1
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Galli G, Zonefrati R, Iantomasi T, Margheriti L, Franchi A, Beltrami G, Masi L, Moro A, Brandi ML. Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation. Genes (Basel) 2025; 16:263. [PMID: 40149415 PMCID: PMC11942111 DOI: 10.3390/genes16030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. METHODS A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). RESULTS These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. CONCLUSIONS The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Francesca Marini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Roberto Zonefrati
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, Azienda Ospedaliero, Universitaria Careggi, 50134 Firenze, Italy;
| | - Laura Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU Careggi, 50139 Florence, Italy;
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| |
Collapse
|
2
|
Li G, Li Y, Liang C, Luo J. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Brief Funct Genomics 2024; 23:418-428. [PMID: 38061910 DOI: 10.1093/bfgp/elad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 07/22/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules that are widely found in cells. Recent studies have revealed the significant role played by circRNAs in human health and disease treatment. Several restrictions are encountered because forecasting prospective circRNAs and medication sensitivity connections through biological research is not only time-consuming and expensive but also incredibly ineffective. Consequently, the development of a novel computational method that enhances both the efficiency and accuracy of predicting the associations between circRNAs and drug sensitivities is urgently needed. Here, we present DGATCCDA, a computational method based on deep learning, for circRNA-drug sensitivity association identification. In DGATCCDA, we first construct multimodal networks from the original feature information of circRNAs and drugs. After that, we adopt DeepWalk-aware graph attention networks to sufficiently extract feature information from the multimodal networks to obtain the embedding representation of nodes. Specifically, we combine DeepWalk and graph attention network to form DeepWalk-aware graph attention networks, which can effectively capture the global and local information of graph structures. The features extracted from the multimodal networks are fused by layer attention, and eventually, the inner product approach is used to construct the association matrix of circRNAs and drugs for prediction. The ultimate experimental results obtained under 5-fold cross-validation settings show that the average area under the receiver operating characteristic curve value of DGATCCDA reaches 91.18%, which is better than those of the five current state-of-the-art calculation methods. We further guide a case study, and the excellent obtained results also show that DGATCCDA is an effective computational method for exploring latent circRNA-drug sensitivity associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Youjun Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
3
|
Darvish M. LncRNA FTH1P3: A New Biomarker for Cancer-Related Therapeutic Development. Curr Mol Med 2024; 24:576-584. [PMID: 37491858 DOI: 10.2174/1566524023666230724141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Cancer is a persistent and urgent health problem that affects the entire world. Not long ago, regulatory biomolecules referred to as long noncoding RNAs (lncRNAs) might have value for their innate abundance and stability. These single-stranded RNAs potentially interfere with several physiological and biochemical cellular processes involved in many human pathological situations, particularly cancer diseases. Ferritin heavy chain1 pseudogene 3 (FTH1P3), a lncRNA that is ubiquitously transcribed and belongs to the ferritin heavy chain (FHC) family, represents a novel class of lncRNAs primarily found in oral squamous cell carcinoma. Further research has shown that FTH1P3 is involved in other malignancies such as uveal melanoma, glioma, esophageal squamous cell carcinoma, non-small cell lung cancer, breast cancer, laryngeal squamous cell carcinoma, and cervical cancer. Accordingly, FTH1P3 significantly enhances cancer symptoms, including cell proliferation, invasion, metastasis, chemoresistance, and inhibition of apoptosis through many specific mechanisms. Notably, the clinical data significantly demonstrated the association of FTH1P3 overexpression with poor prognosis and poor overall survival within the examined samples. Here, we summarize all the research published to date (13 articles) on FTH1P3, focusing on the biological function underlying the regulatory mechanism and its possible clinical relevance.
Collapse
Affiliation(s)
- Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Zhan DT, Xian HC. Exploring the regulatory role of lncRNA in cancer immunity. Front Oncol 2023; 13:1191913. [PMID: 37637063 PMCID: PMC10448763 DOI: 10.3389/fonc.2023.1191913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Imbalanced immune homeostasis in cancer microenvironment is a hallmark of cancer. Increasing evidence demonstrated that long non-coding RNAs (lncRNAs) have emerged as key regulatory molecules in directly blocking the cancer immunity cycle, apart from activating negative regulatory pathways for restraining tumor immunity. lncRNAs reshape the tumor microenvironment via the recruitment and activation of innate and adaptive lymphoid cells. In this review, we summarized the versatile mechanisms of lncRNAs implicated in cancer immunity cycle, including the inhibition of antitumor T cell activation, blockade of effector T cell recruitment, disruption of T cell homing, recruitment of immunosuppressive cells, and inducing an imbalance between antitumor effector cells (cytotoxic T lymphocytes, M1 macrophages, and T helper type 1 cells) versus immunosuppressive cells (M2 macrophages, T helper type 2 cells, myeloid derived suppressor cells, and regulatory T cells) that infiltrate in the tumor. As such, we would highlight the potential of lncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Dan-ting Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Hong-chun Xian
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Liao B, Dong S, Xu Z, Gao F, Zhang S, Liang R. MiR-19b-3p regulated by BC002059/ABHD10 axis promotes cell apoptosis in myocardial infarction. Biol Direct 2022; 17:20. [PMID: 35978367 PMCID: PMC9386969 DOI: 10.1186/s13062-022-00333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, microRNAs (miRNAs), have been extensively investigated in diseases. The upregulated expression of miR-19b-3p has been validated in patients with hypertrophic cardiomyopathy. Nonetheless, it regulatory mechanism in myocardial infarction (MI) is still unclear. PURPOSE This research aimed to investigate the role and molecular regulation mechanism of miR-19b-3p in MI. METHODS QRT-PCR and western blot assays measured RNA and protein expression. Cell apoptosis were tested by flow cytometry and TUNEL assays. Cell viability was measured by trypan blue staining method. RIP and luciferase report assays examined gene interaction. The assays were performed under hypoxia condition. RESULTS MiR-19b-3p was highly expressed in myocardial cell line H9C2, primary cardiomyocytes, and tissues from MI mouse model. MiR-19b-3p inhibition suppressed the apoptosis of cardiomyocytes. BC002059 could up-regulate ABHD10 through sequestering miR-19b-3p. BC002059 upregulation was observed to repress cell apoptosis. Rescue experiments demonstrated that miR-19b-3p overexpression abrogated the suppressive impact of BC002059 on the apoptosis of MI cells, and infarct size, area at risk as well as CK-MB and LDH release of MI mouse model tissues, which was further abolished via ABHD10 increment. CONCLUSION MiR-19b-3p regulated by BC002059/ABHD10 axis promotes cell apoptosis in MI, which might provide a novel perspective for MI alleviation research.
Collapse
Affiliation(s)
- Bihong Liao
- Department of Cardiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Shaohong Dong
- Department of Cardiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China.
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China.
| | - Fei Gao
- Department of Cardiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Suihao Zhang
- Department of Cardiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Ruijuan Liang
- Department of Cardiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| |
Collapse
|
6
|
Asadi MR, Moslehian MS, Sabaie H, Sharifi-Bonab M, Hakimi P, Hussen BM, Taheri M, Rakhshan A, Rezazadeh M. CircRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. Front Oncol 2022; 12:910470. [PMID: 35865469 PMCID: PMC9294360 DOI: 10.3389/fonc.2022.910470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoblastoma (RB) is one of the most common childhood cancers caused by RB gene mutations (tumor suppressor gene in various patients). A better understanding of molecular pathways and the development of new diagnostic approaches may lead to better treatment for RB patients. The number of studies on ceRNA axes is increasing, emphasizing the significance of these axes in RB. Circular RNAs (circRNAs) play a vital role in competing endogenous RNA (ceRNA) regulatory axes by sponging microRNAs and regulating gene expression. Because of the broadness of ceRNA interaction networks, they may assist in investigating treatment targets in RB. This study conducted a systematic scoping review to evaluate verified loops of ceRNA in RB, focusing on the ceRNA axis and its relationship to circRNAs. This scoping review was carried out using a six-step strategy and the Prisma guideline, and it involved systematically searching the publications of seven databases. Out of 363 records, sixteen articles were entirely consistent with the defined inclusion criteria and were summarized in the relevant table. The majority of the studies focused on the circRNAs circ_0000527, circ_0000034, and circTET1, with approximately two-fifths of the studies focusing on a single circRNA. Understanding the many features of this regulatory structure may help elucidate RB's unknown causative factors and provide novel molecular potential therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Azadeh Rakhshan
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| |
Collapse
|
7
|
Jiang B, Tian M, Li G, Sadula A, Xiu D, Yuan C, Bing Y. circEPS15 Overexpression in Hepatocellular Carcinoma Modulates Tumor Invasion and Migration. Front Genet 2022; 13:804848. [PMID: 35211158 PMCID: PMC8861492 DOI: 10.3389/fgene.2022.804848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Recent evidence has shown that circular RNAs (circRNAs) play important roles in tissue development, gene transcription, signal regulation and tumorigenesis. However, whether circRNAs are involved in HCC progression and encode functional proteins remains largely unknown. In the present study, we aimed to explore the function and molecular mechanism of circRNAs in HCC. First, many circRNAs were found to be differentially expressed in HCC samples and paired adjacent normal liver tissues. The validation of dysregulated circRNAs by qRT-PCR revealed that circEPS15 expression was downregulated in HCC tissues, and the survival curves showed that low circEPS15 levels were associated with poor overall survival in HCC patients. Then, the overexpression of circEPS15 suppressed tumor cell invasion and migration by inhibiting the TJP1/CDH2/VIM signaling pathway and retarded cell cycle progression, which was confirmed by the Transwell culture system, wound healing assays, flow cytometry and western blot assays. After that, the spanning junction open reading frame in circEPS15 driven by IRES was shown to encode a novel protein, which was verified by western blotting with full-length, mutated, and truncated sequences of circEPS15 with a FLAG tag. Moreover, ceRNA analysis and qRT-PCR results suggest a possible circRNA (circEPS15)-miRNA-mRNA network in HCC. Collectively, our study reveals that endogenous circEPS15 plays a novel role in repressing HCC through the ceRNA network and encodes a functional protein.
Collapse
Affiliation(s)
- Bin Jiang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Maolin Tian
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | | | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Yuntao Bing
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Lv C, Wan Q, Shen C, Wu H, Zhou B, Wang W. Long non‑coding RNA ZSCAN16‑AS1 promotes the malignant properties of hepatocellular carcinoma by decoying microRNA‑451a and consequently increasing ATF2 expression. Mol Med Rep 2021; 24:780. [PMID: 34498716 PMCID: PMC8436228 DOI: 10.3892/mmr.2021.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/26/2021] [Indexed: 11/05/2022] Open
Abstract
The importance of long noncoding RNAs (lncRNAs) in the oncogenicity of hepatocellular carcinoma (HCC) has been widely studied. However, the detailed functions of ZSCAN16 antisense RNA 1 (ZSCAN16‑AS1) have seldom been explored in HCC until the present study. In the present study, experiments were performed to clarify whether ZSCAN16‑AS1 is implicated in the oncogenesis and progression of HCC and to explore the possible underlying mechanisms. ZSCAN16‑AS1 expression was analyzed using reverse transcription‑quantitative PCR. The effects of ZSCAN16‑AS1 on the biological behavior of HCC cells were demonstrated by functional experiments. The direct binding capacity of ZSCAN16‑AS1 with microRNA‑451a (miR‑451a) was indicated by the luciferase reporter assay and RNA immunoprecipitation. The high expression of ZSCAN16‑AS1 was confirmed in HCC by The Cancer Genome Atlas database and the cohort of the present study. Survival data revealed that patients with a high ZSCAN16‑AS1 level had worse prognosis compared with those with a low ZSCAN16‑AS1 level. Following ZSCAN16‑AS1 knockdown, HCC cell proliferation, migration and invasion were curbed, whereas cell apoptosis was promoted in vitro. The absence of ZSCAN16‑AS1 restricted tumor growth of HCC cells in vivo. Mechanistically, ZSCAN16‑AS1 acted as a competing endogenous RNA by decoying miR‑451a in HCC cells. Furthermore, activating transcription factor 2 (ATF2), a direct target of miR‑451a, was under the regulation of ZSCAN16‑AS1, which was exerted by sequestering miR‑451a. In addition, miR‑451a knockdown or ATF2 resumption reversed the proliferation suppression, apoptosis promotion and migration and invasion inhibition triggered by ZSCAN16‑AS1 silencing. In conclusion, ZSCAN16‑AS1, a pro‑oncogenic lncRNA, aggravated the malignancy of HCC by controlling the miR‑451a/ATF2 axis. An understanding of the competing endogenous RNA network of ZSCAN16‑AS1/miR‑451a/ATF2 in HCC might be instrumental in the development of attractive targets for molecular therapy.
Collapse
Affiliation(s)
- Chaohua Lv
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Tongliang, Chongqing 402575, P.R. China
| | - Qingsong Wan
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Tongliang, Chongqing 402575, P.R. China
| | - Chengxiang Shen
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Tongliang, Chongqing 402575, P.R. China
| | - Hongsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Tongliang, Chongqing 402575, P.R. China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Tongliang, Chongqing 402575, P.R. China
| | - Weiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The People's Hospital of Tongliang, Chongqing 402575, P.R. China
| |
Collapse
|
9
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
10
|
Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22158113. [PMID: 34360879 PMCID: PMC8348144 DOI: 10.3390/ijms22158113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975611855; Fax: +886-47227116
| |
Collapse
|
11
|
Abdul-Maksoud RS, Rashad NM, Elsayed WSH, Elsayed RS, Sherif MM, Abbas A, El Shabrawy M. The diagnostic significance of circulating lncRNA ADAMTS9-AS2 tumor biomarker in non-small cell lung cancer among the Egyptian population. J Gene Med 2021; 23:e3381. [PMID: 34312940 DOI: 10.1002/jgm.3381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Long non-coding RNA ADAM metallopeptidase with thrombospondin type 1 motif, 9 antisense RNA 2 (ADAMTS9-AS2) was recognized as a novel tumor suppressor and plays an important role in the initiation and progression of malignant behavior in human cancers, although its plasma expression and clinical value in patients with non-small cell lung cancer (NSCLC) remain unknown. We aimed to analyze the diagnostic role of ADAMTS9-AS2 and cytokeratin 19 fragmentation antigen (CYFRA 21-1) in NSCLC. METHODS The present study included 80 control subjects, 80 patients with benign lung lesion and 80 NSCLC patients. The expression of ADAMTS9-AS2 in the tissue and plasma was detected by a real-time polymerase chain reaction. Serum CYFRA 21-1 was analyzed using an enzyme-linked immunosorbent assay. RESULTS In comparison with benign lung lesion and controls, tissue and plasma ADAMTS9-AS2 expression were significantly down-regulated in NSCLC (p < 0.001). Decreased ADAMTS9-AS2 expression was associated with TNM stages in NSCLC patients (p < 0.001). Up-regulation of CYFRA 21-1 was reported among NSCLC patients and it was associated with TNM staging. Tissue and plasma ADAMTS9-AS2 expression levels were the predicting factors for NSCLC and they both correlated negatively with CYFRA 21-1 levels. Plasma ADAMTS9-AS2 levels had a significant positive correlation with their tumor tissue levels. Plasma ADAMTS9-AS2 showed a higher sensitivity (95%) and specificity (99.1%) in the diagnosis of NSCLC than CYFRA 21-1 (61.3% sensitivity and 60% specificity). CONCLUSIONS Our results suggested that decreased plasma ADAMTS9-AS2 expression might act as a novel non-invasive tumor biomarker in NSCLC diagnosis. Furthermore, plasma ADAMTS9-AS2 might predict aggressive tumor behavior.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walid S H Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Magda M Sherif
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmad Abbas
- Chest department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
12
|
Liu W, Xiong Y, Wan R, Shan R, Li J, Wen W. The Roles of circMTO1 in Cancer. Front Cell Dev Biol 2021; 9:656258. [PMID: 34277605 PMCID: PMC8277961 DOI: 10.3389/fcell.2021.656258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/07/2021] [Indexed: 01/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered type of covalently-closed circular non-coding RNAs, mainly formed by non-sequential back-splicing of precursor mRNAs (pre-mRNAs). Recent studies have demonstrated that circRNAs can have either oncogenic or tumor-suppressor roles depending on the cellular context. CircRNA mitochondrial tRNA translation optimization 1 (circMTO1), a recently reported circular RNA originating from exons of MTO1 located on chromosome 6q13, was proved to be abnormally expressed in many malignant tumors, such as hepatocellular carcinoma, gastric carcinoma and colorectal cancer, resulting in tumor initiation and progression. However, there are no reviews focusing on the roles of circMTO1 in cancer. Here, we first summarize the main biological characteristics of circMTO1, and then focus on its biological functions and the possible underlying molecular mechanisms. Finally, we summarize the roles of circMTO1 in cancer and discuss future prospects in this area of research.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanyuan Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Yang SJ, Wang DD, Zhong SL, Chen WQ, Wang FL, Zhang J, Xu WX, Xu D, Zhang Q, Li J, Zhang HD, Hou JC, Mao L, Tang JH. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis 2021; 12:420. [PMID: 33911067 PMCID: PMC8080849 DOI: 10.1038/s41419-021-03680-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Circular RNAs (circRNAs) are increasingly gaining importance and attention due to their diverse potential functions and their value as diagnostic biomarkers (disease specific). This study aims to explore the novel mechanisms by which exosome-contained circRNAs promote tumor development and metastasis in TNBC. We identified increased circRNA circPSMA1 in TNBC cells, their exosomes, and serum exosomes samples from TNBC patients. The overexpression of circPSMA1 promoted TNBC cell proliferation, migration, and metastasis both in vitro and in vivo. Moreover, we investigated the tumor-infiltrating immune cells (TICs) or stromal components in immune microenvironment (IME), and identified the significant differences in the immune cells between TNBC and non-TNBC samples. Mechanistically, circPSMA1 acted as a "miRNAs sponge" to absorb miR-637; miR-637 inhibited TNBC cell migration and metastasis by directly targeted Akt1, which recognized as a key immune-related gene and affected downstream genes β-catenin and cyclin D1. Subsequent co-culture experiments also demonstrated that exosomes from TNBC carrying large amounts of circPSMA1 could transmit migration and proliferation capacity to recipient cells. Kaplan-Meier plots showed that high expression of Akt1 and low expression of mir-637 are highly correlated with poor prognosis in patients with lymph node metastasis of TNBC. Collectively, all these results reveal that circPSMA1 functions as a tumor promoter through the circPSMA1/miR-637/Akt1-β-catenin (cyclin D1) regulatory axis, which can facilitate the tumorigenesis, metastasis, and immunosuppression of TNBC. Our research proposes a fresh perspective on novel potential biomarkers and immune treatment strategies for TNBC.
Collapse
Affiliation(s)
- Su-jin Yang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Dan-dan Wang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Shan-liang Zhong
- grid.89957.3a0000 0000 9255 8984The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009 P.R. China ,grid.452509.f0000 0004 1764 4566Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, 210009 P.R. China
| | - Wen-quan Chen
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Feng-liang Wang
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics and Gynecology, Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210009 P.R. China
| | - Jian Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Wen-xiu Xu
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Di Xu
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Qian Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Jian Li
- grid.89957.3a0000 0000 9255 8984The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009 P.R. China
| | - He-da Zhang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Jun-chen Hou
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| | - Ling Mao
- grid.470132.3Department of Thyroid and Breast Surgery, the Affiliated Huai’an Hospital of Xuzhou Medical University, the Second People’s Hospital of Huai’an, Huai’an, 223002 P.R. China
| | - Jin-hai Tang
- grid.412676.00000 0004 1799 0784Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 P.R. China
| |
Collapse
|
14
|
Micallef I, Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Noncoding RNA 2021; 7:24. [PMID: 33807355 PMCID: PMC8103280 DOI: 10.3390/ncrna7020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal malignancies which has quite a high mortality rate. Despite the advances made in CRC treatment, effective therapy is still quite challenging, particularly due to resistance arising throughout the treatment regimen. Several studies have been carried out to identify CRC chemoresistance mechanisms, with research showing different signalling pathways, certain ATP binding cassette (ABC) transporters and epithelial mesenchymal transition (EMT), among others to be responsible for the failure of CRC chemotherapies. In the last decade, it has become increasingly evident that certain non-coding RNA (ncRNA) families are involved in chemoresistance. Research investigations have demonstrated that dysregulation of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute towards promoting resistance in CRC via different mechanisms. Considering the currently available data on this phenomenon, a better understanding of how these ncRNAs participate in chemoresistance can lead to suitable solutions to overcome this problem in CRC. This review will first focus on discussing the different mechanisms of CRC resistance identified so far. The focus will then shift onto the roles of miRNAs, lncRNAs and circRNAs in promoting 5-fluorouracil (5-FU), oxaliplatin (OXA), cisplatin and doxorubicin (DOX) resistance in CRC, specifically using ncRNAs which have been recently identified and validated under in vivo or in vitro conditions.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Msida, Malta;
| |
Collapse
|
15
|
Liu W, Zhang Y, Luo B. Long Non-coding RNAs in Gammaherpesvirus Infections: Their Roles in Tumorigenic Mechanisms. Front Microbiol 2021; 11:604536. [PMID: 33519750 PMCID: PMC7843584 DOI: 10.3389/fmicb.2020.604536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression at the epigenetic, transcriptional, or posttranscriptional level by interacting with protein, DNA, and RNA. Emerging evidence suggests that various lncRNAs are abnormally expressed and play indispensable roles in virus-triggered cancers. Besides, a growing number of studies have shown that virus-encoded lncRNAs participate in tumorigenesis. However, the functions of most lncRNAs in tumors caused by oncogenic viruses and their underlying mechanisms remain largely unknown. In this review, we summarize current findings regarding lncRNAs involved in cancers caused by Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV). Additionally, we discuss the contribution of lncRNAs to tumor occurrence, development, invasion, and metastasis; the roles of lncRNAs in key signaling pathways and their potential as biomarkers and therapeutic targets for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, Chen Z, Tang K, Ye Z. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer 2021; 20:4. [PMID: 33397425 PMCID: PMC7780637 DOI: 10.1186/s12943-020-01300-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), which are single-stranded closed-loop RNA molecules lacking terminal 5′ caps and 3′ poly(A) tails, are attracting increasing scientific attention for their crucial regulatory roles in the occurrence and development of various diseases. With the rapid development of high-throughput sequencing technologies, increasing numbers of differentially expressed circRNAs have been identified in bladder cancer (BCa) via exploration of the expression profiles of BCa and normal tissues and cell lines. CircRNAs are critically involved in BCa biological behaviours, including cell proliferation, tumour growth suppression, cell cycle arrest, apoptosis, invasion, migration, metastasis, angiogenesis, and cisplatin chemoresistance. Most of the studied circRNAs in BCa regulate cancer biological behaviours via miRNA sponging regulatory mechanisms. CircRNAs have been reported to be significantly associated with many clinicopathologic characteristics of BCa, including tumour size, grade, differentiation, and stage; lymph node metastasis; tumour numbers; distant metastasis; invasion; and recurrence. Moreover, circRNA expression levels can be used to predict BCa patients’ survival parameters, such as overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The abundance, conservation, stability, specificity and detectability of circRNAs render them potential diagnostic and prognostic biomarkers for BCa. Additionally, circRNAs play crucial regulatory roles upstream of various signalling pathways related to BCa carcinogenesis and progression, reflecting their potential as therapeutic targets for BCa. Herein, we briefly summarize the expression profiles, biological functions and mechanisms of circRNAs and the potential clinical applications of these molecules for BCa diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongyan Lu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
18
|
Tu R, Chen Z, Bao Q, Liu H, Qing G. Crosstalk between oncogenic MYC and noncoding RNAs in cancer. Semin Cancer Biol 2020; 75:62-71. [PMID: 33160022 DOI: 10.1016/j.semcancer.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
|
19
|
Bi Z, Li Q, Dinglin X, Xu Y, You K, Hong H, Hu Q, Zhang W, Li C, Tan Y, Xie N, Ren W, Li C, Liu Y, Hu H, Xu X, Yao H. Nanoparticles (NPs)-Meditated LncRNA AFAP1-AS1 Silencing to Block Wnt/ β-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000915. [PMID: 32999837 PMCID: PMC7509644 DOI: 10.1002/advs.202000915] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/17/2020] [Indexed: 05/28/2023]
Abstract
Resistance to radiotherapy is frequently encountered in clinic, leading to poor prognosis of cancer patients. Long noncoding RNAs (lncRNAs) play important roles in the development of radioresistance due to their functions in regulating the expression of target genes at both transcriptional and posttranscriptional levels. Exploring key lncRNAs and elucidating the mechanisms contributing to radioresistance are crucial for the development of effective strategies to reverse radioresistance, which however remains challenging. Here, actin filament-associated protein 1 antisense RNA1 (lncAFAP1-AS1) is identified as a key factor in inducing radioresistance of triple-negative breast cancer (TNBC) via activating the Wnt/β-catenin signaling pathway. Considering the generation of a high concentration of reduction agent glutathione (GSH) under radiation, a reduction-responsive nanoparticle (NP) platform is engineered for effective lncAFAP1-AS1 siRNA (siAFAP1-AS1) delivery. Systemic delivery of siAFAP1-AS1 with the reduction-responsive NPs can synergistically reverse radioresistance by silencing lncAFAP1-AS1 expression and scavenging intracellular GSH, leading to a dramatically enhanced radiotherapy effect in both xenograft and metastatic TNBC tumor models. The findings indicate that lncAFAP1-AS1 can be used to predict the outcome of TNBC radiotherapy and combination of systemic siAFAP1-AS1 delivery with radiotherapy can be applied for the treatment of recurrent TNBC patients.
Collapse
Affiliation(s)
- Zhuofei Bi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Qingjian Li
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaoxiao Dinglin
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Ying Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Kaiyun You
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Huangming Hong
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Qian Hu
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Wei Zhang
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chenchen Li
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Yujie Tan
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Ning Xie
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Wei Ren
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chuping Li
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Yimin Liu
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- RNA Biomedical InstituteSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
- Department of OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
20
|
Wang XK, Liao XW, Huang R, Huang JL, Chen ZJ, Zhou X, Yang CK, Han CY, Zhu GZ, Peng T. Clinical significance of long non-coding RNA DUXAP8 and its protein coding genes in hepatocellular carcinoma. J Cancer 2020; 11:6140-6156. [PMID: 32922554 PMCID: PMC7477403 DOI: 10.7150/jca.47902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
Backgrounds: Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide that is difficult to diagnose during the early stages and its tumors are recurrent. Long non-coding RNAs (lncRNAs) have increasingly been associated with tumor biomarkers for diagnosis and prognosis. This study attempts to explore the potential clinical significance of lncRNA DUXAP8 and its co-expression related protein coding genes (PCGs) for HCC. Method: Data from a total of 370 HCC patients from The Cancer Genome Atlas were utilized for the analysis. DUXAP8 and its top 10 PCGs were explored for their diagnostic and prognostic implications for HCC. A risk score model and nomogram were constructed for prognosis prediction using prognosis-related genes and DUXAP8. Molecular mechanisms of DUXAP8 and its PCGs involved in HCC initiation and progression were investigated. Then, potential target drugs were identified using genome-wide DUXAP8-related differentially expressed genes in a Connectivity Map database. Results: The top 10 PCGs were identified as: RNF2, MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, and DGKI. Diagnostic analysis indicated that DUXAP8, MEGEA1, MKRN3, and DGKI show diagnostic implications (all area under curves ≥0.7, p≤0.05). Prognostic analysis indicated that DUXAP8 and RNF2 had prognostic implications for HCC (adjusted p=0.014 and 0.008, respectively). The risk score model and nomogram showed an advantage for prognosis prediction. A total of 3 target drugs were determined: cinchonine, bumetanide and amiprilose and they may serve as potential therapeutic targets for HCC. Conclusion: Functioning as an oncogene, DUXAP8 is overexpressed in tumor tissue and may serve as both a diagnostic and prognosis biomarker for HCC. MEGEA1, MKRN3, and DGKI maybe potential diagnostic biomarkers and DGKI may also be potentially prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Jian-Lu Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Province, China
| | - Zi-Jun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| |
Collapse
|
21
|
LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p. Mol Cell Biochem 2020; 475:161-169. [DOI: 10.1007/s11010-020-03868-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
|
22
|
Miao W, Li N, Gu B, Yi G, Su Z, Cheng H. MiR-27b-3p suppresses glioma development via targeting YAP1. Biochem Cell Biol 2020; 98:466-473. [PMID: 32567955 DOI: 10.1139/bcb-2019-0300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous studies have reported that miRNAs are involved in the progression of glioma, and that miR-27b-3p is involved in a variety of cancers. However, whether miR-27b-3p has a role in glioma is still unknown. Here, we demonstrated that miR-27b-3p is downregulated in glioma, and this is associated with the development of glioma. Overexpression of miR-27b-3p in glioma cells inhibits cell proliferation and migration, and induces cell apoptosis, which suppresses the progression of glioma. Furthermore, in our study, overexpression of miR-27b-3p also inhibited the growth of xenografted glioma tumors in-vivo. Finally, we verified that Yes Associated Protein 1 (YAP1) is the downstream target of miR-27b-3p, and that miR-27b-3p controls the proliferation, migration, and apoptosis of glioma cells via regulating YAP1. Our study reveals a novel mechanism through which miR-27b-3p functions in the development of glioma, and thus provides a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Miao
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ning Li
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Gu
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guoqing Yi
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zheng Su
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
23
|
Liu W, Luo B. The impact of EBV on the epigenetics of gastric carcinoma. Future Virol 2020. [DOI: 10.2217/fvl-2019-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EBV is an important human tumor virus and is closely related to the occurrence of a variety of tumors, involving 10% of gastric cancer. In EBV-associated gastric carcinoma (EBVaGC), EBV expresses restrict viral genes including EBV nuclear antigen 1, EBV encoded small RNAs, Bam HI-A rightward transcripts, latent membrane protein 2A and miRNAs. The role of EBV in gastric carcinogenesis has received increasing attention and is considered to be another pathogenic factor in addition to Helicobacter pylori. A typical characteristic of EBVaGC is the extensive methylation of viral and host genome. Combined with other epigenetic mechanisms, EBV infection acts as an epigenetic driver of EBVaGC oncogenesis. In this review we discuss recent findings of EBV effect on host epigenetic alterations in EBVaGC and its role in oncogenic process.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, PR China
| |
Collapse
|
24
|
Jin J, Xu H, Li W, Xu X, Liu H, Wei F. LINC00346 Acts as a Competing Endogenous RNA Regulating Development of Hepatocellular Carcinoma via Modulating CDK1/CCNB1 Axis. Front Bioeng Biotechnol 2020; 8:54. [PMID: 32133348 PMCID: PMC7039823 DOI: 10.3389/fbioe.2020.00054] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/22/2020] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the important types of liver cancer. LncRNA is an important regulatory factor that regulates many biological processes such as tumor cells during tumorigenesis and metastasis. LINC00346 has been associated with various types of liver cancer, but its role and regulatory mechanism in HCC remain unclear. In our study, we found the LINC00356-miR-199a-3p-CDK1/CCNB1 axis through bioinformatics analysis. The expressions of LINC00356, miR-199a-3p, CDK1, and CCNB1 in HCC and normal hepatocytes were determined by qRT-PCR and WB. The results showed that LINC00356, CDK1 and CCNB1 were highly expressed in HCC, while miR-199a-3p was lowly expressed. Dual luciferase reporter gene assay, RIP and RNA-pull down assays demonstrated the targeted binding relationship of LINC00346-miR-199a-3p-CDK1/CCNB1. Overexpressing LINC00460 and silencing miR-199a-3p promoted cell invasion, inhibited apoptosis of HCC, and arrested the cell cycle in S phase while opposite results were obtained when silencing LINC00346, CDK1, and CCNB1. LINC00346 indirectly affects liver cancer by promoting the expression of CDK1/CCNB1 through competitive adsorption of miR-199a-3p. In addition, the study also demonstrated that overexpression of LINC00346 indirectly inhibited the expression of p53 and p21 proteins by promoting CDK1/CCNB1 expressions, thereby blocking the p53 signaling pathway. These results proved that LINC00346 could regulate the expression of CDK1/CCNB1 through the competitive adsorption of miR-199a-3p, thereby affecting the p53 signaling pathway and finally regulating the apoptosis, invasion and cell cycle of HCC cells. In conclusion, LINC00346 can be used as a tumor promoter and potential therapeutic target for HCC metastasis and prognosis.
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Wanyu Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Xiaotong Xu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Song L, Wang L, Pan X, Yang C. lncRNA OIP5-AS1 targets ROCK1 to promote cell proliferation and inhibit cell apoptosis through a mechanism involving miR-143-3p in cervical cancer. ACTA ACUST UNITED AC 2020; 53:e8883. [PMID: 31939597 PMCID: PMC6967205 DOI: 10.1590/1414-431x20198883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) is one kind of
cytoplasmic long non-coding RNA (lncRNA), which has been demonstrated to play a
critical function in multiple cancers. However, the detailed mechanism of
OIP5-AS1 in the regulation of cervical cancer progression is still obscure.
Here, we demonstrated that lncRNA OIP5-AS1 was upregulated in cervical cancer
and was correlated with poor prognosis by bioinformatics studies. OIP5-AS1
depletion inhibited cell proliferation and promoted cell apoptosis in cervical
cancer cells. Furthermore, we clarified that ROCK1 was the downstream effector
of OIP5-AS1 and OIP5-AS1 acted as a molecular sponge of miR-143-3p. Finally, we
verified that OIP5-AS1 exerted its function in the regulation of cervical cancer
progression via interacting with miR-143-3p to regulate ROCK1 expression. Our
study revealed novel mechanisms about how lncRNA OIP5-AS1 executed its function
in cervical cancer and thus provided potential therapeutic targets for the
disease.
Collapse
Affiliation(s)
- Linlin Song
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Linlin Wang
- Medical Laboratory Center, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoli Pan
- Department of Pathology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Caihong Yang
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
26
|
Yang SJ, Wang DD, Zhou SY, Zhang Q, Wang JY, Zhong SL, Zhang HD, Wang XY, Xia X, Chen W, Yang SY, Hu JH, Zhao JH, Tang JH. Identification of circRNA-miRNA networks for exploring an underlying prognosis strategy for breast cancer. Epigenomics 2020; 12:101-125. [PMID: 31920098 DOI: 10.2217/epi-2019-0058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Circular RNAs (circRNAs) still have many potential functions in the process of tumor development that are not completely understood. The study aims to explore novel circRNAs and their mechanisms of action in breast cancer (BCa). Materials & methods: A combination strategy of RNA-sequencing (RNA-seq) technique, quantitative real-time PCR and bioinformatic analysis was employed to identify the potential mechanisms involving differentially expressed circRNAs in the serum exosomes and tissues of BCa patients. Results: The expression levels of hsa-circRNA-0005795 and hsa-circRNA-0088088 were significantly different both in serum exosomes and tissues and might function as competing endogenous RNAs and play vital roles in BCa development. Conclusion: We constructed two circRNA-miRNA networks and provided new insight into the prognosis and therapy of BCa using circRNAs from serum exosomes.
Collapse
Affiliation(s)
- Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Si-Ying Zhou
- Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jin-Yan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Shan-Liang Zhong
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China.,Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, PR China
| | - He-da Zhang
- Department of General Surgery, Southeast University Medical School, Nanjing 210000, PR China
| | - Xing-Yun Wang
- Nanjing Maternal & Child Health Hospital, China Obstetrics & Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, PR China
| | - Xing Xia
- Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Wei Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China.,Department of Head & Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, PR China
| | - Su-Yu Yang
- Xuanwu Lake Community Health Service Center, Nanjing 210008, PR China
| | - Jia-Hua Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China.,Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, PR China
| | - Jian-Hua Zhao
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, PR China.,Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, PR China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
27
|
Xie Y, Yuan X, Zhou W, Kosiba AA, Shi H, Gu J, Qin Z. The circular RNA HIPK3 (circHIPK3) and its regulation in cancer progression: Review. Life Sci 2020; 254:117252. [PMID: 31901445 DOI: 10.1016/j.lfs.2019.117252] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 01/12/2023]
Abstract
Circular RNAs (circRNAs) are a class of covalently closed continuous loops of single-stranded RNA molecules, and broadly expressed in the cytoplasm of eukaryotic cells. CircRNAs have attracted considerable research attention in recent years, an attention primarily attributed to their critical roles in the development and progression of diseases, especially in cancers. The circRNA homeodomain-interacting protein kinase 3 (circHIPK3) is a recently identified circRNA, acknowledged to be relevant to human pathology and cancer progression. Here, we summarize the origin and functions of the circHIPK3 and its target molecules in cancer, and thus, providing a broader knowledge to our current understanding of circRNAs. This review will therefore be essential to enriching our knowledge on the roles of circRNAs in cancers by outlining their potential values and application in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yimin Xie
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Xuefeng Yuan
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Weimin Zhou
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | | | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhenqian Qin
- Affiliated Hospital of Jiangsu University-Yixing People's Hospital, Yixing, Jiangsu 214200, China.
| |
Collapse
|
28
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
29
|
Wei J, Wang J, Gao X, Qi F. Identification of differentially expressed circRNAs and a novel hsa_circ_0000144 that promote tumor growth in gastric cancer. Cancer Cell Int 2019; 19:268. [PMID: 31636511 PMCID: PMC6794874 DOI: 10.1186/s12935-019-0975-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Circular RNAs (circRNAs) are involved in regulating tumor pathogenesis. The mechanism of circRNAs in gastric cancer (GC) is still unknown. Our study aimed to identify differentially expressed circRNAs and assess a novel circRNA (hsa_circ_0000144) in the proliferation, migration, and invasion in GC. Methods Gene ontology (GO) enrichment and analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, pathway network, and the ceRNA regulatory network of hsa_circ_0000144 targeting miRNAs and mRNAs were performed with the help of bioinformatics using R language and Perl software. hsa_circ_0000144 expression and circRNA knockdown in GC cell lines were detected using quantitative PCR (qPCR) in vitro. Cell proliferation, migration, and invasion after circRNA knockdown were measured using the cell counting kit-8 assay and Transwell assay. Results The circRNA expression profile GSE78092 downloaded from the Gene Expression Omnibus database included three GC patients and three normal tissues. Thirty-two differentially expressed circRNAs comprised six upregulated circRNAs and 26 downregulated circRNAs. In particular, the ErbB signaling pathway, neurotrophin signaling pathway, cellular senescence, and pathways in bladder cancer and GC played the most important roles in the pathway network. The expression of hsa_circ_0000144 was upregulated in GC cell lines. Hsa_circ_0000144 knockdown suppressed tumor growth in vitro. Conclusions Hsa_circ_0000144 promotes GC cell proliferation, migration, and invasion, and the ceRNA regulatory network of hsa_circ_0000144 targeting miRNAs and mRNAs might be biomarkers for GC diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Jianming Wei
- 1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinmiao Wang
- 2Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xibo Gao
- 3Department of Dermatology, Tianjin Children's Hospital, Tianjin, China
| | - Feng Qi
- 1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang F, Li X, Li T, Zhao L, Ren Y, Xu Y. circAMOTL1 Motivates AMOTL1 Expression to Facilitate Cervical Cancer Growth. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:50-60. [PMID: 31812104 PMCID: PMC6906701 DOI: 10.1016/j.omtn.2019.09.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022]
Abstract
Cervical cancer is acknowledged as the most prevalent gynecological tumor and a severe public issue that threatens female health, resulting from its high incidence and fatality rate. Surging evidence have shown that circular RNAs (circRNAs) play significant roles in the initiation and progression of various malignancies. Although circAMOTL1 has been testified to execute oncogenic properties in breast cancer and prostate cancer, literature on its function and regulatory mechanism in cervical cancer development is still scanty. Using a bioinformatics analysis, we found circ_0004214 was a circular form of AMOTL1. Through qRT-PCR analysis, circAMOTL1 and its host gene AMOTL1 were both upregulated in cervical cancer tissues and closely correlated with poor prognosis of cervical cancer. Gain- or loss-of-function assays and in vivo experiments demonstrated that AMOTL1 promoted cervical cancer cell growth both in vitro and in vivo. Mechanically, circAMOTL1 served as a competing endogenous RNA (ceRNA) to prompt the expression of AMOTL1 through sponging miR-485-5p. Rescue assays revealed that miR-485-5p/AMOTL1 axis was involved in circ_AMOTL1-mediated cervical cancer progression. Our findings provide a better understanding of the molecular mechanism underlying circAMOTL1 in cervical cancer and indicated circAMOTL1/miR-485-5p/AMOTL1 as a promising novel therapeutic strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Rongying Ou
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiangmin Lv
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qianwen Zhang
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fan Lin
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Zhu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fangfang Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangyun Li
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Tian Li
- Department of Gynaecology and Obstetrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China.
| |
Collapse
|
31
|
Feng S, Ji G, Ma J, Wang Z, Zhao Y, Tao C. Long noncoding RNA GAS5 does not regulate HBV replication. J Med Virol 2019; 91:1949-1959. [PMID: 31301149 DOI: 10.1002/jmv.25547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection remains a severe health burden worldwide. Emerging long noncoding RNAs (lncRNAs) are hijacked to enhance virus replication or employed by the host to stimulate immune responses to clear the virus. LncRNA growth arrest-specific transcript 5 (GAS5) can regulate RNA virus by suppressing the replication of both hepatitis C virus and human immunodeficiency virus. In this study, we explored the changes of HBV replication by overexpressing or knocking down GAS5 in HepAD38 cell and HepG2 cell transfected with pHBV1.2. We found HBV can induce the expression of GAS5. However, GAS5 had no effect on extracellular HBsAg and HBeAg, nor intracellular HBV RNA and HBV DNA. In addition, GAS5 possessed similar expression levels between stable HBV-producing cell lines and hepatoma cell lines. Furthermore, GAS5 showed no difference between healthy subjects and patients with chronic HBV in multiple GEO microarray data sets by GEO2R analysis. Taken together these results, GAS5 does not modulate the replication of HBV but it inhibits cell proliferation in HepAD38. This provides insights into the possible roles of GAS5 in HBV infection.
Collapse
Affiliation(s)
- Shu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gaili Ji
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jie Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhonghao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanhua Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:194. [PMID: 31088485 PMCID: PMC6518827 DOI: 10.1186/s13046-019-1188-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Background Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of hepatocellular carcinoma (HCC). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-AGAP2-AS1 on the biological behaviors of HCC. Methods EdU, Transwell and flow cytometry were used to determine proliferation, migration, invasion and apoptosis of HCC cells in vitro. The subcutaneous tumor model and lung metastasis mouse model in nude mice was established to detect tumor growth and metastasis of HCC in vivo. The direct binding of miR-16-5p to 3’UTR of ANXA11 was confirmed by luciferase reporter assay. The expression of AGAP2-AS1 and miR-16-5p in HCC specimens and cell lines were detected by real-time PCR. The correlation among AGAP2-AS1 and miR-16-5p were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay. Results Here, we demonstrated that AGAP2-AS1 expression was up-regulated in HCC tissues and cell lines, especially in metastatic and recurrent cases. Gain- and loss-of-function experiments indicated that AGAP2-AS1 promoted cell proliferation, migration, invasion, EMT progression and inhibited apoptosis of HCC cells in vitro and in vivo. Further studies demonstrated that AGAP2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-16-5p in HCC cells. Functionally, gain- and loss-of-function studies showed that miR-16-5p promoted HCC progression and alteration of miR-16-5p abolished the promotive effects of AGAP2-AS1 on HCC cells. Moreover, ANXA11 was identified as direct downstream targets of miR-16-5p in HCC cells, and mediated the functional effects of miR-16-5p and AGAP2-AS1 in HCC, resulting in AKT signaling activation. Clinically, AGAP2-AS1 and miR-16-5p expression were markedly correlated with adverse clinical features and poor prognosis of HCC patients. We showed that hypoxia was responsible for the overexpression of AGAP2-AS1 in HCC. And the promoting effects of hypoxia on metastasis and EMT of HCC cells were reversed by AGAP2-AS1 knockdown. Conclusions Taken together, this research supports the first evidence that AGAP2-AS1 plays an oncogenic role in HCC via AGAP2-AS1/miR-16-5p/ANXA11/AKT axis pathway and represents a promising therapeutic strategy for HCC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1188-x) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, Wang H, Liao Q, Wang W. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 2019; 18:90. [PMID: 30999909 PMCID: PMC6471953 DOI: 10.1186/s12943-019-1002-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA molecules with closed loops and high stability. CircRNAs are abundantly expressed in eukaryotic organisms and exhibit both location- and step-specificity. In recent years, circRNAs are attracting considerable research attention attributed to their possible contributions to gene regulation through a variety of actions, including sponging microRNAs, interacting with RNA-binding proteins, regulating transcription and splicing, and protein translation. Growing evidence has revealed that circRNAs play critical roles in the development and progression of diseases, especially in cancers. Without doubt, expanding our understanding of circRNAs will enrich knowledge of cancer and provide new opportunities for cancer therapy. In this review, we provide an overview of the characteristics, functions and functional mechanisms of circRNAs. In particular, we summarize current knowledge regarding the functions of circRNAs in the hallmarks, stemness, resistance of cancer, as well as the possibility of circRNAs as biomarkers in cancer.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yuhang Xiao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yanyan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yuqin Zhang
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China
| | - Xu Li
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhining Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
34
|
Liu Y, Wang D, Li Y, Yan S, Dang H, Yue H, Ling J, Chen F, Zhao Y, Gou L, Tang P, Huang A, Tang H. Long noncoding RNA CCAT2 promotes hepatocellular carcinoma proliferation and metastasis through up-regulation of NDRG1. Exp Cell Res 2019; 379:19-29. [PMID: 30922920 DOI: 10.1016/j.yexcr.2019.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Emerging studies demonstrate that long noncoding RNAs (lncRNAs) play crucial roles in hepatocarcinogenesis through various mechanisms. LncRNA CCAT2 was a newly discovered lncRNA and amplified in several cancers. However, the mechanisms involved in function of CCAT2 in hepatocellular carcinoma (HCC) remain to be explored. METHODS CCAT2 expressions in HCC tissues and cell lines were measured by RT-qPCR. MTS assay, colony formation assay, wound-healing assay and transwell assay were used to explore the biological functions of CCAT2 on HCC cells proliferation and metastasis. Experiments in vivo were carried out to confirm these effects. The underlying mechanisms were analyzed by western blot and dual-luciferase reporter assay. RESULTS In this study, we found that CCAT2 were significantly elevated in HCC tissues and cell lines, and it promoted HCC cells proliferation and metastasis both in vitro and in vivo. Additionally, we identified that NDRG1 was a downstream target of CCAT2. Meanwhile, depletion of CCAT2 inhibited cellular proliferation and metastasis behaviors induced by NDRG1- overexpression. Analysis of mechanism underlying these effects revealed that CCAT2 increased the expression of NDRG1 by enhancing its promoter activity. Furthermore, the active region between CCAT2 and NDRG1 promoter was confirmed by dual-luciferase reporter assay. CONCLUSIONS All these observations demonstrate that CCAT2 acts as an oncogene by up-regulating NDRG1, which may have the potential to be used as a promising prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuyang Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China.
| | - Dan Wang
- Department of Clinical Laboratory, The People's Hospital of Rongchang, Chongqing, China.
| | - Yongguo Li
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China.
| | - Shaoying Yan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Hao Dang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Huan Yue
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Jiaji Ling
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Fengjiao Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Yannan Zhao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Luxia Gou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ping Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Third Hospital of Mianyang, SiChuan Mental Health Center, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Regulation of miRNAs by Snail during epithelial-to-mesenchymal transition in HT29 colon cancer cells. Sci Rep 2019; 9:2165. [PMID: 30770873 PMCID: PMC6377707 DOI: 10.1038/s41598-019-39200-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/04/2019] [Indexed: 01/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) in cancer cells, represents early stages of metastasis and is a promising target in colorectal cancer (CRC) therapy. There have been many attempts to identify markers and key pathways induced throughout EMT but the process is complex and depends on the cancer type and tumour microenvironment. Here we used the colon cancer cell line HT29, which stably overexpressed Snail, the key transcription factor in early EMT, as a model for colorectal adenocarcinoma cells with a pro-metastatic phenotype. We investigated miRNA expression regulation during that phenotypic switching. We found that overexpression of Snail in HT29 cells triggered significant changes in individual miRNA levels but did not change the global efficiency of miRNA processing. Snail abundance repressed the expression of miR-192 and miR-194 and increased miR-205, let-7i and SNORD13 levels. These identified changes correlated with the reported transcriptomic alterations in Snail-overexpressing HT29 cells. We also investigated how Snail affected the miRNA content of extracellular vesicles (EVs) released from HT29 cells. Our data suggest that the presence of Snail significantly alters the complex mRNA/miRNA interactions in the early steps of metastasis and also has an impact on the content of EVs released from HT29 cells.
Collapse
|
36
|
Zheng H, Chen T, Li C, Xu C, Ding C, Chen J, Ju S, Zhang Z, Liang Z, Cui Z, Zhao J. A circular RNA hsa_circ_0079929 inhibits tumor growth in hepatocellular carcinoma. Cancer Manag Res 2019; 11:443-454. [PMID: 30655696 PMCID: PMC6322497 DOI: 10.2147/cmar.s189338] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Most recently, circular RNAs (circRNAs) were considered playing regulatory roles in tumor initiation and development. The specific function of circRNAs in hepatocellular carcinoma (HCC) remains unknown. This study was designed to detect specific roles of a circRNA hsa_circ_0079299 in HCC. Methods The expression of hsa_circ_0079299 in HCC and tumor cell lines was detected using quantitative PCR (qPCR). Cell proliferation, migration, cell cycle and apoptosis after overexpression of the circRNA were measured using cell counting kit-8 (CCK8) assay, colony formation, 5-ethynyl-2′-deoxyuridine (EdU) assay, wound healing assay, transwell culture system and flow cytometry. Western blotting assay detected the protein expression of PI3K/AKT/mTOR signaling pathway and cyclin B1 (CCNB1). Overexpression of the circRNA in vivo was measured by nude mice tumorigenesis. Results The expression of hsa_circ_0079299 was lower in HCC tissues. Overexpression of hsa_circ_0079299 suppressed tumor growth in vitro and in vivo, retarded cell cycle progression while had no effect on cell migration and apoptosis. The inhibitory effect of hsa_circ_0079299 was partly mediated by PI3K/AKT/mTOR signaling pathway. Conclusion Our study shows that tumor suppressive role of hsa_circ_0079299 in HCC provides new recognition of circRNAs in cancers.
Collapse
Affiliation(s)
- Huifei Zheng
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tengfei Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Chang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Chun Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Cheng Ding
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Jun Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Sheng Ju
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zhiwei Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zhipan Liang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zihan Cui
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Jun Zhao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| |
Collapse
|
37
|
Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, Lu C. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS Pathog 2019; 15:e1007578. [PMID: 30699189 PMCID: PMC6370251 DOI: 10.1371/journal.ppat.1007578] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 02/11/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma (KS), a highly disseminated tumor of hyperproliferative spindle endothelial cells, is the most common AIDS-associated malignancy caused by infection of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-encoded viral interferon regulatory factor 1 (vIRF1) is a viral oncogene but its role in KSHV-induced tumor invasiveness and motility remains unknown. Here, we report that vIRF1 promotes endothelial cell migration, invasion and proliferation by down-regulating miR-218-5p to relieve its suppression of downstream targets high mobility group box 2 (HMGB2) and cytidine/uridine monophosphate kinase 1 (CMPK1). Mechanistically, vIRF1 inhibits p53 function to increase the expression of DNA methyltransferase 1 (DNMT1) and DNA methylation of the promoter of pre-miR-218-1, a precursor of miR-218-5p, and increases the expression of a long non-coding RNA OIP5 antisense RNA 1 (lnc-OIP5-AS1), which acts as a competing endogenous RNA (ceRNA) of miR-218-5p to inhibit its function and reduce its stability. Moreover, lnc-OIP5-AS1 increases DNA methylation of the pre-miR-218-1 promoter. Finally, deletion of vIRF1 from the KSHV genome reduces the level of lnc-OIP5-AS1, increases the level of miR-218-5p, and inhibits KSHV-induced invasion. Together, these results define a novel complex lnc-OIP5-AS1/miR-218-5p network hijacked by vIRF1 to promote invasiveness and motility of KSHV-induced tumors.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qi Feng
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Fei Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, P. R. China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- * E-mail:
| |
Collapse
|
38
|
Wen F, Cao YX, Luo ZY, Liao P, Lu ZW. LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun 2018; 507:1-8. [DOI: 10.1016/j.bbrc.2018.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
39
|
Mu M, Li Y, Zhan Y, Li X, Zhang B. Knockdown of HOXA transcript at the distal tip suppresses the growth and invasion and induces apoptosis of oral tongue squamous carcinoma cells. Onco Targets Ther 2018; 11:8033-8044. [PMID: 30519045 PMCID: PMC6239101 DOI: 10.2147/ott.s174637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is an aggressive cancer which has high mortality rates. HOXA transcript at the distal tip (HOTTIP) is a lncRNA that can be used as a prognostic marker in multiple carcinomas. The expression of HOTTIP is found to be elevated in OTSCC tissues, and such elevation is correlated with poor prognosis. However, its functional role in regulating the growth and metastasis of OTSCC cells remains elusive and requires further investigation. Methods HOTTIP-silenced OTSCC cells were established by inhibiting HOTTIP expression via its exclusive shRNA. Whether HOTTIP knockdown affected the aggressive tumor behaviors of OTSCC cells was investigated in vitro and in vivo. Results We found that HOTTIP shRNA restrained the cell proliferation and arrested the cell cycle at G1 phase in TSCCA and TCA8113 cells. The expression levels of cyclins B, D1, and E were downregulated in HOTTIP-silenced cells. HOTTIP silencing suppressed the growth of xenograft tumors. Moreover, the silencing of HOTTIP triggered apoptosis in TSCCA and TCA8113 cells and altered the expression of a group of apoptosis-related molecules: downregulated Bcl-2, upregulated Bax, and enhanced the cleavage of caspase 3 and PARP. Knockdown of HOTTIP also suppressed the migration, invasion, and epithelial-mesenchymal transition (EMT) of both TSCCA and TCA8113 cell lines. Conclusion Our findings suggest that HOTTIP is required by the OTSCC cells to maintain their growth and metastasis in vitro. It may serve as a promising potential candidate for OTSCC therapy.
Collapse
Affiliation(s)
- Mingkui Mu
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yue Li
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China,
| | - Xin Li
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China, .,Heilongjiang Academy of Medical Sciences, Harbin 150001, People's Republic of China,
| |
Collapse
|
40
|
Zhang Y, Li Y, Wang J, Lei P. Long non‑coding RNA ferritin heavy polypeptide 1 pseudogene 3 controls glioma cell proliferation and apoptosis via regulation of the microRNA‑224‑5p/tumor protein D52 axis. Mol Med Rep 2018; 18:4239-4246. [PMID: 30221720 PMCID: PMC6172404 DOI: 10.3892/mmr.2018.9491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the potential role and regulatory mechanism of long non-coding RNA ferritin heavy polypeptide 1 pseudogene 3 (FTH1P3) in glioma development. The expression of FTH1P3 in low- and high-grade glioma tissues was investigated using reverse transcription-quantitative polymerase chain reaction. FTH1P3 expression was overexpressed or suppressed in U251 glioma cells to examine the involvement of FTH1P3 in glioma cell proliferation and apoptosis using MTT assay and flow cytometry respectively. In addition, the regulatory association between FTH1P3, microRNA (miR)-224-5p and tumor protein (TP) D52 was investigated to elucidate the potential underlying mechanisms of FTH1P3 in glioma by luciferase reporter assay. The results revealed that FTH1P3 was up-regulated in glioma tissues, and FTH1P3 expression in high-grade glioma tissues was significantly higher compared with that in low-grade glioma tissues. Upregulation of FTH1P3 promoted glioma cell proliferation and inhibited apoptosis. Furthermore, FTH1P3 inhibited miR-224-5p expression, which in turn negatively regulated TPD52 expression. Overexpression of miR-224-5p significantly inhibited U251 cell proliferation and induced cellular apoptosis; this effect was clearly reversed following co-transfection of miR-224-5p and TPD52. These data revealed that upregulation of FTH1P3 may have promoted glioma cell proliferation and inhibited apoptosis. Thus, the miR-224-5p/TPD52 axis may be a downstream mechanism of FTH1P3 in glioma progression. The findings of the present study may provide a theoretical basis for the study of the treatment of glioma in the future.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Geriatric Ward of Neurology, Department of Geriatrics, Institute of Tianjin Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ying Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ping Lei
- Geriatric Ward of Neurology, Department of Geriatrics, Institute of Tianjin Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
41
|
Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis 2018; 9:888. [PMID: 30166525 PMCID: PMC6117363 DOI: 10.1038/s41419-018-0882-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
Abstract
Accumulating evidence have suggested that long non-coding RNAs (lncRNAs) had malfunctioning roles in the development of human cancers. The present study aimed to investigate the role of lncRNA small nucleolar RNA host gene 5 (SNHG5) in hepatocellular carcinoma (HCC) progression using human tissues and cell lines. The quantitative real-time PCR results showed that SNHG5 was up-regulated in both HCC tissues and hepatoma cell lines and was closely associated with tumor size, hepatitis B virus infection, histologic grade, TNM stage, and portal vein tumor thrombus (PVTT) in HCC patients. Knockdown of SNHG5 induced apoptosis and repressed cell cycle progression, cell growth, and metastasis in hepatoma cell lines, whereas overexpression of SNHG5 had the opposite effects. In vivo functional assay, xenograft tumors grown from SNHG5-knockdown cells had smaller mean volumes than the tumors grown from negative control cells. Further investigations showed that SNHG5 may act as a competing endogenous RNA by competitively binding miR-26a-5p and thereby modulating the derepression of downstream target GSK3β, which were further confirmed by luciferase reporter assay. Functionally, SNHG5 promotes tumor growth and metastasis by activating Wnt/β-catenin pathway and inducing epithelial to mesenchymal transition (EMT). Taken together, SNHG5 promotes HCC progression by competitively binding miR-26a-5p and regulating GSK3β and Wnt/β-catenin signal pathway.
Collapse
|
42
|
Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, Zhou Q, Zhu W, Song YYY, Zhan BT, Zhang Q, Bi YY, Sun CC, Li DJ. Emerging landscape of circular RNAs in lung cancer. Cancer Lett 2018; 427:18-27. [PMID: 29653267 DOI: 10.1016/j.canlet.2018.04.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/31/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
Lung cancer, the leading cause of cancer deaths worldwide, is characterized with malignant cell growth. Advances in next-generation sequencing has helped us further understand RNA and identify novel circular RNAs (circRNAs) that may be useful in the early diagnosis and treatment of lung cancer. Similar to other noncoding RNAs, circRNAs present diverse biological functions in normal and disease states, including various types of cancers. This review focuses mainly on the poorly understood functions of circRNA in lung cancer. This paper also summarizes the recent advances in circRNA biogenesis, analyzes the role of circRNAs in cancers, and discusses the potential mechanisms of circRNAs in lung cancer.
Collapse
Affiliation(s)
- Wei Hu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan, Hubei, 430079, China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, Hubei, 430015, China
| | - Cong Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Lin-Lin Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Feng Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Qun Zhou
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Wei Zhu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yang-Yi-Yan Song
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Bo-Tao Zhan
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China
| | - Qian Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Yong-Yi Bi
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng-Cao Sun
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - De-Jia Li
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
43
|
Zhang M, Xin Y. Circular RNAs: a new frontier for cancer diagnosis and therapy. J Hematol Oncol 2018; 11:21. [PMID: 29433541 PMCID: PMC5809913 DOI: 10.1186/s13045-018-0569-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/06/2018] [Indexed: 01/17/2023] Open
Abstract
In recent years, circular RNAs (circRNAs) have attracted considerable attention because they play a significant role in many fields of cancer biology. Additionally, it has become increasingly clear that circRNAs have the potential to make contributions to the successful application of individualized cancer medicine. This brief review introduces circRNAs by describing their potential as a biomarker and therapeutic target and discussing the possible strategies to target them. This review also presents the challenges that are encountered by circRNAs for their definitive entry into clinical practice. Clearly, our understanding of circRNAs helps to add a new dimension to the molecular structure of cancer and will provide many new opportunities for cancer treatment.
Collapse
Affiliation(s)
- Miaoci Zhang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute & General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute & General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
44
|
Yang X, Li Y, Liu Y, Xu X, Wang Y, Yan Y, Zhou W, Yang J, Wei W. Novel circular RNA expression profile of uveal melanoma revealed by microarray. Chin J Cancer Res 2018; 30:656-668. [PMID: 30700934 PMCID: PMC6328506 DOI: 10.21147/j.issn.1000-9604.2018.06.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective The present study aimed to investigate circular RNA (circRNA) expression in uveal melanoma (UM). Methods First, we used microarray to compare the expression profiles of circRNA in five UM samples and five normal uvea tissues. Next, bioinformatics analyses, including gene ontology (GO) analysis and pathway analysis, were applied to study these differentially expressed circRNAs to predict pathogenic pathways that may be involved. Quantitative real-time polymerase chain reaction (qRT-PCR) in 20 UM samples and 20 normal uvea samples was used to confirm the circRNA expression profiles obtained from the microarray data. Finally, we analyzed the interaction between validated circRNAs and their potential cancer-associated miRNA targets. Results In total, 50,579 circRNAs [fold change (FC) ≥2.0; P<0.05], including 20,654 up-regulated and 29,925 down-regulated circRNAs, were identified as differentially expressed between UM tissues and normal uvea tissues. We used qRT-PCR to verify seven dysregulated circRNAs indicated by the microarray data, including hsa_circ_0119873, hsa_circ_0128533, hsa_circ_0047924, hsa_circ_0103232, hsa-circRNA10628-6, hsa_circ_0032148 and hsa_circ_0133460, which may be promising candidates to study future molecular mechanisms. Conclusions This study explored, for the first time, the abnormal expression of circRNAs in UM and described the expression profile of circRNAs, providing a new potential target for the mechanism of UM and future treatment of UM.
Collapse
Affiliation(s)
- Xuan Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yueming Liu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiaolin Xu
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| | - Yingzhi Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yanni Yan
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wenjia Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jingyan Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
45
|
Chen J, Cui L, Yuan J, Zhang Y, Sang H. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 2017; 494:126-132. [DOI: 10.1016/j.bbrc.2017.10.068] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/03/2017] [Accepted: 10/14/2017] [Indexed: 01/10/2023]
|
46
|
Han W, Xiao R, Zhang C, Suyila Q, Li X, Su X. Selecting lncRNAs in gastric cancer cells for directed therapy with bioactive peptides and chemotherapy drugs. Oncotarget 2017; 8:86082-86097. [PMID: 29156779 PMCID: PMC5689669 DOI: 10.18632/oncotarget.20977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/26/2017] [Indexed: 01/17/2023] Open
Abstract
Selecting lncRNAs for directed therapy with bioactive peptides and chemotherapy drugs may be an effective approach to treating gastric cancer (GC). We show genome-scale identification and characterization of differentially expressed lncRNAs in GC cells treated with a novel anti-cancer bioactive peptide (ACBP) and the chemotherapy drug oxaliplatin (ASLB). A total of 17,897 lncRNAs were identified through pairwise comparison, including 2,074 novel lncRNAs. Of those, 1,386 lncRNAs were differentially expressed (over 1.5-fold change vs. control, q-value < 0.05) in response to ACBP and ASLB treatment. These included 914 upregulated and 472 downregulated lincRNAs. Functional annotation of these lncRNAs through Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed they activate metabolic pathways and protein-binding processes. Moreover, suppression of the DNA replication process and upregulation of AMP-activated protein kinase (AMPK) signaling in MKN45 cells exposed to ACBP alone or in combination with ASLB was predicted by hierarchical clustering analysis. By providing new insight into the transcriptomic effects of ACBP and ASLB in GC cells, these results provide the first evidence of ACBP inhibition of lincRNAs and may provide new mechanisms of action for ACBP and ASLB.
Collapse
Affiliation(s)
- Wenyan Han
- Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, P.R. China
| | - Rui Xiao
- Inner Mongolia Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Huhhot 010059, Inner Mongolia Autonomous Region, P.R. China
| | - Chuanling Zhang
- Department of Pharmacy, Inner Mongolia Medical University, Huhhot 010110, Inner Mongolia, P.R. China
| | - Qimuge Suyila
- Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, P.R. China
| | - Xian Li
- Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, P.R. China
| |
Collapse
|
47
|
Cao J, Han X, Qi X, Jin X, Li X. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int J Oncol 2017; 51:1115-1123. [PMID: 28902349 PMCID: PMC5592872 DOI: 10.3892/ijo.2017.4110] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023] Open
Abstract
lncRNA-TUG1 (Taurine upregulated 1) is up regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been associated with the progress of osteosarcoma. To verify whether TUG1 functions through regulating miR-144-3p, the expression levels of TUG1 and miR-144-3p in osteosarcoma tissues and cell lines were determined. TUG1 was upregulated in osteosarcoma tissues and cell lines, and negatively correlated with miR-144-3p. TUG1 knockdown induced miR-144-3p expression in MG63 and U2OS cell lines. Results from dual luciferase reporter assay, RNA-binding protein immuno precipitation (RIP) and applied biotin-avidin pull-down system confirmed TUG1 regulated miR-144-3p expression through direct binding. EZH2, a verified target of miR-144-3p was upregulated in osteosarcoma tissues and negatively correlated with miR-144-3p. EZH2 was negatively regulated by miR-144-3p and positively regulated by TUG1. Gain-and loss-of-function experiments were performed to analyze the role of TUG1, miR-144-3p and EZH2 in the migration and EMT of osteosarcoma cells. EZH2 overexpression partly abolished TUG1 knockdown or miR-144-3p overexpression induced inhibition of migration and EMT in osteosarcoma cells. In addition, TUG1 knockdown represses the activation of Wnt/β-catenin pathway, which was reversed by EZH2 over expression. The activator of Wnt/β-catenin pathway LiCl could partially block the TUG1-knockdown induced osteosarcoma cell migration and EMT inhibition. In conclusion, our results showed that TUG1 plays an important role in osteosarcoma development through miRNA-144-3p/EZH2/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jiaqing Cao
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xinyou Han
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xin Qi
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiangyun Jin
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
48
|
Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y, Li J. Circular RNAs: Regulators of Cancer-Related Signaling Pathways and Potential Diagnostic Biomarkers for Human Cancers. Theranostics 2017; 7:3106-3117. [PMID: 28839467 PMCID: PMC5566109 DOI: 10.7150/thno.19016] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/07/2017] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are newly discovered endogenous non-coding RNAs featuring structural stability, high abundance, and tissue-specific expression. CircRNAs are prevalent and conserved in mammalian cells. They are involved in cellular processes and regulate gene expression at the transcriptional or post-transcriptional level by interacting with microRNAs (miRNAs) and other molecules. Recent studies have shown that circRNAs play an important role in the progression of various human diseases including atherosclerosis, nervous system disorders, diabetes, and cancer. In this review, we summarize the advances on endogenous circRNAs in eukaryotic cells and elucidate their diagnostic and prognostic significance in human cancers. Especially, we highlight the involvement of circRNAs in signal transduction pathways as well as their clinical potential to serve as biomarkers.
Collapse
|
49
|
Wang Y, Liu Z, Yao B, Li Q, Wang L, Wang C, Dou C, Xu M, Liu Q, Tu K. Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol Cancer 2017; 16:123. [PMID: 28716020 PMCID: PMC5514467 DOI: 10.1186/s12943-017-0702-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, it has been reported that long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2), a novel tumor suppressor, participates in regulating the carcinogenesis and suppresses tumor progression by sponging microRNAs (miRNAs). However, the expression and function of CASC2 in hepatocellular carcinoma (HCC) remain unclear. METHODS The expression of CASC2 and miR-367 in HCC specimens and cell lines were detected by real-time PCR. Western blotting and immunohistochemistry were carried out for detection of epithelial-to-mesenchymal transition (EMT) markers in HCC. Transwell assays were used to determine migration and invasion of HCC cells. A mouse model for lung metastasis was established to evaluated HCC metastasis in vivo. The correlation among CASC2, miR-367 and F-box and WD repeat domain containing 7 (FBXW7) were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay. RESULTS Here, CASC2 expression was significantly downregulated in HCC tissues, especially in aggressive and recurrent cases. In accordance, CASC2 underexpression was observed in HCC cell lines compared to LO2. In vitro and in vivo experiments revealed that CASC2 inhibited migration and invasion of HCC cells. Additionally, CASC2 repressed EMT process of HCC cells. Further studies demonstrated that CASC2 could function as a competing endogenous RNA (ceRNA) by sponging miR-367 in HCC cells. Functionally, gain- and loss-of-function studies showed that miR-367 promoted migration, invasion and EMT progression of HCC cells. Moreover, further investigations disclosed that FBXW7 was a downstream target of miR-367 and CASC2 prohibited EMT progression and subsequently exerted its anti-metastatic effects via CASC2/miR-367/FBXW7 axis in HCC cells. Clinically, CASC2 underexpression and miR-367 overexpression were closely correlated with the metastasis-associated clinicopathologic features. Notably, CASC2 low-expressing and miR-367 high-expressing HCC patients showed the poorest clinical outcome. CONCLUSIONS Overall, we conclude that the CASC2/miR-367/FBXW7 axis may be a ponderable and promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
50
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|