1
|
Phospholipase C-γ1 potentially facilitates subcellular localization of activated β-catenin, p-β-catenin(S552), during bovine herpesvirus 1 productive infection in MDBK cells. Vet Microbiol 2023; 276:109626. [PMID: 36502739 DOI: 10.1016/j.vetmic.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a significant risk factor for the bovine respiratory disease complex (BRDC), a severe disease causing great economic losses to the cattle industry worldwide. Previous studies have reported that both phospholipase C-γ1 (PLC-γ1) and β-catenin are activated during BoHV-1 infection for efficient replication. However, the interplay between PLC-γ1 and β-catenin as a consequence of virus infection remains to be elucidated. Here, we reported that PLC-γ1 interacted with β-catenin, which was enhanced following virus infection. PLC-γ1-specific inhibitor, U73122, significantly reduced the mRNA levels of β-catenin in BoHV-1-infected cells; however, the steady-state protein levels were not affected due to the virus infection. Interestingly, the treatment of virus-infected cells with U73122 reduced the accumulation of activated β-catenin [p-β-catenin(S552)] in fractions of the cytoplasmic membrane as that observed with the treatment of methyl-β-cyclodextrin (MβCD), which can disrupt cytoplasmic membrane structure via sequestering cholesterol. Nucleus accumulation of p-β-catenin(S552) was increased following U73122 treatment in virus-infected cells. In addition, the association of p-β-catenin(S552) with cytoplasmic membrane induced by the virus infection was significantly disrupted by the treatment of U73122 and MβCD. These data indicated that the PLC-γ1 signaling is potentially involved in the regulation of β-catenin signaling stimulated by BoHV-1 infection partially via affecting the subcellular localization of p-β-catenin(S552).
Collapse
|
2
|
Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, Chaurasiya SK. Phospholipase C: underrated players in microbial infections. Front Cell Infect Microbiol 2023; 13:1089374. [PMID: 37139494 PMCID: PMC10149971 DOI: 10.3389/fcimb.2023.1089374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host-pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance.
Collapse
Affiliation(s)
- Vinayak Singh
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rupal Rai
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Bijina J. Mathew
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rashmi Chourasia
- Department of Chemistry, IES University, Bhopal, Madhya Pradesh, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, Madhya Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Shivendra K. Chaurasiya
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- *Correspondence: Shivendra K. Chaurasiya,
| |
Collapse
|
3
|
Upregulation of Phospholipase C Gene Expression Due to Norepinephrine-Induced Hypertrophic Response. Cells 2022; 11:cells11162488. [PMID: 36010565 PMCID: PMC9406906 DOI: 10.3390/cells11162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
The activation of phospholipase C (PLC) is thought to have a key role in the cardiomyocyte response to several different hypertrophic agents such as norepinephrine, angiotensin II and endothelin-1. PLC activity results in the generation of diacylglycerol and inositol trisphosphate, which are downstream signal transducers for the expression of fetal genes, increased protein synthesis, and subsequent cardiomyocyte growth. In this article, we describe the signal transduction elements that regulate PLC gene expression. The discussion is focused on the norepinephrine- α1-adrenoceptor signaling pathway and downstream signaling processes that mediate an upregulation of PLC isozyme gene expression. Evidence is also indicated to demonstrate that PLC activities self-regulate the expression of PLC isozymes with the suggestion that PLC activities may be part of a coordinated signaling process for the perpetuation of cardiac hypertrophy. Accordingly, from the information provided, it is plausible that specific PLC isozymes could be targeted for the mitigation of cardiac hypertrophy.
Collapse
|
4
|
Tappia PS, Ramjiawan B, Dhalla NS. Role of Phospholipase C in Catecholamine-induced Increase in Myocardial Protein Synthesis. Can J Physiol Pharmacol 2022; 100:945-955. [PMID: 35767883 DOI: 10.1139/cjpp-2022-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of the α1-adrenoceptor-(α1-AR) by norepinephrine results in the G-protein (Gqα) mediated increase in the phosphoinositide-specific phospholipase C (PLC) activity. The byproducts of PLC hydrolytic activity, namely, 1,2-diacylglycerol and inositol-1,4,5-trisphosphate, are important downstream signal transducers for increased protein synthesis in the cardiomyocyte and the subsequent hypertrophic response. In this article, evidence is outlined to demonstrate the role of cardiomyocyte PLC isozymes in the catecholamine-induced increase in protein synthesis by using a blocker of α1-AR and an inhibitor of PLC. The discussion will be focused on the α1-AR-Gqα-PLC-mediated hypertrophic signaling pathway from the viewpoint that it may compliment the other β1-AR-Gs protein-adenylyl cyclase signal transduction mechanisms in the early stages of cardiac hypertrophy development, but may become more relevant at the late stage of cardiac hypertrophy. From the information provided here, it is suggested that some specific PLC isozymes may potentially serve as important targets for the attenuation of cardiac hypertrophy in the vulnerable patient population at-risk for heart failure.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Office of Clinical Research, Winnipeg, Manitoba, Canada;
| | - Bram Ramjiawan
- University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, Canada;
| | - Naranjan S Dhalla
- St Boniface Hospital Research, 120927, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada;
| |
Collapse
|
5
|
Freckelton ML, Nedved BT, Cai YS, Cao S, Turano H, Alegado RA, Hadfield MG. Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Proc Natl Acad Sci U S A 2022; 119:e2200795119. [PMID: 35467986 PMCID: PMC9651628 DOI: 10.1073/pnas.2200795119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 08/09/2023] Open
Abstract
How larvae of the many phyla of marine invertebrates find places appropriate for settlement, metamorphosis, growth, and reproduction is an enduring question in marine science. Biofilm-induced metamorphosis has been observed in marine invertebrate larvae from nearly every major marine phylum. Despite the widespread nature of this phenomenon, the mechanism of induction remains poorly understood. The serpulid polychaete Hydroides elegans is a well established model for investigating bacteria-induced larval development. A broad range of biofilm bacterial species elicit larval metamorphosis in H. elegans via at least two mechanisms, including outer membrane vesicles (OMVs) and complexes of phage-tail bacteriocins. We investigated the interaction between larvae of H. elegans and the inductive bacterium Cellulophaga lytica, which produces an abundance of OMVs but not phage-tail bacteriocins. We asked whether the OMVs of C. lytica induce larval settlement due to cell membrane components or through delivery of specific cargo. Employing a biochemical structure–function approach with a strong ecological focus, the cells and OMVs produced by C. lytica were interrogated to determine the class of the inductive compounds. Here, we report that larvae of H. elegans are induced to metamorphose by lipopolysaccharide produced by C. lytica. The widespread prevalence of lipopolysaccharide and its associated taxonomic and structural variability suggest it may be a broadly employed cue for bacterially induced larval settlement of marine invertebrates.
Collapse
Affiliation(s)
| | - Brian T. Nedved
- Kewalo Marine Laboratory, University of Hawaiʻi, Honolulu, HI 96813
| | - You-Sheng Cai
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaiʻi at Hilo, Hilo, HI 96720
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People’s Republic of China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaiʻi at Hilo, Hilo, HI 96720
| | - Helen Turano
- Department of Oceanography, University of Hawaiʻi Mānoa, Honolulu, HI 96813
| | - Rosanna A. Alegado
- Department of Oceanography, University of Hawaiʻi Mānoa, Honolulu, HI 96813
- Sea Grant College Program, University of Hawaiʻi Mānoa, Honolulu, HI 96813
| | | |
Collapse
|
6
|
Tappia P, Elimban V, Dhalla N. Involvement of phospholipase C in the norepinephrine-induced hypertrophic response in Cardiomyocytes. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Norepinephrine (NE) is known to mediate cardiomyocyte hypertrophy through the G protein coupled a1 -adrenoceptor (a1 -AR) and the activation of the phosphoinositide-specific phospholipase C (PLC). Since the by-products of PLC activity are important downstream signal transducers for cardiac hypertrophy, the role of and the regulatory mechanisms involved in the activation of PLC isozymes in cardiac hypertrophy are highlighted in this review. The discussion is focused to underscore PLC in different experimental models of cardiac hypertrophy, as well as in isolated adult and neonatal cardiomyocytes treated with NE. Particular emphasis is laid concerning the a1 -AR-PLC-mediated hypertrophic signalling pathway. From the information provided, it is evident that the specific activation of PLC isozymes is a primary signalling event in the a1 -AR mediated response to NE as well as initiation and progression of cardiac hypertrophy. Furthermore, the possibility of PLC involvement in the perpetuation of cardiac hypertrophy is also described. It is suggested that specific PLC isozymes may serve as viable targets for the prevention of cardiac hypertrophy in patient population at-risk for the development of heart failure.
Collapse
|
7
|
Wang B, Yang J, Gao C, Hao T, Li J, Sun J. Reconstruction of Eriocheir sinensis Y-organ Genome-Scale Metabolic Network and Differential Analysis After Eyestalk Ablation. Front Genet 2020; 11:532492. [PMID: 33101373 PMCID: PMC7545369 DOI: 10.3389/fgene.2020.532492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
Genome-scale metabolic network (GSMN) has been proven to be a useful tool for the system analysis of organism metabolism and applied to deeply explore the metabolic functions or mechanisms in many organisms, including model or non-model organisms. However, the systematic studies on the metabolisms of aquatic animals are seldom reported, especially the aquatic crustaceans. In this work, we reconstructed an Eriocheir sinensis Y-organ GSMN based on the transcriptome sequencing of Y-organ, which includes 1,645 reactions, 1,885 unigenes, and 1,524 metabolites distributed in 100 pathways and 11 subsystems. Functional module and centrality analysis of the GSMN show the main metabolic functions of Y-organ. Further analysis of the differentially expressed unigenes in Y-organ after eyestalk ablation reveals that 191 genes in the network were up-regulated and 283 were down-regulated. The unigenes associated with the ecdysone synthetic pathway were all up-regulated, which is consistent with the report on the increasing secretion of ecdysone after eyestalk ablation. Besides, we compared the Y-organ GSMN with that of E. sinensis eyestalk and hepatopancreas, and we analyzed the specific metabolisms in each organ. The specific metabolisms and pathways of these three networks are closely related to their corresponding metabolic functions. The GSMN reconstructed in this work provides a new method and many novel clues for further understanding the physiological function of Y-organ. It also supplies a new platform for the investigation of the interactions among different organs in the growth process of E. sinensis.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiarui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Chenchen Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jingjing Li
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
8
|
Phosphoinositides in Retinal Function and Disease. Cells 2020; 9:cells9040866. [PMID: 32252387 PMCID: PMC7226789 DOI: 10.3390/cells9040866] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.
Collapse
|
9
|
Ebenezer DL, Fu P, Ramchandran R, Ha AW, Putherickal V, Sudhadevi T, Harijith A, Schumacher F, Kleuser B, Natarajan V. S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158681. [PMID: 32171908 DOI: 10.1016/j.bbalip.2020.158681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Long-chain fatty aldehydes are present in low concentrations in mammalian cells and serve as intermediates in the interconversion between fatty acids and fatty alcohols. The long-chain fatty aldehydes are generated by enzymatic hydrolysis of 1-alkyl-, and 1-alkenyl-glycerophospholipids by alkylglycerol monooxygenase, plasmalogenase or lysoplasmalogenase while hydrolysis of sphingosine-1-phosphate (S1P) by S1P lyase generates trans ∆2-hexadecenal (∆2-HDE). Additionally, 2-chloro-, and 2-bromo- fatty aldehydes are produced from plasmalogens or lysoplasmalogens by hypochlorous, and hypobromous acid generated by activated neutrophils and eosinophils, respectively while 2-iodofatty aldehydes are produced by excess iodine in thyroid glands. The 2-halofatty aldehydes and ∆2-HDE activated JNK signaling, BAX, cytoskeletal reorganization and apoptosis in mammalian cells. Further, 2-chloro- and 2-bromo-fatty aldehydes formed GSH and protein adducts while ∆2-HDE formed adducts with GSH, deoxyguanosine in DNA and proteins such as HDAC1 in vitro. ∆2-HDE also modulated HDAC activity and stimulated H3 and H4 histone acetylation in vitro with lung epithelial cell nuclear preparations. The α-halo fatty aldehydes elicited endothelial dysfunction, cellular toxicity and tissue damage. Taken together, these investigations suggest a new role for long-chain fatty aldehydes as signaling lipids, ability to form adducts with GSH, proteins such as HDACs and regulate cellular functions.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Ramaswamy Ramchandran
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Fabian Schumacher
- Institute of Nutritional Sciences, University of Potsdam, Germany; Department of Molecular Biology, University of Duisburg-, Essen, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Sciences, University of Potsdam, Germany
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
10
|
Eurtivong C, Pilkington LI, van Rensburg M, White RM, Brar HK, Rees S, Paulin EK, Xu CS, Sharma N, Leung IK, Leung E, Barker D, Reynisson J. Discovery of novel phosphatidylcholine-specific phospholipase C drug-like inhibitors as potential anticancer agents. Eur J Med Chem 2020; 187:111919. [DOI: 10.1016/j.ejmech.2019.111919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023]
|
11
|
Kang XL, Zhang JY, Wang D, Zhao YM, Han XL, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet 2019; 15:e1008331. [PMID: 31412019 PMCID: PMC6693746 DOI: 10.1371/journal.pgen.1008331] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Holometabolous insects stop feeding at the final larval instar stage and then undergo metamorphosis; however, the mechanism is unclear. In the present study, using the serious lepidopteran agricultural pest Helicoverpa armigera as a model, we revealed that 20-hydroxyecdysone (20E) binds to the dopamine receptor (DopEcR), a G protein-coupled receptor, to stop larval feeding and promote pupation. DopEcR was expressed in various tissues and its level increased during metamorphic molting under 20E regulation. The 20E titer was low during larval feeding stages and high during wandering stages. By contrast, the dopamine (DA) titer was high during larval feeding stages and low during the wandering stages. Injection of 20E or blocking dopamine receptors using the inhibitor flupentixol decreased larval food consumption and body weight. Knockdown of DopEcR repressed larval feeding, growth, and pupation. 20E, via DopEcR, promoted apoptosis; and DA, via DopEcR, induced cell proliferation. 20E opposed DA function by repressing DA-induced cell proliferation and AKT phosphorylation. 20E, via DopEcR, induced gene expression and a rapid increase in intracellular calcium ions and cAMP. 20E induced the interaction of DopEcR with G proteins αs and αq. 20E, via DopEcR, induced protein phosphorylation and binding of the EcRB1-USP1 transcription complex to the ecdysone response element. DopEcR could bind 20E inside the cell membrane or after being isolated from the cell membrane. Mutation of DopEcR decreased 20E binding levels and related cellular responses. 20E competed with DA to bind to DopEcR. The results of the present study suggested that 20E, via binding to DopEcR, arrests larval feeding and promotes pupation. The steroid hormone 20-hydroxyecdysone (20E) represses insect larval feeding and promotes metamorphosis; however, the mechanism is unclear. The dopamine receptor plays important roles in animal motor function and reward-motivated behavior. Using the serious lepidopteran agricultural pest Helicoverpa armigera as a model, we revealed that 20E binds to DopEcR to block the dopamine pathway and initiates the 20E pathway. Dopamine (DA) binds to the dopamine receptor (DopEcR), a G protein-coupled receptor (GPCR), to regulate cell proliferation, larval feeding, and growth. However, 20E competes with DA to bind to DopEcR, which represses larval feeding and triggers the 20E-pathway, leading to metamorphosis. The results suggested that 20E, via binding to DopEcR, stops larval feeding and promotes pupation, which presented an example of the steroid hormone regulating dopamine receptor and behavior. Our study showed that GPCRs can bind 20E and function as 20E cell membrane receptors.
Collapse
Affiliation(s)
- Xin-Le Kang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Jun-Ying Zhang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Di Wang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Xiao-Lin Han
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong provincial key laboratory of animal cells and developmental biology, School of life science, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
12
|
Eddehech A, Smichi N, Arhab Y, Noiriel A, Abousalham A, Gargouri Y, Zarai Z. Production, purification and functional characterization of phospholipase C from Bacillus thuringiensis with high catalytic activity. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Qian N, Ichimura A, Takei D, Sakaguchi R, Kitani A, Nagaoka R, Tomizawa M, Miyazaki Y, Miyachi H, Numata T, Kakizawa S, Nishi M, Mori Y, Takeshima H. TRPM7 channels mediate spontaneous Ca 2+ fluctuations in growth plate chondrocytes that promote bone development. Sci Signal 2019; 12:12/576/eaaw4847. [PMID: 30967513 DOI: 10.1126/scisignal.aaw4847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During endochondral ossification of long bones, the proliferation and differentiation of chondrocytes cause them to be arranged into layered structures constituting the epiphyseal growth plate, where they secrete the cartilage matrix that is subsequently converted into trabecular bone. Ca2+ signaling has been implicated in chondrogenesis in vitro. Through fluorometric imaging of bone slices from embryonic mice, we demonstrated that live growth plate chondrocytes generated small, cell-autonomous Ca2+ fluctuations that were associated with weak and intermittent Ca2+ influx. Several genes encoding Ca2+-permeable channels were expressed in growth plate chondrocytes, but only pharmacological inhibitors of transient receptor potential cation channel subfamily M member 7 (TRPM7) reduced the spontaneous Ca2+ fluctuations. The TRPM7-mediated Ca2+ influx was likely activated downstream of basal phospholipase C activity and was potentiated upon cell hyperpolarization induced by big-conductance Ca2+-dependent K+ channels. Bones from embryos in which Trpm7 was conditionally knocked out during ex vivo culture exhibited reduced outgrowth and displayed histological abnormalities accompanied by insufficient autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the growth plate. The link between TRPM7-mediated Ca2+ fluctuations and CaMKII-dependent chondrogenesis was further supported by experiments with chondrocyte-specific Trpm7 knockout mice. Thus, growth plate chondrocytes generate spontaneous, TRPM7-mediated Ca2+ fluctuations that promote self-maturation and bone development.
Collapse
Affiliation(s)
- Nianchao Qian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 615-8510, Japan
| | - Akihiro Kitani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Ryohei Nagaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tomohiro Numata
- Graduate School of Medical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.
| |
Collapse
|
14
|
Paroha R, Chaurasiya SK, Chourasia R. Phospholipase C‐γ2 promotes intracellular survival of mycobacteria. J Cell Biochem 2018; 120:5062-5071. [DOI: 10.1002/jcb.27783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ruchi Paroha
- Host‐Pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University Sagar India
| | - Shivendra K. Chaurasiya
- Host‐Pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University Sagar India
| | - Rashmi Chourasia
- Department of Chemistry, School of Chemical Sciences, Dr. Hari Singh Gour University Sagar India
| |
Collapse
|
15
|
Abstract
Membrane biology seeks to understand how lipids and proteins within bilayers assemble into large structures such as organelles and the plasma membranes. Historically, lipids were thought to merely provide structural support for bilayer formation and membrane protein function. Research has now revealed that phospholipid metabolism regulates nearly all cellular processes. Sophisticated techniques helped identify >10,000 lipid species suggesting that lipids support many biological processes. Here, we highlight the synthesis of the most abundant glycerophospholipid classes and their distribution in organelles. We review vesicular and nonvesicular transport pathways shuttling lipids between organelles and discuss lipid regulators of membrane trafficking and second messengers in eukaryotic cells.
Collapse
Affiliation(s)
- Yanbo Yang
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and
| | - Minhyoung Lee
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and
| | - Gregory D Fairn
- From the Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, .,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, and.,the Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
16
|
Zhu L, Yuan C, Ding X, Jones C, Zhu G. The role of phospholipase C signaling in bovine herpesvirus 1 infection. Vet Res 2017; 48:45. [PMID: 28882164 PMCID: PMC5590182 DOI: 10.1186/s13567-017-0450-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 02/04/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) infection enhanced the generation of inflammatory mediator reactive oxidative species (ROS) and stimulated MAPK signaling that are highly possibly related to virus induced inflammation. In this study, for the first time we show that BoHV-1 infection manipulated phospholipase C (PLC) signaling, as demonstrated by the activation of PLCγ-1 at both early stages [at 0.5 h post-infection (hpi)] and late stages (4-12 hpi) during the virus infection of MDBK cells. Viral entry, and de novo protein expression and/or DNA replication were potentially responsible for the activation of PLCγ-1 signaling. PLC signaling inhibitors of both U73122 and edelfosine significantly inhibited BoHV-1 replication in both bovine kidney cells (MDBK) and rabbit skin cells (RS-1) in a dose-dependent manner by affecting the virus entry stage(s). In addition, the activation of Erk1/2 and p38MAPK signaling, and the enhanced generation of ROS by BoHV-1 infection were obviously ameliorated by chemical inhibition of PLC signaling, implying the requirement of PLC signaling in ROS production and these MAPK pathway activation. These results suggest that the activation of PLC signaling is a potential pathogenic mechanism for BoHV-1 infection.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Department of Veterinary Pathobiology, Oklahoma State University, Center for Veterinary Health Sciences, Stillwater, OK, 74078, USA.
| | - Chen Yuan
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Test Center, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, Center for Veterinary Health Sciences, Stillwater, OK, 74078, USA
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
17
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
18
|
Zhu L, Yuan C, Ding X, Xu S, Yang J, Liang Y, Zhu Q. PLC-γ1 is involved in the inflammatory response induced by influenza A virus H1N1 infection. Virology 2016; 496:131-137. [PMID: 27310357 DOI: 10.1016/j.virol.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
We have previously reported that phosphoinositide-specific phospholipase γ1 (PLC-γ1) signaling is activated by influenza virus H1N1 infection and mediates efficient viral entry in human epithelial cells. In this study, we show that H1N1 also activates PLCγ-1 signaling in human promonocytic cell line -derived macrophages. Surprisingly, the activated PLCγ-1 signaling is not important for viral replication in macrophages, but is involved in the virus-induced inflammatory responses. PLC-γ1-specific inhibitor U73122 strongly inhibits the H1N1 virus-induced NF-κB signaling, blocking the up-regulation of TNF-α, IL-6, MIP-1α, and reactive oxidative species. In a positive feedback loop, IL-1β and TNF-α activate the PLCγ-1 signaling in both epithelial and macrophage cell lines. In summary, we have shown for the first time that the PLCγ-1 signaling plays an important role in the H1N1-induced inflammatory responses. Our study suggests that targeting the PLCγ-1 signaling is a potential antiviral therapy against H1N1 by inhibiting both viral replication and excessive inflammation.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Chen Yuan
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Shuai Xu
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, China
| | - Jiayun Yang
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, China
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA.
| | - Qiyun Zhu
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, China.
| |
Collapse
|
19
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
20
|
Reynisson J, Jaiswal JK, Barker D, D'mello SAN, Denny WA, Baguley BC, Leung EY. Evidence that phospholipase C is involved in the antitumour action of NSC768313, a new thieno[2,3-b]pyridine derivative. Cancer Cell Int 2016; 16:18. [PMID: 26966420 PMCID: PMC4785615 DOI: 10.1186/s12935-016-0293-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/01/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The thieno[2,3-b]pyridines were discovered by virtual high throughput screening as potential inhibitors of phospholipase C (PLC) isoforms and showed potent growth inhibitory effects in National Cancer Institute's human tumour cell line panel (NCI60). The mechanism of the anti-proliferative activity of thieno[2,3-b]pyridines is explored here. OBJECTIVES We aimed to investigate the basis for the anti-proliferative activity of these thieno[2,3-b]pyridines and to determine whether the cellular inhibition was related to their inhibition of PLC. METHODS Four breast cancer cell lines were used to assess the anti-proliferative effects (IC50 values) of six representative thieno[2,3-b]pyridines. The most potent compound (derivative 3; NSC768313), was further studied in MDA-MB-231 cells. DNA damage was examined by γH2AX expression level, and cell cycle arrest by flow cytometry. Cell morphology was examined by tubulin antibody staining. The growth inhibitory effect of combination treatment with derivative 3 and paclitaxel (tubulin inhibitor), doxorubicin (topoisomerase II inhibitor) or camptothecin (topoisomerase I inhibitor) was evaluated. A preliminary mouse toxicity assay was used to evaluate the pharmacological properties. RESULTS Addition of the thieno[2,3-b]pyridine derivative 3 to the MDA-MB-231 cells induced G2/M growth inhibition, cell cycle arrest in G2-phase, membrane blebbing and the formation of multinucleated cells. It did not induce DNA damage, mitotic arrest or changes in calcium ion flux. Combination of derivative 3 with paclitaxel showed a high degree of synergy, while combinations with doxorubicin and camptothecin showed only additive effects. A mouse pharmacokinetic study of derivative 3 showed that after intraperitoneal injection of a single does (10 mg/Kg), the Cmax was 0.087 μmol/L and the half-life was 4.11 h. CONCLUSIONS The results are consistent with a mechanism in which thieno[2,3-b]pyridine derivatives interact with PLC isoforms (possibly PLC-δ), which in turn affect the cellular dynamics of tubulin-β, inducing cell cycle arrest in G2-phase. We conclude that these compounds have novelty because of their PLC target and may have utility in combination with mitotic poisons for cancer treatment.
Collapse
Affiliation(s)
- Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jagdish K Jaiswal
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Stacey A N D'mello
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ; Molecular Medicine and Pathology Department, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand ; Molecular Medicine and Pathology Department, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
21
|
Sędzielewska Toro K, Brachmann A. The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics 2016; 17:101. [PMID: 26861502 PMCID: PMC4746824 DOI: 10.1186/s12864-016-2422-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
Background Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Recent studies of plant-pathogen interactions showed that effector proteins play a key role in host colonization by controlling the plant immune system. We hypothesise that also for symbiotic-plant interactions the secreted effectome of the fungus is a major component of communication and the conservation level of effector proteins between AMF species may be indicative whether they play a fundamental role. Results In this study, we used a bioinformatics pipeline to predict and compare the effector candidate repertoire of the two AMF species, Rhizophagus irregularis and Rhizophagus clarus. Our in silico pipeline revealed a list of 220 R. irregularis candidate effector genes that create a valuable information source to elucidate the mechanism of plant infection and colonization by fungi during AMF symbiotic interaction. While most of the candidate effectors show no homologies to known domains or proteins, the candidates with homologies point to potential roles in signal transduction, cell wall modification or transcription regulation. A remarkable aspect of our work is presence of a large portion of the effector proteins involved in symbiosis, which are not unique to each fungi or plant species, but shared along the Glomeromycota phylum. For 95 % of R. irregularis candidates we found homologs in a R. clarus genome draft generated by Illumina high-throughput sequencing. Interestingly, 9 % of the predicted effectors are at least as conserved between the two Rhizophagus species as proteins with housekeeping functions (similarity > 90 %). Therefore, we state that this group of highly conserved effector proteins between AMF species may play a fundamental role during fungus-plant interaction. Conclusions We hypothesise that in symbiotic interactions the secreted effectome of the fungus might be an important component of communication. Identification and functional characterization of the primary AMF effectors that regulate symbiotic development will help in understanding the mechanisms of fungus-plant interaction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2422-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kinga Sędzielewska Toro
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany.
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
22
|
Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity. Methods Mol Biol 2016; 1376:55-75. [PMID: 26552675 DOI: 10.1007/978-1-4939-3170-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phosphoinositides compromise a family of eight membrane lipids which play important roles in many cellular signaling pathways. Signaling through phosphoinositides has been shown in a variety of cellular functions such cell proliferation, cell growth, apoptosis, and vesicle trafficking. Phospholipid phosphatases regulate cell signaling by modifying the concentration of phosphoinositides and their dephosphorylated products. To understand the role of individual lipid phosphatases in phosphoinositide turnover and functional signaling, it is crucial to determine the substrate specificity of the lipid phosphatase of interest. In this chapter we describe how the substrate specificity of an individual lipid phosphatase can be qualitatively and quantitatively measured in an in vitro radiometric assay. In addition, we specify the different expression systems and purification methods required to produce the necessary yield and functionality in order to further characterize these enzymes. The outstanding versatility and sensitivity of this assay system are yet unmatched and are therefore currently considered the standard of the field.
Collapse
|
23
|
Zhu L, Yuan C, Ma Y, Ding X, Zhu G, Zhu Q. Anti-inflammatory activities of phospholipase C inhibitor U73122: Inhibition of monocyte-to-macrophage transformation and LPS-induced pro-inflammatory cytokine expression. Int Immunopharmacol 2015; 29:622-627. [PMID: 26428848 DOI: 10.1016/j.intimp.2015.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/13/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
Abstract
A wide range of biological processes are controlled by phospholipase C (PLC)/Ca(2+) signaling, which could be blocked by PLC-specific inhibitor U73122. Whether inhibition of PLC with chemical inhibitor U73122 affects the inflammatory response in monocytes/macrophages is currently unknown. In this study, we demonstrated that U73122 inhibited PMA-induced in vitro differentiation of human promonocytic U937 cells into macrophages as reflected by the reduction of cell adherence and the decreased expression of macrophage specific marker CD163. It is possible that U73122 blocked PMA-induced adhesion of U937 cells partially by down regulation and inactivation of both Pyk2 and paxillin signaling. Furthermore, the expression of LPS-induced pro-inflammatory cytokines TNF-α and IL-1β was significantly blocked by U73122 in both dU937 cells and mouse primary peritoneal macrophages. These results suggest that PLC is involved in the sophisticated inflammatory response by monocytes/macrophages, and thereby chemical antagonists of PLC may be potential agents for the suppression of inflammatory response.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Chen Yuan
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Yan Ma
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Qiyun Zhu
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, China.
| |
Collapse
|
24
|
Béziau DM, Toussaint F, Blanchette A, Dayeh NR, Charbel C, Tardif JC, Dupuis J, Ledoux J. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells. PLoS One 2015; 10:e0123769. [PMID: 25875657 PMCID: PMC4395365 DOI: 10.1371/journal.pone.0123769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/25/2015] [Indexed: 11/18/2022] Open
Abstract
Phospholipase C (PLC) comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η) based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs) remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA), pulmonary (PA) and middle cerebral arteries (MCA). mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA), δ4 (only expressed in MCA), η1 (expressed in all but MA) and ζ (not detected in any vascular beds tested). The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1) in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found in the native endothelium.
Collapse
Affiliation(s)
- Delphine M. Béziau
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Molecular and Integrative Physiology, Université de Montréal, Montreal, Qc, Canada
| | - Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Molecular and Integrative Physiology, Université de Montréal, Montreal, Qc, Canada
| | | | - Nour R. Dayeh
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Medicine, Université de Montréal, Montreal, Qc, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Qc, Canada
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Medicine, Université de Montréal, Montreal, Qc, Canada
| | - Jocelyn Dupuis
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Medicine, Université de Montréal, Montreal, Qc, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Qc, Canada
- Department of Molecular and Integrative Physiology, Université de Montréal, Montreal, Qc, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Qc, Canada
- Department of Medicine, Université de Montréal, Montreal, Qc, Canada
- * E-mail:
| |
Collapse
|
25
|
Ren J, Li XR, Liu PC, Cai MJ, Liu W, Wang JX, Zhao XF. G-protein αq participates in the steroid hormone 20-hydroxyecdysone nongenomic signal transduction. J Steroid Biochem Mol Biol 2014; 144 Pt B:313-23. [PMID: 25125388 DOI: 10.1016/j.jsbmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
Abstract
The nuclear receptor-mediated genomic pathways of the animal steroid hormones are well known. However, the cell membrane receptor-mediated nongenomic pathways of the animal steroid hormones are little understood. In this study, we report the participation of a G-protein alpha q (Gαq)(1) subunit in the 20E nongenomic pathway in the cell membrane and regulating gene expression during molting and metamorphosis in a lepidopteran insect, Helicoverpa armigera. 20E-induced phosphorylation of Gαq was detected using two-dimensional electrophoresis techniques. Knockdown of Gαq by injecting double-stranded RNA suppressed the development of larvae, delayed metamorphosis, and inhibited 20E-induced gene expression. Gαq was distributed throughout the cell, and migrated toward the plasma membrane upon 20E induction. Gαq was necessary in the 20E-induced intracellular Ca(2+) release and extracellular Ca(2+) influx. The protein kinase C (PKC) inhibitor could repress 20E-induced phosphorylation of cyclin-dependent kinase 10 (CDK10) and transcription factor ultraspiracle (USP1). PKC inhibitor could repress the Gαq phosphorylation and membrane trafficking. These results suggest that Gαq participates in 20E signaling in the cell membrane at the pre-genomic stage by modulating the increase of the intracellular Ca(2+) and phosphorylation of CDK10 and USP1 in 20E transcription complex to regulate gene transcription.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Peng-Cheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
26
|
Ying WZ, Aaron KJ, Sanders PW. Sodium and potassium regulate endothelial phospholipase C-γ and Bmx. Am J Physiol Renal Physiol 2014; 307:F58-63. [PMID: 24785188 DOI: 10.1152/ajprenal.00615.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The amount of Na(+) and K(+) in the diet promotes significant changes in endothelial cell function. In the present study, a series of in vitro and in vivo experiments determined the role of Na(+) and K(+) in the regulation of two pleckstrin homology domain-containing intracellular signaling molecules, phospholipase C (PLC)-γ1 and epithelial and endothelial tyrosine kinase/bone marrow tyrosine kinase on chromosome X (Bmx), and agonist-generated Ca(2+) signaling in the endothelium. Extracellular K(+) concentration regulated the levels of activated PLC-γ1, Bmx, and carbachol-stimulated intracellular Ca(2+) mobilization in human endothelial cells. Additional experiments confirmed that high-conductance Ca(2+)-activated K(+) channels and phosphatidylinositol 3-kinase mediated these effects. The content of Na(+) and K(+) in the diet also regulated Bmx levels in endothelial cells and activated PLC-γ1 levels in rats in vivo. The effects of dietary K(+) on Bmx were more pronounced in rats fed a high-salt diet compared with rats fed a low-salt diet. These experiments elucidated an endothelial cell signaling mechanism regulated by electrolytes, further demonstrating an integral relationship between endothelial cell function and dietary Na(+) and K(+) content.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Kristal J Aaron
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Center for Free Radical Biology, Center for Aging, and Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
27
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
28
|
Torres AFC, Huang C, Chong CM, Leung SW, Prieto-da-Silva ÁRB, Havt A, Quinet YP, Martins AMC, Lee SMY, Rádis-Baptista G. Transcriptome analysis in venom gland of the predatory giant ant Dinoponera quadriceps: insights into the polypeptide toxin arsenal of hymenopterans. PLoS One 2014; 9:e87556. [PMID: 24498135 PMCID: PMC3909188 DOI: 10.1371/journal.pone.0087556] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022] Open
Abstract
Background Dinoponera quadriceps is a predatory giant ant that inhabits the Neotropical region and subdues its prey (insects) with stings that deliver a toxic cocktail of molecules. Human accidents occasionally occur and cause local pain and systemic symptoms. A comprehensive study of the D. quadriceps venom gland transcriptome is required to advance our knowledge about the toxin repertoire of the giant ant venom and to understand the physiopathological basis of Hymenoptera envenomation. Results We conducted a transcriptome analysis of a cDNA library from the D. quadriceps venom gland with Sanger sequencing in combination with whole-transcriptome shotgun deep sequencing. From the cDNA library, a total of 420 independent clones were analyzed. Although the proportion of dinoponeratoxin isoform precursors was high, the first giant ant venom inhibitor cysteine-knot (ICK) toxin was found. The deep next generation sequencing yielded a total of 2,514,767 raw reads that were assembled into 18,546 contigs. A BLAST search of the assembled contigs against non-redundant and Swiss-Prot databases showed that 6,463 contigs corresponded to BLASTx hits and indicated an interesting diversity of transcripts related to venom gene expression. The majority of these venom-related sequences code for a major polypeptide core, which comprises venom allergens, lethal-like proteins and esterases, and a minor peptide framework composed of inter-specific structurally conserved cysteine-rich toxins. Both the cDNA library and deep sequencing yielded large proportions of contigs that showed no similarities with known sequences. Conclusions To our knowledge, this is the first report of the venom gland transcriptome of the New World giant ant D. quadriceps. The glandular venom system was dissected, and the toxin arsenal was revealed; this process brought to light novel sequences that included an ICK-folded toxins, allergen proteins, esterases (phospholipases and carboxylesterases), and lethal-like toxins. These findings contribute to the understanding of the ecology, behavior and venomics of hymenopterans.
Collapse
Affiliation(s)
- Alba F. C. Torres
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu Wai Leung
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | - Alexandre Havt
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Yves P. Quinet
- Laboratory of Entomology, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Alice M. C. Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceara, Fortaleza, Ceara, Brazil
- * E-mail: (AMCM); (GRB)
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil
- * E-mail: (AMCM); (GRB)
| |
Collapse
|
29
|
Stahelin RV. A new model of interfacial kinetics for phospholipases. Biophys J 2014; 105:1-2. [PMID: 23823217 DOI: 10.1016/j.bpj.2013.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, Indiana, USA.
| |
Collapse
|
30
|
Scott SA, Mathews TP, Ivanova PT, Lindsley CW, Brown HA. Chemical modulation of glycerolipid signaling and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1060-84. [PMID: 24440821 DOI: 10.1016/j.bbalip.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas P Mathews
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
31
|
Leung E, Hung JM, Barker D, Reynisson J. The effect of a thieno[2,3-b]pyridine PLC-γ inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00290j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
PLC-γ1 signaling plays a subtype-specific role in postbinding cell entry of influenza A virus. J Virol 2013; 88:417-24. [PMID: 24155396 DOI: 10.1128/jvi.02591-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Host signaling pathways and cellular proteins play important roles in the influenza viral life cycle and can serve as antiviral targets. In this study, we report the engagement of host phosphoinositide-specific phospholipase γ1 (PLC-γ1) in mediating cell entry of influenza virus H1N1 but not H3N2 subtype. Both PLC-γ1-specific inhibitor and short hairpin RNA (shRNA) strongly suppress the replication of H1N1 but not H3N2 viruses in cell culture, suggesting that PLC-γ1 plays an important subtype-specific role in the influenza viral life cycle. Further analyses demonstrate that PLC-γ1 activation is required for viral postbinding cell entry. In addition, H1N1, but not H3N2, infection leads to the phosphorylation of PLC-γ1 at Ser 1248 immediately after infection and independent of viral replication. We have further shown that H1N1-induced PLC-γ1 activation is downstream of epidermal growth factor receptor (EGFR) signaling. Interestingly, both H1N1 and H3N2 infections activate EGFR, but only H1N1 infection leads to PLC-γ1 activation. Taking our findings together, we have identified for the first time the subtype-specific interplay of host PLC-γ1 signaling and H1N1 virus that is critical for viral uptake early in the infection. Our study provides novel insights into how virus interacts with the cellular signaling network by demonstrating that viral determinants can regulate how the host signaling pathways function in virally infected cells.
Collapse
|
33
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
35
|
Decrock E, De Bock M, Wang N, Gadicherla AK, Bol M, Delvaeye T, Vandenabeele P, Vinken M, Bultynck G, Krysko DV, Leybaert L. IP3, a small molecule with a powerful message. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1772-86. [PMID: 23291251 DOI: 10.1016/j.bbamcr.2012.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
Abstract
Research conducted over the past two decades has provided convincing evidence that cell death, and more specifically apoptosis, can exceed single cell boundaries and can be strongly influenced by intercellular communication networks. We recently reported that gap junctions (i.e. channels directly connecting the cytoplasm of neighboring cells) composed of connexin43 or connexin26 provide a direct pathway to promote and expand cell death, and that inositol 1,4,5-trisphosphate (IP3) diffusion via these channels is crucial to provoke apoptosis in adjacent healthy cells. However, IP3 itself is not sufficient to induce cell death and additional factors appear to be necessary to create conditions in which IP3 will exert proapoptotic effects. Although IP3-evoked Ca(2+) signaling is known to be required for normal cell survival, it is also actively involved in apoptosis induction and progression. As such, it is evident that an accurate fine-tuning of this signaling mechanism is crucial for normal cell physiology, while a malfunction can lead to cell death. Here, we review the role of IP3 as an intracellular and intercellular cell death messenger, focusing on the endoplasmic reticulum-mitochondrial synapse, followed by a discussion of plausible elements that can convert IP3 from a physiological molecule to a killer substance. Finally, we highlight several pathological conditions in which anomalous intercellular IP3/Ca(2+) signaling might play a role. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Elke Decrock
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Deason-Towne F, Perraud AL, Schmitz C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase. Cell Signal 2012; 24:2070-5. [PMID: 22759789 DOI: 10.1016/j.cellsig.2012.06.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
PLC-isozymes are central elements of cellular signaling downstream of numerous receptors. PLCγ2 is a pivotal component of B cell receptor (BCR) signaling. The regulation of PLCγ2-dependent signaling functions by Tyr-phosphorylation is well characterized, however, the potential role of Ser/Thr phosphorylation events remains undefined. TRPM7 is the fusion of a Ser/Thr kinase with an ion channel, and an essential component of Mg(2+)-homeostasis regulation. Although the interaction between the C2 domain of several PLC-isozymes and TRPM7 is well established, previous studies have focused on the effect of PLC-activity on TRPM7. Here, we investigated whether Ser/Thr phosphorylation sites in the C2 domain of PLCγ2 could be identified using TRPM7-kinase. We show that TRPM7-kinase phosphorylates PLCγ2 in its C2-domain at position Ser1164 and in the linker region preceding the C2-domain at position Thr1045. Using a complementation approach in PLCγ2(-/-) DT40 cells, we found that the PLCγ2-S1164A mutant fully restores BCR mediated Ca(2+)-responses under standard growth conditions. However, under hypomagnesic conditions, PLCγ2-S1164A fails to reach Ca(2+)-levels seen in cells expressing PLCγ2 wildtype. These results suggest that Mg(2+)-sensitivity of the BCR signaling pathway may be regulated by Ser/Thr phosphorylation of PLCγ2.
Collapse
Affiliation(s)
- Francina Deason-Towne
- Department of Immunology, University of Colorado Denver, National Jewish Health, Denver, CO 80206, USA
| | | | | |
Collapse
|