 and TRPA1 channels. Four carbamates, that is, 5a,c,e, and 9b inhibited FAAH with significant potency and interacted also effectively with TRPV1 and TRPA1 nociceptive receptors, while ureas 7b,d,f, and 8a,b were endowed with specific submicromolar TRPV1 modulating activities.
Collapse
Affiliation(s)
- Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|