1
|
Khamis T, Abdelkhalek A, Abdellatif H, Dwidar N, Said A, Ahmed R, Wagdy K, Elgarhy R, Eltahan R, Mohamed H, Said Amer E, Hanna M, Ragab T, Kishk A, Wael J, Sarhan E, Saweres L, Reda M, Elkomy S, Mohamed A, Samy A, Khafaga A, Shaker Y, Yehia H, Alanazi A, Alassiri M, Tîrziu E, Bucur IM, Arisha AH. BM-MSCs alleviate diabetic nephropathy in male rats by regulating ER stress, oxidative stress, inflammation, and apoptotic pathways. Front Pharmacol 2023; 14:1265230. [PMID: 38044936 PMCID: PMC10690373 DOI: 10.3389/fphar.2023.1265230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Diabetic nephropathy (DN), a chronic kidney disease, is a major cause of end-stage kidney disease worldwide. Mesenchymal stem cells (MSCs) have become a promising option to mitigate several diabetic complications. Methods: In this study, we evaluated the therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model of STZ-induced DN. After the confirmation of diabetes, rats were treated with BM-MSCs and sacrificed at week 12 after treatment. Results: Our results showed that STZ-induced DN rats had extensive histopathological changes, significant upregulation in mRNA expression of renal apoptotic markers, ER stress markers, inflammatory markers, fibronectin, and intermediate filament proteins, and reduction of positive immunostaining of PCNA and elevated P53 in kidney tissue compared to the control group. BM-MSC therapy significantly improved renal histopathological changes, reduced renal apoptosis, ER stress, inflammation, and intermediate filament proteins, as well as increased positive immunostaining of PCNA and reduced P53 in renal tissue compared to the STZ-induced DN group. Conclusion: In conclusion, our study indicates that BM-MSCs may have therapeutic potential for the treatment of DN and provide important insights into their potential use as a novel therapeutic approach for DN.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nourelden Dwidar
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ahmed Said
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rama Ahmed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Kerolos Wagdy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rowina Elgarhy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Rawan Eltahan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hisham Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman Said Amer
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Maria Hanna
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Tarek Ragab
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdallah Kishk
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Judy Wael
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Eyad Sarhan
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Linda Saweres
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mohamed Reda
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Sara Elkomy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdalah Mohamed
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Abdullah Samy
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Ateya Khafaga
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Youliana Shaker
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Hamdy Yehia
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alassiri
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of the National Guard—Health Affairs, Riyadh, Saudi Arabia
| | - Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Iulia Maria Bucur
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences, “King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Rodas-Junco BA, Villicaña C. Dental Pulp Stem Cells: Current Advances in Isolation, Expansion and Preservation. Tissue Eng Regen Med 2017; 14:333-347. [PMID: 30603490 DOI: 10.1007/s13770-017-0036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells with high self-renewal potential that have the ability to differentiate into several cell types. Thus, DPSCs have become a promising source of cells for several applications in regenerative medicine, tissue engineering, and stem cell therapy. Numerous methods have been reported for the isolation, expansion, and preservation of DPSCs. However, methods are diverse and do not follow specific rules or parameters, which can affect stem cell properties, adding more variation to experimental results. In this review, we compare and analyze current experimental evidence to propose some factors that can be useful to establish better methods or improved protocols to prolong the quality of DPSCs. In addition, we highlight other factors related to biological aspects of dental tissue source (e.g., age, genetic background) that should be considered before tooth selection. Although current methods have reached significant advances, optimization is still required to improve culture stability and its maintenance for an extended period without losing stem cell properties. In addition, there is still much that needs to be done toward clinical application due to the fact that most of DPSCs procedures are not currently following good manufacturing practices. The establishment of optimized general or tailored protocols will allow obtaining well-defined DPSCs cultures with specific properties, which enable more reproducible results that will be the basis to develop effective and safe therapies.
Collapse
Affiliation(s)
- Beatriz A Rodas-Junco
- CONACYT - Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, CP 97203 Mérida, Yucatán México
| | - Claudia Villicaña
- CONACYT - Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, CP 97203 Mérida, Yucatán México
| |
Collapse
|
3
|
Saeinasab M, Matin MM, Rassouli FB, Bahrami AR. Blastema cells derived from New Zealand white rabbit's pinna carry stemness properties as shown by differentiation into insulin producing, neural, and osteogenic lineages representing three embryonic germ layers. Cytotechnology 2016; 68:497-507. [PMID: 25371011 PMCID: PMC4846631 DOI: 10.1007/s10616-014-9802-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022] Open
Abstract
Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh B Rassouli
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, De Rosa A, Papaccio G, Tirino V, Laino L. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 2014; 42:761-8. [PMID: 24589847 DOI: 10.1016/j.jdent.2014.02.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Stem cells have the ability to rescue and/or repair injured tissue. In humans, it is possible to isolate different types of stem cells from the body. Among these, dental pulp stem cells (DPSCs) are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. In particular they represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. SOURCES An electronic search was conducted on PubMed databases and supplemented with a manual study of relevant references. RESULTS All research described in this review highlight that DPSCs are mesenchymal stem cells that could be used in clinical applications. Unfortunately, very few clinical trials have been reported. Major obstacles imposed on researchers are hindering the translation of potentially effective therapies to the clinic. Both researchers and regulatory institutions need to develop a new approach to this problem, drawing up a new policy for good manufacturing practice (GMP) procedures. We strongly suggest that only general rules be standardized rather than everything. Importantly, this would not have an effect on the safety of patients, but may very well affect the results, which cannot be identical for all patients, due to physiological diversity in the biology of each patient. Alternatively, it would be important to study the role of specific molecules that recruit endogenous stem cells for tissue regeneration. In this way, the clinical use of stem cells could be successfully developed. CONCLUSIONS DPSCs are mesenchymal stem cells that differentiate into different tissues, maintain their characteristics after cryopreservation, differentiate into bone-like tissues when loaded on scaffolds in animal models, and regenerate bone in human grafts. In summary, all data reported up to now should encourage the development of clinical procedures using DPSCs.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Anna Spina
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Pasqualina Naddeo
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Roberta Montella
- Department of Experimental Medicine, Second University of Naples, Italy
| | | | - Alfredo De Rosa
- Department of Odontology and Surgery, Second University of Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Second University of Naples, Italy.
| | - Virginia Tirino
- Department of Experimental Medicine, Second University of Naples, Italy.
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| |
Collapse
|