1
|
Kisrieva IS, Samenkova NF, Bolochenkov NA, Rusanov AL, Romashin DD, Solovyeva NA, Karuzina II, Lisitsa AV, Petushkova NA. Changes in cell motility proteins profile in HaCaT keratinocytes response to UVA exposure. BIOMEDITSINSKAIA KHIMIIA 2025; 71:146-157. [PMID: 40326021 DOI: 10.18097/pbmcr1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A comparative analysis of HaCaT keratinocyte proteins has been performed after cell exposure to subtoxic doses (5 J/cm² and 25 J/cm²) of ultraviolet A (UVA) radiation. 930 proteins were identified by two or more unique peptides. More than half of all identified proteins (54.5%) demonstrated at least 2-fold increase in their relative content after HaCaT keratinocyte irradiation with a cumulative dose of 5 J/cm², while a decrease in the relative content was found only for 4 proteins. Irradiation of keratinocytes with a cumulative dose of 25 J/cm² resulted in a decrease in the proportion of up-regulated proteins (43.0%) and an increase in the number of down-regulated proteins (84). Among the proteins with increased relative content in HaCaT keratinocytes the most proteins were associated with "cell motility" (GO: 0048870), as well as regulation of cell shape and size, cell morphogenesis, and skin remodeling.
Collapse
Affiliation(s)
| | | | | | - A L Rusanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Romashin
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
2
|
Gęgotek A, Jarocka-Karpowicz I, Atalay Ekiner S, Skrzydlewska E. The Anti-Inflammatory Action of Cannabigerol Accompanied by the Antioxidant Effect of 3-O-ethyl Ascorbic Acid in UVA-Irradiated Human Keratinocytes. J Pharmacol Exp Ther 2023; 387:170-179. [PMID: 37652708 DOI: 10.1124/jpet.123.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Excessive daily exposure of human skin to natural UVA radiation leads to impaired redox homeostasis in epidermal keratinocytes, resulting in changes in their proteome. Commonly used antioxidants usually exhibit protection in a narrowed range, which makes it necessary to combine their effects. Therefore, the aim of this study was to analyze the protective effect of cannabigerol (CBG) and 3-O-ethyl ascorbic acid (EAA), used separately and together, on the proteomic profile of UVA irradiated keratinocytes. Proteomic analysis with the use of the Q Exactive HF mass spectrometer, combined with biostatistic tests, performed on UVA-irradiated keratinocytes indicated enhanced and lowered expression of 186 and 160 proteins, respectively. CBG treatment after UVA irradiation reduced these numbers to 110 upregulated and 49 downregulated proteins, while EAA eliminated all these changes. CBG completely eliminated the UV-induced effect on the expression of pro-inflammatory proteins and significantly increased the level of proteins responsible for cellular locomotion. On the other hand, CBG reduced the level of UVA-induced 4-hydroxynonenal protein adducts fivefold, whereas EAA had no effect on this modification. At the same time, CBG and EAA did not modify the expression/structure of proteins in relation to the nonirradiated control keratinocytes in the case of an unaccompanied use or slightly modified the protein profile when used in a mixture. The combined protective effects of CBG on protein structure and EAA on protein expression profile allowed us to obtain a wider protection of cells against UVA radiation, compared with when the compounds were used alone. SIGNIFICANCE STATEMENT: Proteomic analysis of human skin cells allows to conclude that 3-O-ethyl ascorbic acid eliminates UVA-induced changes in the expression of keratinocyte proteins, while cannabigerol significantly reduces 4-hydroxynonenal protein adducts. The combined protective effects of cannabigerol on protein structure and of 3-O-ethyl ascorbic acid on protein expression profile allowed to obtain a wider protection of cells against UVA radiation.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
3
|
Zhao Q, Chen Y, Qu L. Combined Transcriptomic and Proteomic Analyses Reveal the Different Responses to UVA and UVB Radiation in Human Keratinocytes. Photochem Photobiol 2023; 99:137-152. [PMID: 35638308 DOI: 10.1111/php.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023]
Abstract
Ultraviolet (UV) radiation from sunlight is a major risk factor for many cutaneous pathologies including skin aging and cancers. Despite decades of research, the different responses to UVA and UVB in human keratinocytes have not been systemically investigated. Here, we performed multi-omics to characterize the common and different changes in gene transcription and protein expression after exposure to UVB and UVA, respectively. Keratinocyte cells, treated with or without UV, were analyzed by TMT-labeled MS/MS spectra and RNA-sequencing. A common set of genes/proteins was found to be impacted by both UVA and UVB and the other differential genes/proteins showed wavelength specificity. The common set of genes/proteins were mainly involved in keratinization, lipid metabolic processes and stimulus response. The UVB specifically responsive genes/proteins were mainly related to RNA processing, gene silencing regulation and cytoskeleton organization. The UVA specifically responsive genes/proteins were mainly involved in vesicle-mediated transport and oxygen-containing compound response. Meanwhile, the hub differential genes/proteins in each set were identified by protein-protein interaction networks and cluster analysis. This work provided a global view of the similar and differential molecular mechanisms of UVB- and UVA-induced cell damage in keratinocytes, which would be beneficial for further studies in the prevention or treatment of UV-related pathologies.
Collapse
Affiliation(s)
- Qinqin Zhao
- Characteristic Plants Research and Development Center, Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, China
| | - Yueyue Chen
- Characteristic Plants Research and Development Center, Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, China.,Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
| | - Liping Qu
- Characteristic Plants Research and Development Center, Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, China.,Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China.,Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, China
| |
Collapse
|
4
|
Senevirathna JDM, Yonezawa R, Saka T, Igarashi Y, Funasaka N, Yoshitake K, Kinoshita S, Asakawa S. Selection of a reference gene for studies on lipid-related aquatic adaptations of toothed whales ( Grampus griseus). Ecol Evol 2021; 11:17142-17159. [PMID: 34938499 PMCID: PMC8668803 DOI: 10.1002/ece3.8354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022] Open
Abstract
Toothed whales are one group of marine mammals that has developed special adaptations, such as echolocation for predation, to successfully live in a dynamic aquatic environment. Their fat metabolism may differ from that of other mammals because toothed whales have acoustic fats. Gene expression in the metabolic pathways of animals can change with respect to their evolution and environment. A real-time quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for studying the relative expressions of genes. However, since the accuracy of RT-qPCR data is totally dependent on the reference gene, the selection of the reference gene is an essential step. In this study, 10 candidate reference genes (ZC3H10, FTL, LGALS1, RPL27, GAPDH, FTH1, DCN, TCTP, NDUS5, and UBIM) were initially tested for amplification efficiency using RT-qPCR. After excluding DCN, the remaining nine genes, which are nearly 100% efficient, were selected for the gene stability analysis. Stable reference genes across eight different fat tissue, liver, and muscle samples from Grampus griseus were identified by four algorithms, which were provided in Genorm, NormFinder, BestKeeper, and Delta CT. Finally, a RefFinder comprehensive ranking was performed based on the stability values, and the nine genes were ranked as follows: LGALS1 > FTL > GAPDH > ZC3H10 > FTH1 > NDUS5 > TCTP > RPL27 > UBIM. The LGALS1 and FTL genes were identified as the most stable novel reference genes. The third-ranked gene, GAPDH, is a well-known housekeeping gene for mammals. Ultimately, we suggest the use of LGALS1 as a reliable novel reference gene for genomics studies on the lipid-related aquatic adaptations of toothed whales.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and BiotechnologyDepartment of Aquatic BioscienceGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Department of Animal ScienceFaculty of Animal Science and Export AgricultureUva Wellassa UniversityBadullaSri Lanka
| | - Ryo Yonezawa
- Laboratory of Aquatic Molecular Biology and BiotechnologyDepartment of Aquatic BioscienceGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Taiki Saka
- Laboratory of Aquatic Molecular Biology and BiotechnologyDepartment of Aquatic BioscienceGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yoji Igarashi
- Department of Life Sciences and ChemistryGraduate School of BioresourcesMie UniversityMieJapan
| | - Noriko Funasaka
- Department of Life SciencesGraduate School of BioresourcesMie UniversityMieJapan
| | - Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and BiotechnologyDepartment of Aquatic BioscienceGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Shigeharu Kinoshita
- Laboratory of Aquatic Molecular Biology and BiotechnologyDepartment of Aquatic BioscienceGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and BiotechnologyDepartment of Aquatic BioscienceGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Kong YH, Xu SP. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med 2020; 46:67-82. [PMID: 32377697 PMCID: PMC7255487 DOI: 10.3892/ijmm.2020.4589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/04/2019] [Indexed: 12/13/2022] Open
Abstract
Extensive solar ultraviolet B (UVB) exposure of the skin results in inflammation and oxidative stress, which may contribute to skin cancer. Natural products have attracted attention for their role in the effective treatment of cutaneous neoplasia. Juglanin is purified from the crude extract of Polygonum aviculare, exhibiting anti-oxidant, anti-inflammatory and anti-cancer activities. Jugalanin was used in the current study to investigate whether it may ameliorate UVB irradiation-induced skin damage by reducing oxidative stress and suppressing the inflammatory response in vivo and in vitro. In the present study, hairless mice were exposed to UVB irradiation in the absence or presence of juglanin administration for 10 weeks. The findings indicated that juglanin inhibited UVB-induced hyperplasia and decreased infiltration in the skin of mice. UVB exposure-induced oxidative stress in mice and cells was inhibited by juglanin via enhancing anti-oxidant activity. Additionally, juglanin markedly reduced pro-inflammatory cytokine release, including cyclic oxidase 2, interleukin-1β and tumor necrosis factor-α, triggered by chronic UVB irradiation. Juglanin-ameliorated skin damage was associated with its suppression of mitogen activated protein kinases (MAPKs), including p38, extracellular signal regulated 1/2, and c-Jun N-terminal kinases, as well as nuclear factor (NF)-κB signaling pathways, which was dependent on nuclear factor-E2-related factor 2 (Nrf2)-modulated reactive oxygen species generation. Taken together, these data indicate that juglanin protected against UVB-triggered oxidative stress and inflammatory responses by suppressing MAPK and NF-κB activation via enhancing Nrf2 activity.
Collapse
Affiliation(s)
- Ying-Hui Kong
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Su-Ping Xu
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
6
|
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M, Zurac S. Inflammation: A key process in skin tumorigenesis. Oncol Lett 2019; 17:4068-4084. [PMID: 30944600 PMCID: PMC6444305 DOI: 10.3892/ol.2018.9735] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
The extremely delicate shift from an inflammatory process to tumorigenesis is a field of major scientific interest. While the inflammation induced by environmental agents has well known underlying mechanisms, less is known concerning the oncogenic changes that follow an inflammatory chronic status in the tissue microenvironment that can lead to pro-tumorigenic processes. Regardless of the origin of the environmental factors, the maintenance of an inflammatory microenvironment is a clear condition that favors tumorigenesis. Inflammation sustains the proliferation and survival of malignant transformed cells, can promote angiogenesis and metastatic processes, can negatively regulate the antitumoral adaptive and innate immune responses and may alter the efficacy of therapeutic agents. There is an abundance of studies focusing on molecular pathways that trigger inflammation-mediated tumorigenesis, and these data have revealed a series of biomarkers that can improve the diagnosis and prognosis in oncology. In skin there is a clear connection between tissue destruction, inflammation and tumor onset. Inflammation is a self-limiting process in normal physiological conditions, while tumor is a constitutive process activating new pro-tumor mechanisms. Among skin cancers, the most commonly diagnosed skin cancers, squamous cell carcinoma and basal cell carcinoma (BCC) have important inflammatory components. The most aggressive skin cancer, melanoma, is extensively research in regards to the new context of novel developed immune-therapies. In skin cancers, inflammatory markers can find their place in the biomarker set for improvement of diagnosis and prognosis.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Dumitru
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Surcel
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Dyer JM, Haines SR, Thomas A, Wang W, Walls RJ, Clerens S, Harland DP. Redox proteomic evaluation of oxidative modification and recovery in a 3D reconstituted human skin tissue model exposed to UVB. Int J Cosmet Sci 2016; 39:197-205. [DOI: 10.1111/ics.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023]
Affiliation(s)
- J. M. Dyer
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
- Riddet Institute, Massey University; Private Bag 11222 Palmerston North 4442 New Zealand
- Biomolecular Interaction Centre; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
- Wine, Food & Molecular Biosciences; PO Box 85084, Lincoln University, Lincoln 7647; New Zealand
| | - S. R. Haines
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
| | - A. Thomas
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
| | - W. Wang
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
| | - R. J. Walls
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
| | - S. Clerens
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
- Biomolecular Interaction Centre; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - D. P. Harland
- Food & Bio-Based Products; AgResearch Ltd; Private Bag 4749, Christchurch 8140 New Zealand
| |
Collapse
|
8
|
Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, Caruntu C. From Normal Skin to Squamous Cell Carcinoma: A Quest for Novel Biomarkers. DISEASE MARKERS 2016; 2016:4517492. [PMID: 27642215 PMCID: PMC5011506 DOI: 10.1155/2016/4517492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Squamous cells carcinoma (SCC) is the second most frequent of the keratinocyte-derived malignancies after basal cell carcinoma and is associated with a significant psychosocial and economic burden for both the patient himself and society. Reported risk factors for the malignant transformation of keratinocytes and development of SCC include ultraviolet light exposure, followed by chronic scarring and inflammation, exposure to chemical compounds (arsenic, insecticides, and pesticides), and immune-suppression. Despite various available treatment methods and recent advances in noninvasive or minimal invasive diagnostic techniques, the risk recurrence and metastasis are far from being negligible, even in patients with negative histological margins and lymph nodes. Analyzing normal, dysplastic, and malignant keratinocyte proteome holds special promise for novel biomarker discovery in SCC that could be used in the future for early detection, risk assessment, tumor monitoring, and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Ghita
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Liliana Moraru
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, Bucharest, Romania
| | - Suzana Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandra Ion
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Constantin Caruntu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
9
|
The danger model approach to the pathogenesis of the rheumatic diseases. J Immunol Res 2015; 2015:506089. [PMID: 25973436 PMCID: PMC4417989 DOI: 10.1155/2015/506089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
The danger model was proposed by Polly Matzinger as complement to the traditional self-non-self- (SNS-) model to explain the immunoreactivity. The danger model proposes a central role of the tissular cells' discomfort as an element to prime the immune response processes in opposition to the traditional SNS-model where foreignness is a prerequisite. However recent insights in the proteomics of diverse tissular cells have revealed that under stressful conditions they have a significant potential to initiate, coordinate, and perpetuate autoimmune processes, in many cases, ruling over the adaptive immune response cells; this ruling potential can also be confirmed by observations in several genetically manipulated animal models. Here, we review the pathogenesis of rheumatic diseases such as systemic lupus erythematous, rheumatoid arthritis, spondyloarthritis including ankylosing spondylitis, psoriasis, and Crohn's disease and provide realistic approaches based on the logic of the danger model. We assume that tissular dysfunction is a prerequisite for chronic autoimmunity and propose two genetically conferred hypothetical roles for the tissular cells causing the disease: (A) the Impaired cell and (B) the paranoid cell. Both roles are not mutually exclusive. Some examples in human disease and in animal models are provided based on current evidence.
Collapse
|
10
|
Site-directed Mutagenesis (Y52E) of POLH Affects Its Ability to Bypass Ultraviolet-induced DNA Lesions in HaCaT Cells. W INDIAN MED J 2014; 63:307-11. [PMID: 25429473 DOI: 10.7727/wimj.2014.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
DNA polymerase eta (Pol η) is one of several Y family trans-lesion synthesis (TLS) polymerases in humans and plays an important role in maintaining genome stability after ultraviolet (UV) irradiation, as it carries out error-free TLS at sites of UV-induced lesions. We performed site-directed mutagenesis of human polymerase η gene (Y52E), confirmed by sequencing, then cloned wild-type mutant and POLH genes into the eukaryotic vector pEGFP-N1. After transfecting wild-type and mutant plasmids into HaCaT keratinocytes, we tested for UV induced cis-syn cyclobutane pyrimidine dimer (CPDs) DNA lesions, and analysed cellular viability by MTT cell proliferation assay. The results showed that CPD levels decreased both with empty vector control (EVC), wild-type POLH, and Y52E-POLH over 48 hours post UV irradiation with 0.1 mW/cm2 UVB for 15 minutes (p = 0.025). The rate in CPD reduction of mutant POLH was less than in wild-type POLH. Cell viabilities of all three groups increased over 48 hours after UV irradiation, with the increased rate in the wild-type being higher than for mutant protein (p = 0.046). We conclude that Y52E POLH has reduced capacity to bypass UV induced DNA lesions in HaCaT cells.
Collapse
|
11
|
Fontes FL, Pinheiro DML, Oliveira AHSD, Oliveira RKDM, Lajus TBP, Agnez-Lima LF. Role of DNA repair in host immune response and inflammation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:246-57. [PMID: 25795123 DOI: 10.1016/j.mrrev.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
Abstract
In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Daniele Maria Lopes Pinheiro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil; Liga Contra o Cancer, Natal, RN, Brazil.
| | | |
Collapse
|
12
|
Zabuga AV, Kamrath MZ, Boyarkin OV, Rizzo TR. Fragmentation mechanism of UV-excited peptides in the gas phase. J Chem Phys 2014; 141:154309. [DOI: 10.1063/1.4897158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aleksandra V. Zabuga
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Z. Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Cha HJ, Kim OY, Lee GT, Lee KS, Lee JH, Park IC, Lee SJ, Kim YR, Ahn KJ, An IS, An S, Bae S. Identification of ultraviolet B radiation‑induced microRNAs in normal human dermal papilla cells. Mol Med Rep 2014; 10:1663-70. [PMID: 25069581 PMCID: PMC4148374 DOI: 10.3892/mmr.2014.2418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
Ultraviolet (UV) radiation impairs intracellular functions by directly damaging DNA and by indirectly generating reactive oxygen species (ROS), which induce cell cycle arrest and apoptosis. UV radiation can also alter gene expression profiles, including those of mRNA and microRNA (miRNA). The effects of UV radiation on cellular functions and gene expression have been widely documented in human skin cells such as keratinocytes, melanocytes and dermal fibroblasts, but the effect it has on other types of skin cell such as dermal papilla cells, which are crucial in the induction of hair follicle growth, remains unknown. In the current study, the effect of UV radiation on physiological changes and miRNA-based expression profiles in normal human dermal papilla cells (nHDPs) was investigated. UVB radiation of ≥50 mJ/cm2 displayed high cytotoxicity and apoptosis in a dose-dependent manner. In addition, ROS generation was exhibited in UVB-irradiated nHDPs. Furthermore, using miRNA microarray analysis, it was demonstrated that the expression profiles of 42 miRNAs in UVB-irradiated nHDPs were significantly altered compared with those in the controls (35 upregulated and 7 downregulated). The biological functions of the differentially expressed miRNAs were studied with gene ontology analysis to identify their putative target mRNAs, and were demonstrated to be involved in cell survival- and death-related functions. Overall, the results of the present study provide evidence that miRNA-based cellular mechanisms may be involved in the UVB-induced cellular response in nHDPs.
Collapse
Affiliation(s)
- Hwa Jun Cha
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Ok-Yeon Kim
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Gang Tai Lee
- Coreana Cosmetics Co., Ltd., Cheonan‑si, Chungcheongnam‑do 330‑833, Republic of Korea
| | - Kwang Sik Lee
- Coreana Cosmetics Co., Ltd., Cheonan‑si, Chungcheongnam‑do 330‑833, Republic of Korea
| | - Jae Ho Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Kwandong University, College of Medicine, Seoul 100‑380, Republic of Korea
| | - In-Chul Park
- Laboratory of Functional Genomics, Korea Institute of Radiological and Medical Sciences, Seoul 139‑706, Republic of Korea
| | - Su-Jae Lee
- Department of Chemistry, Hanyang University, Seoul 133‑791, Republic of Korea
| | - Yu Ri Kim
- Department of Dermatology, Konkuk University School of Medicine, Seoul 143‑701, Republic of Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul 143‑701, Republic of Korea
| | - In-Sook An
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Sungkwan An
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Seunghee Bae
- Molecular‑Targeted Drug Research Center, Konkuk University, Seoul 143‑701, Republic of Korea
| |
Collapse
|
14
|
Leszczynski D. Radiation proteomics: A brief overview. Proteomics 2014; 14:481-8. [DOI: 10.1002/pmic.201300390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority; Helsinki Finland
- Department of Biosciences and Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
15
|
Azimzadeh O, Atkinson MJ, Tapio S. Proteomics in radiation research: present status and future perspectives. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:31-8. [PMID: 24105449 DOI: 10.1007/s00411-013-0495-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/17/2013] [Indexed: 05/23/2023]
Abstract
Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | |
Collapse
|
16
|
Emanuele E. Challenging the central dogma of skin photobiology: are proteins more important than DNA? J Invest Dermatol 2014; 134:2052-2053. [PMID: 24492242 DOI: 10.1038/jid.2014.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Bulman A, Neagu M, Constantin C. Immunomics in Skin Cancer - Improvement in Diagnosis, Prognosis and Therapy Monitoring. CURR PROTEOMICS 2013; 10:202-217. [PMID: 24228023 PMCID: PMC3821382 DOI: 10.2174/1570164611310030003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Abstract
This review will focus on the elements of the skin’s immune system, immune cells and/or non-immune cells that support immune mechanisms, molecules with immune origin and/or immune functions that are involved in skin
carcinogenesis. All these immune elements are compulsory in the development of skin tumors and/or sustainability of the neoplastic process. In this light, recent data gathered in this review will acknowledge all immune elements that contribute to skin tumorigenesis; moreover, they can serve as immune biomarkers. These immune markers can contribute to the
diagnostic improvement, prognosis forecast, therapy monitoring, and even personalized therapeutical approach in skin cancer. Immune processes that sustain tumorigenesis in non-melanoma and melanoma skin cancers are described in the framework of recent data.
Collapse
|