1
|
Ke Y, Ashraf U, Wang D, Hassan W, Zou Y, Qi Y, Zhou Y, Abbas F. Function of Anthocyanin and Chlorophyll Metabolic Pathways in the Floral Sepals Color Formation in Different Hydrangea Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:742. [PMID: 40094733 PMCID: PMC11901515 DOI: 10.3390/plants14050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Hydrangea (Hydrangea macrophylla) is distinguished by having sepals instead of real petals, a trait that facilitates color diversity. Floral color is largely predetermined by structural genes linked to anthocyanin production, but the genetic factors determining floral hue in this non-model plant remain unclear. Anthocyanin metabolites, transcriptome, and the CIEL*a*b* hue system were employed to elucidate the biochemical and molecular mechanisms of floral color formation in three hydrangea cultivars: 'DB' (deep blue), 'LB' (light blue), and 'GB' (green blue). UPLC-MS/MS identified 47 metabolites, with delphinidin, cyanidin, malvidin, petunidin, pelargonidin, and peonidin being prominent. Delphinidins were 90% of the primary component in 'DB'. The dataset identifies 51 and 31 DEGs associated with anthocyanin, flavonoid, and chlorophyll biosynthesis, with CHS, CHI, F3H, F3'5'H, DFR, ANS, BZ1, and 3AT displaying the highest expression in 'DB'. Notably, DFR (cluster-46471.3) exhibits high expression in 'DB' while being down-regulated in 'LB' and 'GB', correlating with higher anthocyanin levels in floral pigmentation. Comparative analyses of 'LB' vs. 'DB', 'DB' vs. 'GB', and 'LB' vs. 'GB' revealed 460, 490, and 444 differentially expressed TFs, respectively. WRKY, ERF, bHLH, NAC, and AP2/ERF showed the highest expression in 'DB', aligning with the color formation and key anthocyanin biosynthesis-related gene expression. The findings reveal the molecular mechanisms behind floral pigmentation variations and lay the groundwork for future hydrangea breeding programs.
Collapse
Affiliation(s)
- Yanguo Ke
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Economics and Management, Kunming University, Kunming 650208, China;
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Dongdong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Waseem Hassan
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60001, Pakistan;
| | - Ying Zou
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China; (Y.Z.); (Y.Q.)
| | - Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 650214, China; (Y.Z.); (Y.Q.)
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Haikou 571100, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 571100, China
| |
Collapse
|
2
|
Zou SC, Zhuo MG, Abbas F, Hu GB, Wang HC, Huang XM. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi. PLANT PHYSIOLOGY 2023; 192:1913-1927. [PMID: 36843134 PMCID: PMC10315271 DOI: 10.1093/plphys/kiad118] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Chlorophyll degradation and anthocyanin biosynthesis, which often occur almost synchronously during fruit ripening, are crucial for vibrant coloration of fruits. However, the interlink point between their regulatory pathways remains largely unknown. Here, 2 litchi (Litchi chinensis Sonn.) cultivars with distinctively different coloration patterns during ripening, i.e. slow-reddening/stay-green "Feizixiao" (FZX) vs rapid-reddening/degreening "Nuomici" (NMC), were selected as the materials to study the key factors determining coloration. Litchi chinensis STAY-GREEN (LcSGR) was confirmed as the critical gene in pericarp chlorophyll loss and chloroplast breakdown during fruit ripening, as LcSGR directly interacted with pheophorbide a oxygenase (PAO), a key enzyme in chlorophyll degradation via the PAO pathway. Litchi chinensis no apical meristem (NAM), Arabidopsis transcription activation factor 1/2, and cup-shaped cotyledon 2 (LcNAC002) was identified as a positive regulator in the coloration of litchi pericarp. The expression of LcNAC002 was significantly higher in NMC than in FZX. Virus-induced gene silencing of LcNAC002 significantly decreased the expression of LcSGR as well as L. chinensis MYELOBLASTOSIS1 (LcMYB1), and inhibited chlorophyll loss and anthocyanin accumulation. A dual-luciferase reporter assay revealed that LcNAC002 significantly activates the expression of both LcSGR and LcMYB1. Furthermore, yeast-one-hybrid and electrophoretic mobility shift assay results showed that LcNAC002 directly binds to the promoters of LcSGR and LcMYB1. These findings suggest that LcNAC002 is an important ripening-related transcription factor that interlinks chlorophyll degradation and anthocyanin biosynthesis by coactivating the expression of both LcSGR and LcMYB1.
Collapse
Affiliation(s)
- Shi-Cheng Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Mao-Gen Zhuo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Gui-Bing Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
- Department of Life Sciences and Technology, Yangtze Normal University, 16, Juxian Street, Fuling 408100, China
| | - Xu-Ming Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
3
|
Sanjaya A, Kazama Y, Ishii K, Muramatsu R, Kanamaru K, Ohbu S, Abe T, Fujiwara MT. An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana. PLANTS (BASEL, SWITZERLAND) 2021; 10:848. [PMID: 33922223 PMCID: PMC8145761 DOI: 10.3390/plants10050848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Ryohsuke Muramatsu
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan;
| | - Sumie Ohbu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Makoto T. Fujiwara
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| |
Collapse
|
4
|
Huang YY, Zhang LL, Ma XF, Zhao ZX, Zhao JH, Zhao JQ, Fan J, Li Y, He P, Xiao S, Wang WM. Multiple intramolecular trafficking signals in RESISTANCE TO POWDERY MILDEW 8.2 are engaged in activation of cell death and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:55-70. [PMID: 30552775 DOI: 10.1111/tpj.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The extrahaustorial membrane (EHM) is a host-derived interfacial membrane encasing the haustorium of powdery mildew fungi. Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically targeted to the EHM via two EHM-targeting signals. Here, we demonstrate that proper coordination between the trafficking forces engaged via the EHM-targeting signals and the nuclear localization signals (NLSs), as well as the nuclear export signals (NESs), in RPW8.2 is critical for the activation of cell death and defense. We show that in the absence of pathogens, RPW8.2 is partitioned between the cytoplasm and the nucleus, and turned over via both the 26S proteasome- and the vacuole-dependent pathways. Enhanced cytoplasmic localization of RPW8.2 by tagging it with a NES led to lethal cell death. By contrast, enhanced nuclear localization of RPW8.2 by adding an NLS to it resulted in resistance to powdery mildew. Whereas expression of the NES-containing C-terminal domain of RPW8.2 in the cytoplasm is sufficient to trigger cell death, no such cell death-inducing activity is found with RPW8.2 variants that contain the two EHM-targeting signals along with the NES-containing C-terminal domain. In addition, we present evidence for the involvement of a leaf senescence pathway in RPW8.2-mediated cell death and defense. Taken together, our data suggest that RPW8.2 is subject to adjustment by distinct and perhaps coordinated mechanisms for its localization and function via interaction with the multiple intramolecular trafficking signals, which should provide further insights into RPW8.2-activated, EHM-focused resistance against powdery mildew.
Collapse
Affiliation(s)
- Yan-Yan Huang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling-Li Zhang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian-Feng Ma
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Biosciences and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20850, USA
| | - Zhi-Xue Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Hao Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping He
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Shunyuan Xiao
- Institute of Biosciences and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20850, USA
| | - Wen-Ming Wang
- Center for Crop Disease and Insect Pests, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Wang L, Zhang XL, Wang L, Tian Y, Jia N, Chen S, Shi NB, Huang X, Zhou C, Yu Y, Zhang ZQ, Pang XQ. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. Sci Rep 2017; 7:16674. [PMID: 29192231 PMCID: PMC5709409 DOI: 10.1038/s41598-017-16851-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
WRKY transcription factors (TFs) play important roles in stress responses in planta. However, the function of WRKY TFs in the regulation of fruit ripening is unclear. Here, 23 tomato SlWRKYs that are similar to ethylene-responsive WRKY genes from other plant species, or show up-regulation during fruit ripening in previous genome-wide study, were selected, and their function in fruit ripening was investigated. Twelve SlWRKYs were found to be responsive to ethylene (SlER-WRKYs), showing expression patterns similar to those of genes related to fruit ripening. Eight SlER-WRKYs—SlWRKY16, 17, 22, 25, 31, 33, 53, and 54, detected in the nuclei—interacted with and activated the promoters of 4 genes related to color change: Pheophytin Pheophorbide Hydrolase (SlPPH), Pheophorbide a Oxygenase (SlPAO), Phytoene Synthase 1 (SlPSY1) and Phytoene Desaturase (SlPDS). Yeast two-hybrid and bimolecular fluorescence complement (BiFC) assays in Arabidopsis protoplasts indicated that protein interactions occurred between SlWRKY17 and SlRIN, SlERF2b or SlERF7; SlWRKY33 and SlERF7; SlWRKY54 and SlERF2b; and SlWRKY16 and SlWRKY17. Suppression of SlWRKY 16, 17, 53 or 54 by virus-induced gene silencing (VIGS) retarded the red coloration of the fruit. Our study provides comprehensive molecular evidence that WRKY TFs function in fruit ripening, particularly in color change, and are linked to the intricate regulatory network of other ripening regulators.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Xue-Lian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Yanan Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Shuzhen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning-Bo Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Xuemei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Chu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yaowen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China
| | - Zhao-Qi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China. .,College of Horticulture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China.
| | - Xue-Qun Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China. .,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Lin YP, Charng YY. Supraoptimal activity of CHLOROPHYLL DEPHYTYLASE1 results in an increase in tocopherol level in mature arabidopsis seeds. PLANT SIGNALING & BEHAVIOR 2017; 12:e1382797. [PMID: 28937840 PMCID: PMC5703258 DOI: 10.1080/15592324.2017.1382797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tocopherols are synthesized in photosynthetic organisms, playing a role in plant stress tolerance. Recent studies showed that the phytol moiety of tocopherols comes from the salvaged phytol chain during chlorophyll degradation. However, the enzyme(s) responsible for chlorophyll dephytylation remains unclear. Recently, we reported the identification and characterization of CHLOROPHYLL DEPHYTYLASE1 (CLD1) of Arabidopsis, suggesting its role in chlorophyll turnover at steady state. In this addendum to the report, we presented and discussed the results related to the function of CLD1 in tocopherol biosynthesis. The tocopherol levels in the mature seeds were not altered in the transgenic lines with reduced CLD1 expression but were moderately increased in the plants with supraoptimal CLD1 activity compared to wild type. These results suggest that manipulating CLD1 activity could affect tocopherol biosynthesis to a certain extent and that other dephytylating enzymes are sharing redundant function in contributing the phytol pool in plant cells.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, R.O.C.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, R.O.C.
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, R.O.C.
| | - Yee-yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, R.O.C.
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, R.O.C.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, R.O.C.
- Contact Yee-yung Charng Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C.
| |
Collapse
|