1
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Xu P, Liu S, Song S, yao X, Li X, Zhang J, Liu Y, Zheng Y, Gao G, Xu J. Identification and validation of a novel angiogenesis-related gene signature for predicting prognosis in gastric adenocarcinoma. Front Oncol 2023; 12:965102. [PMID: 36727080 PMCID: PMC9885177 DOI: 10.3389/fonc.2022.965102] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023] Open
Abstract
Background Angiogenesis is a major promotor of tumor progression and metastasis in gastric adenocarcinoma (STAD). We aimed to develop a novel lncRNA gene signature by identifying angiogenesis-related genes to better predict prognosis in STAD patients. Methods The expression profiles of angiogenesis-related mRNA and lncRNA genes were collected from The Cancer Genome Atlas (TCGA). Then, the "limma" package was used to identify differentially expressed genes (DEGs). The expression profiles of angiogenesis-related genes were clustered by consumusclusterplus. The Pearson correlation coefficient was further used to identify lncRNAs coexpressed with angiogenesis-related clustere genes. We used Lasso Cox regression analysis to construct the angiogenesis-related lncRNAs signature. Furthermore, the diagnostic accuracy of the prognostic risk signature were validated by the TCGA training set, internal test sets and external test set. We used multifactor Cox analysis to determine that the risk score is an independent prognostic factor different from clinical characteristics. Nomogram has been used to quantitatively determine personal risk in a clinical environment. The ssGSEA method or GSE176307 data were used to evaluate the infiltration state of immune cells or predictive ability for the benefit of immunotherapy by angiogenesis-related lncRNAs signature. Finally, the expression and function of these signature genes were explored by RT-PCR and colony formation assays. Results Among angiogenesis-related genes clusters, the stable number of clusters was 2. A total of 289 DEGs were identified and 116 lncRNAs were screened to have a significant coexpression relationship with angiogenic DEGs (P value<0.001 and |R| >0.5). A six-gene signature comprising LINC01579, LINC01094, RP11.497E19.1, AC093850.2, RP11.613D13.8, and RP11.384P7.7 was constructed by Lasso Cox regression analysis. The multifactor Cox analysis and Nomogram results showed that our angiogenesis-related lncRNAs signature has good predictive ability for some different clinical factors. For immune, angiogenesis-related lncRNAs signature had the ability to efficiently predict infiltration state of 23 immune cells and immunotherapy. The qPCR analysis showed that the expression levels of the six lncRNA signature genes were all higher in gastric adenocarcinoma tissues than in adjacent tissues. The functional experiment results indicated that downregulation of the expression of these six lncRNA signature genes suppressed the proliferation of ASG and MKN45 cells. Conclusion Six angiogenesis-related genes were identified and integrated into a novel risk signature that can effectively assess prognosis and provide potential therapeutic targets for STAD patients.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Sailiang Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
| | - Xiang yao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jie Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yinbing Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ye Zheng
- Department of Pathology, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China,*Correspondence: Ye Zheng, ; Ganglong Gao, ; Jingjing Xu,
| | - Ganglong Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China,*Correspondence: Ye Zheng, ; Ganglong Gao, ; Jingjing Xu,
| | - Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China,*Correspondence: Ye Zheng, ; Ganglong Gao, ; Jingjing Xu,
| |
Collapse
|
3
|
Biogenesis, classification, and role of LncRNAs in tumor angiogenesis: A focus on tumor and its neighbouring cells, and interaction with miRNAs. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
miR-138-5p Inhibits Vascular Mimicry by Targeting the HIF-1α/VEGFA Pathway in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:7318950. [PMID: 35669101 PMCID: PMC9167126 DOI: 10.1155/2022/7318950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour vascular mimicry (VM) is the process by which new blood vessels are formed by tumour cells rather than endothelial cells. An increasing number of studies have revealed that the VM process is associated with cancer progression and metastasis. MiR-138-5p has been reported to act as a tumour suppressor in many cancers. However, the role and underlying mechanism of miR-138-5p in hepatocellular carcinoma (HCC) VM remain unclear. In this study, VM density was detected by CD31/periodic acid-Schiff double staining in HCC clinical specimens. We found that miR-138-5p expression correlated strongly and negatively with microvessel density. Additionally, the miR-138-5p mimic or inhibitor decreased or increased, respectively, tube formation capacity in HepG2 and Hep3B cells. Consistent with this finding, miR-138-5p repressed vessel density in vivo. Moreover, miR-138-5p targeted hypoxia-inducible factor 1α (HIF-1α) and regulated the expression of HIF-1α and vascular endothelial growth factor A (VEGFA), which are established classical master regulators for angiogenesis. Consistent with these findings, the HIF-1α inhibitor CAY10585 effectively blocked HCC cell VM and VEGFA expression. In conclusion, miR-138-5p inhibits HepG2 and Hep3B cell VM by blocking the HIF-1α/VEGFA pathway. Therefore, miR-138-5p may serve as a useful therapeutic target for miRNA-based HCC therapy.
Collapse
|
5
|
Fu K, Zhang K, Zhang X. LncRNA HOTAIR facilitates proliferation and represses apoptosis of retinoblastoma cells through the miR-20b-5p/RRM2/PI3K/AKT axis. Orphanet J Rare Dis 2022; 17:119. [PMID: 35248107 PMCID: PMC8898492 DOI: 10.1186/s13023-022-02206-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/06/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinoblastoma (RB) represents an adolescent eye malignancy. Long non-coding RNA (LncRNA) HOTAIR shows aberrant expression in many malignancies. This research investigated the mechanism of HOTAIR in RB. Methods Normal retinal cell lines (ARPE-19 and RPE-1) and RB cell lines (ORB50, Y79, HXO-RB44, and WERI-RB) were selected for detection of HOTAIR expression by qRT-PCR. sh-HOTAIR was delivered into Y79 and HXO-RB44 cells. Cell-cycle distribution, proliferation, and apoptosis were detected by CCK-8 assay and flow cytometry. Binding relationships among HOTAIR, miR-20b-5p, and RRM2 were confirmed using dual-luciferase assay. Roles of miR-20b-5p and RRM2 in RB cell-cycle distribution, proliferation, and apoptosis were ascertained by functional rescue experiments. Murine model of xenograft tumor was established, followed by detection of tumor growth and counting of Ki67-positive cells. Expressions of proliferation- and apoptosis-associated proteins and PI3K/AKT pathway-related proteins were determined by Western blot. Results HOTAIR was elevated in RB cells relative to that in normal retinal cells and showed relatively high expression in Y79 and HXO-RB44 cells. sh-HOTAIR induced RB cell-cycle arrest, restrained proliferation, and strengthened apoptosis. HOTAIR functioned as the ceRNA of miR-20b-5p and targeted RRM2. RB cells had poorly-expressed miR-20b-5p and highly-expressed RRM2. miR-20b-5p downregulation or RRM2 overexpression facilitated RB cell-cycle and proliferation, suppressed apoptosis, and reversed the protective effect of sh-HOTAIR on RB. sh-HOTAIR reduced tumor growth and Ki67-positive cells in vivo and inactivated PI3K/AKT pathway. Conclusion LncRNA HOTAIR upregulated RRM2 by competitively binding to miR-20b-5p and activated PI3K/AKT pathway, thereby facilitating proliferation and repressing apoptosis of RB cells.
Collapse
|
6
|
Yuan X, Sun Z, Cui C. Knockdown of lncRNA HOTTIP Inhibits Retinoblastoma Progression by Modulating the miR-101-3p/STC1 Axis. Technol Cancer Res Treat 2021; 20:1533033821997831. [PMID: 33784880 PMCID: PMC8020084 DOI: 10.1177/1533033821997831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Retinoblastoma (RB) is a frequent eye cancer in children. Long non-coding RNA
(LncRNA) HOXA transcript at the distal tip (HOTTIP) is aberrantly expressed
in cancer tissues. This study explores the underlying mechanism of lncRNA
HOTTIP in RB. Methods: HOTTIP expression in normal retinal cells and RB cell lines was detected
using qRT-PCR. The proliferation of RB cells was measured using CCK-8 and
EdU assays, and apoptosis was detected using flow cytometry and Western
blotting after the transfection of si-HOTTIP into Y79 cells and pc-HOTTIP
into HXO-RB-44 cells. The target relationships between HOTTIP and
miR-101-3p, and miR-101-3p and STC1 were predicted by bioinformatics website
and verified using dual-luciferase reporter gene assay. The binding of
HOTTIP and miR-101-3p was verified using RNA pull-down assay. STC1 mRNA and
protein in RB cells were measured using qRT-PCR and Western blotting.
Moreover, si-HOTTIP and in-miR-101-3p/in-NC, and si-HOTTIP and pc-STC1/pcDNA
were co-transfected into Y79 cells respectively to evaluate cell
proliferation and apoptosis. Xenograft study was conducted, and
Ki67-positive expression was detected using immunohistochemical
staining. Results: HOTTIP expression was promoted in RB tissues and cells. Downregulation of
HOTTIP inhibited proliferation and promoted apoptosis of Y79 cells, while
upregulation of HOTTIP promoted proliferation and inhibited apoptosis of
HXO-RB-44 cells. There were target relationships between HOTTIP and
miR-101-3p, and miR-101-3p and STC1. Inhibition of miR-101-3p or
overexpression of STC1 reversed the effect of si-HOTTIP on the proliferation
and apoptosis of RB cells. Xenograft study showed that knockdown of HOTTIP
suppressed the growth of RB in vitro. Conclusion: It could be concluded that HOTTIP sponged miR-101-3p to upregulate STC1
expression, thereby promoting RB cell proliferation and inhibiting
apoptosis.
Collapse
Affiliation(s)
- XiangWen Yuan
- Department of Ophthalmology, Jinan People's Hospital, Jinan, Shandong, People's Republic of China
| | - Zhaoyan Sun
- Department of Ophthalmology, Jinan People's Hospital, Jinan, Shandong, People's Republic of China.,Department of Ophthalmology, Tai'an Second Hospital of Traditional Chinese Medicine, Ophthalmology, Tai'an, Shandong, People's Republic of China
| | - Congxian Cui
- The Procurement Office of Logistics Management Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
7
|
Ma J, Zhang L, Shang A, Song H, Huo J, Zhang M, Jiang L. LINC02163 promotes colorectal cancer progression via miR-511-3p/AKT3 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:961-968. [PMID: 32524841 DOI: 10.1080/21691401.2020.1773486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Long non-coding RNAs and microRNAs are functional regulators in tumour progression. Herein, we revealed the level LINC02163 was up-regulated in CRC tissues and cell lines, and the expression of LINC02163 negatively correlated with prognosis of CRC patients. Functional experiments demonstrated knockdown of LINC02163 significantly attenuated CRC cells proliferation and metastasis. Mechanism analysis showed miR-511-3p could bind LINC02163 and AKT3, and the expressional level of miR-511-3p negatively correlated with the abundance of LINC02163 and AKT3. Inhibition of LINC02163 suppressed cell proliferation, while transfection of miR-511-3p inhibitor or AKT3 in LINC02163-depletion cells restored cell growth and abolished the cell cycle arrest in G0/G1 phase. Therefore, it was indicated that LINC02163 exerted pro-tumour effect through miR-511-3p/AKT3 axis and was prognostic marker for colorectal cancer.
Collapse
Affiliation(s)
- Junwen Ma
- Department of Gastrointestinal Surgery, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lihai Zhang
- Department of General Surgery and Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Anquan Shang
- Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Hu Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiege Huo
- Department of Oncology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingjian Zhang
- Center of Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuqin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Mardanpour K, Rahbar M, Mardanpour S, Khazaei S, Rezaei M. Co-expression of Epstein-Barr virus-encoded RNA1 and viral latent membrane protein 1 in osteosarcoma: A novel insight of predictive markers. Tumour Biol 2020; 42:1010428320974247. [PMID: 33234011 DOI: 10.1177/1010428320974247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus is an etiologic agent of several malignancies. In this study, we explored the association of Epstein-Barr virus-encoded RNA1 and Epstein-Barr virus latent membrane protein 1 co-expression with osteosarcoma. Epstein-Barr virus-encoded RNA1 expression in tumor cells was quantified using reverse transcriptase polymerase chain reaction and in situ hybridization and Epstein-Barr virus latent membrane protein 1 expression was measured using immunohistochemistry staining. There was a statistically significant association between Epstein-Barr virus latent membrane protein 1 and Epstein-Barr virus-encoded RNA1 co-expression and characteristics of osteosarcoma such as nodal stage (p < 0.04), metastasis (p < 0.04), Ki67 index (p < 0.03), and tumor stage (p < 0.05). Co-expression of Epstein-Barr virus-encoded RNA1 and Epstein-Barr virus latent membrane protein 1 in tumors correlated with advanced osteosarcoma and indicated the aggressiveness of bone sarcoma.
Collapse
Affiliation(s)
| | | | | | - Sidegheh Khazaei
- Molecular Pathology Research Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansour Rezaei
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:187. [PMID: 32928281 PMCID: PMC7490906 DOI: 10.1186/s13046-020-01700-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Natural antisense transcripts (NATs), which are transcribed from opposite strands of DNA with partial or complete overlap, affect multiple stages of gene expression, from epigenetic to post-translational modifications. NATs are dysregulated in various types of cancer, and an increasing number of studies focusing on NATs as pivotal regulators of the hallmarks of cancer and as promising candidates for cancer therapy are just beginning to unravel the mystery. Here, we summarize the existing knowledge on NATs to highlight their underlying mechanisms of functions in cancer biology, discuss their potential roles in therapeutic application, and explore future research directions.
Collapse
|
10
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
11
|
Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol 2020; 13:19. [PMID: 32169087 PMCID: PMC7071697 DOI: 10.1186/s13045-020-00858-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Distinct from classical tumor angiogenesis, vasculogenic mimicry (VM) provides a blood supply for tumor cells independent of endothelial cells. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with malignant tumors. Herein, we discuss the recent studies on the role of VM in tumor progression and the diverse mechanisms and signaling pathways that regulate VM in tumors. Furthermore, we also summarize the latest findings of non-coding RNAs, such as lncRNAs and miRNAs in VM formation. In addition, we review application of molecular imaging technologies in detection of VM in malignant tumors. Increasing evidence suggests that VM is significantly associated with poor overall survival in patients with malignant tumors and could be a potential therapeutic target.
Collapse
|
12
|
Lin JX, Weng XF, Xie XS, Lian NZ, Qiu SL, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Yang YH, Liu SJ, Hu M, Lin YK, Huang CM, Zheng CH, Li P, Xie JW. CDK5RAP3 inhibits angiogenesis in gastric neuroendocrine carcinoma by modulating AKT/HIF-1α/VEGFA signaling. Cancer Cell Int 2019; 19:282. [PMID: 31728130 PMCID: PMC6839262 DOI: 10.1186/s12935-019-0997-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiogenesis plays critical roles in the progression and metastasis of malignant tumors. Gastric neuroendocrine carcinoma is an uncommon stomach cancer that is rich in blood vessels and exhibits highly malignant biological behavior with a poor prognosis. The role of CDK5RAP3 in GNEC has not been reported to date. METHODS Immunohistochemistry was used to assess the expression of CDK5RAP3 in GNEC tissues and adjacent non-tumor tissues. Cell lines with stable overexpression or knockdown of CDK5RAP3 were constructed using lentiviral transfection. Wound-healing assays, invasion and metastasis assays, tube formation assays, and tumor xenograft transplantation assays were performed to evaluate the effect of CDK5RAP3 on GNEC angiogenesis in vitro and in vivo. Real-time PCR, ELISA, western blot analysis, and confocal-immunofluorescence staining were used to explore the molecular mechanism of CDK5RAP3's effect on angiogenesis. RESULTS Compared with their respective adjacent non-tumor tissues, protein levels of CDK5RAP3 were significantly decreased in GNEC tissues. Furthermore, low expression of CDK5RAP3 was correlated with more advanced TNM stage, increased tumor microvessel density, and poor prognosis. Functionally, we found that GNEC cells with CDK5RAP3 knockdown promoted human umbilical vein endothelial cells migration and tube formation via activation of AKT/HIF-1α/VEGFA signaling, resulting in increased levels of VEGFA in GNEC cell supernatant. In addition, CDK5RAP3 overexpression in GNEC cells caused the opposing effect. Consistent with these results, nude mouse tumorigenicity assays showed that CDK5RAP3 expression downregulated angiogenesis in vivo. Lastly, patients with low CDK5RAP3 expression and high VEGFA expression exhibited the worst prognosis. CONCLUSIONS This study demonstrated that CDK5RAP3 inhibits angiogenesis by downregulating AKT/HIF-1α/VEGFA signaling in GNEC and improves patient prognosis, suggesting that CDK5RAP3 could be a potential therapeutic target for GNEC.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ning-Zi Lian
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ying-Hong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Si-Jia Liu
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Min Hu
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Yi-Ke Lin
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| |
Collapse
|
13
|
Sun QX, Wang RR, Liu N, Liu C. Dysregulation of miR-204-3p Driven by the Viability and Motility of Retinoblastoma via Wnt/β-catenin Pathway In Vitro and In Vivo. Pathol Oncol Res 2019; 26:1549-1558. [PMID: 31482398 DOI: 10.1007/s12253-019-00722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
Retinoblastoma (RB) is a malignant intraocular tumor that frequently occurs in infants and toddlers. Although the most of RB patients in the developed countries could survival from this cancer, the patients in undeveloped areas are still suffering. The human retinal pigment epithelial cell line ARPE-19 and human retinoblastoma (RB) cell lines HXO-RB44, Y79, and WERI-Rb1 were cultured. The mRNA levels of BANCR and miR-204-3p in these cell lines were measured by qRT-PCR. After transfection with sh-BANCR or treatment with miR-204-3p inhibitor in Y79 cells, the cell proliferation rate, growth, invasion, migration, apoptosis and Wnt/β-catenin signaling pathway activity were measured. The regular Y79 and Y79 cells stably expressed sh-BANCR were injected subcutaneously into nude mice, respectively. The volumes and pathohistological futures of tumors were compared. The biochemical features similar to the cell culture were detected and compered. The mRNA measurements showed that BANCR negatively modulate miR-204-3p expression via directly integration with it. Besides, miR-204-3p and Wnt/β-catenin signalling pathway were found to participate in the oncogenic effects of BANCR on RB cell line by Hoechst staining, cell Counting Kit-8 (CCK-8) assay, wound healing assay, transwell assay, and Western blot analysis in vitro. In addition, an in vivo tumorigenesis experiment in nude mice injected with Y79 cells stably expressed sh-BANCR conformed in the effects of BANCR on RB. Taken together, the knockdown of BANCR inhibited cell proliferation, apoptosis, invasion, and migration in RB via targeting miR-204-3p, the mechanism may involve inhibiting Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qing-Xiu Sun
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Rong-Rong Wang
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Na Liu
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Chao Liu
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China. .,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
14
|
Wang H, Huang C, Yao X. The functions of long non-coding RNAs in colorectal cancer. Transl Cancer Res 2019; 8:2192-2204. [PMID: 35116969 PMCID: PMC8797667 DOI: 10.21037/tcr.2019.08.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm worldwide. Recently, in terms of the mechanism of CRC, most studies have focused on protein-coding genes. However, studies have increasingly shown that long non-coding RNAs (lncRNAs) play crucial roles in the proliferation and metastasis of CRC. Investigating this molecular mechanism may provide potential diagnostic tools and therapeutic targets for CRC. This review closely examines the dysregulation of lncRNAs in CRC. On account of different mechanisms being involved in the occurrence and development of CRC, there are several categories of lncRNAs, including lncRNAs related to the Wnt/β-catenin pathway, epithelial mesenchymal transition, epigenetic regulation, angiopoiesis, and chemoresistance. This review summarizes lncRNAs related to the progression of CRC, which may provide insight into the mechanisms and potential markers for prognostic prediction and monitoring relapse of CRC.
Collapse
Affiliation(s)
- Huaiming Wang
- Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Medical College, Shantou University, Shantou 515063, China
| | - Xueqing Yao
- Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
15
|
Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019; 10:1544. [PMID: 31354653 PMCID: PMC6640166 DOI: 10.3389/fmicb.2019.01544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is the biological process by which new blood vessels are formed from pre-existing vessels. It is considered one of the classic hallmarks of cancer, as pathological angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both viruses are associated with several malignancies including lymphomas, nasopharyngeal carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral factors, including proteins and non-coding RNAs, some of which have been shown to deregulate angiogenic pathways and promote tumor growth. In this review, we discuss the ability of both viruses to modulate the pro-angiogenic process.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Tang Y, Ji F. lncRNA HOTTIP facilitates osteosarcoma cell migration, invasion and epithelial-mesenchymal transition by forming a positive feedback loop with c-Myc. Oncol Lett 2019; 18:1649-1656. [PMID: 31423232 PMCID: PMC6607149 DOI: 10.3892/ol.2019.10463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
Homeobox A transcript at the distal tip (HOTTIP) is an oncogenic long non-coding RNA in cancer. The aim of the present study was to investigate the function and mechanism of HOTTIP in the aggressive behaviors of human osteosarcoma (OS) cells. Expression levels of HOTTIP and epithelial-mesenchymal transition (EMT) markers were determined by reverse transcription-quantitative PCR. Cell invasive and migratory abilities were evaluated in vitro using Matrigel and wound healing assays, respectively. Knockdown of HOTTIP expression was achieved by small interfering RNA-mediated silencing. Overexpression of c-Myc was accomplished by transfecting cultured cells with a c-Myc overexpression plasmid. HOTTIP was demonstrated to be upregulated in OS tissues and cell lines; knockdown of HOTTIP inhibited OS cell migration, invasion and EMT, and suppressed c-Myc expression. In addition, overexpression of c-Myc increased HOTTIP expression and enhanced OS cell migration and invasion. HOTTIP promoted cell migration and invasion by upregulating c-Myc in OS. The positive feedback loop formed by HOTTIP and c-Myc may contribute to OS progression, and HOTTIP may act as a therapeutic target for OS.
Collapse
Affiliation(s)
- Yang Tang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
17
|
Yang Y, Sun X, Chi C, Liu Y, Lin C, Xie D, Shen X, Lin X. Upregulation of long noncoding RNA LINC00152 promotes proliferation and metastasis of esophageal squamous cell carcinoma. Cancer Manag Res 2019; 11:4643-4654. [PMID: 31191025 PMCID: PMC6535442 DOI: 10.2147/cmar.s198905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/20/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose: Esophageal cancer is a major cause of cancer-related mortality worldwide. The long noncoding RNA LINC00152 has been confirmed to play an oncogenic role in many cancers. However, the expression pattern and function of LINC00152 in human esophageal squamous cell carcinoma (ESCC) remain unclear. Materials and methods: We evaluated LINC00152 expression in ESCC by qPCR and in situ hybridization. Proliferation, apoptosis, cell cycle, migration and invasion were examined in ESCC cells knocked down for LINC00152 knockdown by siRNA. Furthermore, an mRNA microarray was performed in ESCC cells with LINC00152 knockdown. Results: LINC00152 was significantly upregulated in human ESCC clinical samples (P<0.001) and cell lines (P=0.008), and LINC00152 overexpression was related to lymphatic metastasis (P=0.03) and advanced pTNM classification (P=0.005). Furthermore, ESCC patients with LINC00152 overexpression had significantly shorter overall survival (P=0.007), and LINC00152 overexpression was an independent risk factor for overall survival of ESCC patients. LINC00152 knockdown inhibited the proliferation, migration and invasion of ESCC cells in vitro. In addition, mechanistic investigations through mRNA array and immunoblot analyses demonstrated that LINC00152 regulated the expression of several cell cycle-related proteins and SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) interactions in vesicular transport pathway proteins. Conclusion: Our research indicated that LINC00152 exhibits oncogenic functions in ESCC and may represent a potential new target for ESCC therapy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Clinical Skills Experiments Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xiangwei Sun
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| | - Chuang Chi
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| | - Chaoxi Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| | - Deyao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| | - Xian Shen
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, People's Republic of China
| |
Collapse
|
18
|
Wang J, Zhang X, Chen W, Hu X, Li J, Liu C. Regulatory roles of long noncoding RNAs implicated in cancer hallmarks. Int J Cancer 2019; 146:906-916. [PMID: 30873588 DOI: 10.1002/ijc.32277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Cancer cells acquire numerous biological properties (designated "cancer hallmarks"), such as cell survival and energy metabolism, that facilitate tumor growth and metastatic dissemination during development. To date, eight hallmarks of cancer have been identified that provide a logical framework for understanding the remarkable diversity of neoplastic diseases, as proposed by Douglas Hanahan and Robert A. Weinberg. Long noncoding RNAs (lncRNAs), a category of transcripts widely demonstrated to exert significant regulatory effects on biological processes, have attracted considerable research attention due to their association with the occurrence and development of cancer. The mechanisms by which lncRNAs exert their functions require elucidation to optimize their potential utility as alternative biomarkers and therapeutic targets during tumor occurrence and progression. In this review, we have discussed recent research progress on lncRNAs involved in various cancer hallmarks and their related mechanisms of action, with a view to providing an updated picture of their immense therapeutic potential in the fight against cancer.
Collapse
Affiliation(s)
- Jun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Zhang Y, Liu X, Li Q, Zhang Y. lncRNA LINC00460 promoted colorectal cancer cells metastasis via miR-939-5p sponging. Cancer Manag Res 2019; 11:1779-1789. [PMID: 30863183 PMCID: PMC6391123 DOI: 10.2147/cmar.s192452] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background lncRNAs are widely involved in multiple malignancies including colorectal cancer (CRC). The expression and function of long intergenic non-protein coding RNA 460 (LINC00460) in CRC remains obscure. Methods In the present study, quantitative real-time PCR assays were applied to detect the expression changes of LINC00460 and microRNA-939-5p (miR-939-5p) in CRC tissue specimens and cell lines. Western blot assays were used to measure the changes of LIMK2. Bioinformatics analysis, luciferase assays, and RNA pull-down assays were applied to determine the targeting binding effect between LINC00460 and miR-939-5p as well as LIMK2 and miR-939-5p. Transwell assays were used to evaluate the metastatic ability changes of CRC line HT29 and LOVO cells. Results We found that LINC00460 was upregulated and closely correlated to clinicopathological features and poor prognosis of patients with CRC. Functionally, we elucidated that LINC00460 promoted metastasis in CRC cell lines HT29 and LOVO. Further, we showed that LIMK2 was a downstream effector in the LINC00460-induced promotion of metastasis in CRC cells HT29 and LOVO. Through online bioinformatics analysis, LINC00460 and LIMK2 were demonstrated to share similar microRNA response elements for miR-939-5p. Then, LINC00460 and LIMK2 were verified to be the targets of miR-939-5p via a luciferase assay and an RNA pull-down assay. Also, miR-939-5p was showed to suppress metastasis by targeting of LIMK2. Lastly, we revealed that LINC00460 promoted LIMK2-mediated metastasis via miR-939-5p sponging in CRC cells HT29 and LOVO. Conclusion The findings of this study showed that LINC00460 works as an oncogene in CRC and promoted CRC cell metastasis via regulation of miR-939-3p/LIMK2 axial. The present study might provide a new target in treating CRC.
Collapse
Affiliation(s)
- Yueyan Zhang
- Department of Pathology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, People's Republic of China,
| | - Xingchi Liu
- Department of Thoracic Surgery, General Hospital of Shenyang Military Command, Shenyang, People's Republic of China
| | - Qiang Li
- Department of Pathology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, People's Republic of China,
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
20
|
Do H, Kim W. Roles of Oncogenic Long Non-coding RNAs in Cancer Development. Genomics Inform 2018; 16:e18. [PMID: 30602079 PMCID: PMC6440676 DOI: 10.5808/gi.2018.16.4.e18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as RNAs that are longer than 200 nucleotides and cannot be translated into protein. Several studies have demonstrated that lncRNAs are directly or indirectly involved in a variety of biological processes and in the regulation of gene expression. In addition, lncRNAs have important roles in many diseases including cancer. It has been shown that abnormal expression of lncRNAs is observed in several human solid tumors. Several studies have shown that many lncRNAs can function as oncogenes in cancer development through the induction of cell cycle progression, cell proliferation and invasion, anti-apoptosis, and metastasis. Oncogenic lncRNAs have the potential to become promising biomarkers and might be potent prognostic targets in cancer therapy. However, the biological and molecular mechanisms of lncRNA involvement in tumorigenesis have not yet been fully elucidated. This review summarizes studies on the regulatory and functional roles of oncogenic lncRNAs in the development and progression of various types of cancer.
Collapse
Affiliation(s)
- Hyunhee Do
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Wanyeon Kim
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| |
Collapse
|
21
|
Tian Y, Feng Y. Up-regulation of long noncoding RNA uc.338 predicts poor survival in non-small cell lung cancer. Cancer Biomark 2018; 22:781-785. [PMID: 29843223 DOI: 10.3233/cbm-181331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNA ultraconserved element 338 (uc.338) is a long non-coding RNA reported to function as a promoter in non-small cell lung cancer (NSCLC). However, the function and potential mechanism of uc.338 in NSCLC is still unclear. OBJECTIVE The aim of the present study was to assess the effect of uc.338 on the prognosis of patients with NSCLC. METHODS The expression levels of uc.338 in NSCLC tissues and matched normal lung tissues were examined by real-time quantitative PCR. Then the association between uc.338 levels with clinical variables as well as survival time was investigated. RESULTS We found that uc.338 expression levels were significantly upregulated in NSCLC compared with the matched noncancerous lung tissues (P< 0.01). In addition, increased uc.338 expression was significantly associated with TNM stage (P< 0.003), lymph node metastasis (P< 0.006) and distant metastasis (P< 0.002). More importantly, Kaplan-Meier survival analysis demonstrated that higher uc.338 expression levels were associated with a shorter overall survival (P< 0.0016) and disease-free survival (p< 0.0001) in NSCLC patients. Finally, univariate and multivariate Cox regression analyses revealed that uc.338 was an independent risk factor for overall survival and disease-free survival. CONCLUSIONS Our results show that uc.338 may play an important role in tumorigenesis and progression and could serve as a potential independent prognostic biomarker for patients with NSCLC.
Collapse
|
22
|
Gupta A, Sugadev R, Sharma YK, Ahmad Y, Khurana P. Role of miRNAs in hypoxia-related disorders. J Biosci 2018. [DOI: 10.1007/s12038-018-9789-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Lin J, Cao S, Wang Y, Hu Y, Liu H, Li J, Chen J, Li P, Liu J, Wang Q, Zheng L. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1α/VEGFA signalling in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:113. [PMID: 29866133 PMCID: PMC5987644 DOI: 10.1186/s13046-018-0727-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Background Angiogenesis is considered as an important process in the development of malignancies and is associated with cancer progression and metastasis. Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and is recognized as a typical angiogenic tumor. Thus, it is of great importance to study the underlying mechanism of angiogenesis in HCC. The long non-coding RNA (lncRNA) ubiquitin conjugating enzyme E2C pseudogene 3 (UBE2CP3) has been reported as an oncogene that promotes tumor metastasis in HCC. However, the role and underlying mechanisms of UBE2CP3 in HCC angiogenesis are still unclear. Methods We measured the expression levels of UBE2CP3 by in situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) in HCC patient samples. We also concomitantly used CD31/PAS double-staining to measure endothelial vessel (EV) density and used qRT-PCR to measure the CD31 mRNA level. HepG2 and SMMC-7721 cells were transfected with Lv-UBE2CP3 or Sh-UBE2CP3 virus to obtain stably over-expressing or knocking-down UBE2CP3 cell lines. The indirect effects of UBE2CP3 on ECs were studied by establishing a co-culture system using Transwell chambers with a 0.4-μm pore size. HCC cells and ECs in the co-culture system were separated, but the cytokines and growth factors were able to communicate with each other. Following exposed to HCC cells, ECs were collected for functional studies. Finally, we studied the function of UBE2CP3 in vivo by chick embryo chorioallantoic membrane (CAM) angiogenesis assays and nude mouse tumorigenicity assays. Results In this study, we found that UBE2CP3 expression was higher in HCC tissues than in para-tumor tissues and was up-regulated in tissues with high EV density. Functionally, we found that in the co-culture systems, HCC cells overexpressing UBE2CP3 promoted HUVEC proliferation, migration and tube formation via the activation of ERK/HIF-1α/p70S6K/VEGFA signalling, increasing the level of VEGFA in HCC cell supernatant. In addition, the opposite results appeared when the expression of UBE2CP3 in HCC cells was knocked down. Consistent with these results, CAM angiogenesis assays and nude mouse tumorigenicity assays showed that UBE2CP3 expression up-regulated EV density in vivo. Conclusion Our study suggests that UBE2CP3 can enhance the interaction between HCC tumor cells and HUVECs and promote HCC tumorigenicity by facilitating angiogenesis. Electronic supplementary material The online version of this article (10.1186/s13046-018-0727-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinduan Lin
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Shunwang Cao
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanwei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hongwei Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Jiehua Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Jing Chen
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Pan Li
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jumei Liu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Lei Zheng
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
24
|
Kim JW, Jo YY, Kweon HY, Kim DW, Kim SG. The effects of proteins released from silk mat layers on macrophages. Maxillofac Plast Reconstr Surg 2018; 40:10. [PMID: 29872647 PMCID: PMC5968019 DOI: 10.1186/s40902-018-0149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022] Open
Abstract
Background The objective of this study was to evaluate the changes in gene expression after incubation of cells with proteins released from different silk mat layers. Methods A silk cocoon from Bombyx mori was separated into four layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to the outer layer). The proteins were released by sonication of a silk mat layer in normal saline. The concentration of proteins was determined by spectrophotometry. They were incubated with RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results Layer 1 and 4 groups had higher protein concentrations compared to those in layer 2 and 3 groups. The genes associated with inflammation and angiogenesis showed significantly higher expression in layer 1 and 4 groups. The results of qRT-PCR were in agreement with those of the cDNA microarray analysis. Conclusions The silk mat from the middle portion of the silkworm cocoon yielded a lower protein release and caused an insignificant change in the expression of genes that are associated with inflammation and angiogenesis.
Collapse
Affiliation(s)
- Ju-Won Kim
- 1Department of Oral and Maxillofacial Surgery, Sacred Heart Hospital, Hallym University, Jukheon gil 7, Gangneung, Gangwondo 25457 Republic of Korea
| | - You-Young Jo
- 2Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, Wanju-gun, 55365 Republic of Korea
| | - Hae Yong Kweon
- 2Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, Wanju-gun, 55365 Republic of Korea
| | - Dae-Won Kim
- 3Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457 Republic of Korea
| | - Seong-Gon Kim
- 4Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457 Republic of Korea
| |
Collapse
|
25
|
Li H, Ma SQ, Huang J, Chen XP, Zhou HH. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget 2018; 8:39859-39876. [PMID: 28418892 PMCID: PMC5503659 DOI: 10.18632/oncotarget.16339] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignancies worldwide. Metastasis is responsible for more than 90% CRC patients' death. Long noncoding RNAs (lncRNAs) are an important class of transcribed RNA molecules greater than 200 nucleotides in length. With the development of whole genome sequencing technologies, they have been gained more attention. Accumulating evidences suggest that abnormal expression of lncRNAs in diverse diseases are involved in various biological functions such as proliferation, apoptosis, metastasis and differentiation by acting as epigenetic, splicing, transcriptional or post-transcriptional regulators. Aberrant expression of lncRNAs has also been found in CRC. Besides, recent studies have indicated that lncRNAs play important roles in tumourigenesis and cancer metastasis. They participate in the process of metastasis by activing or inhibiting the metastatic pathways. However, their functions on the development of cancer metastasis are poorly understood. In this review, we highlight the findings of roles for lncRNAs in CRC metastasis and review the metastatic pathways of lncRNAs leading to cancer metastasis in CRC, including escape of apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis and invasion, migration and proliferation. Furthermore, we also discuss the potential clinical application of lncRNAs in CRC as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Si-Qing Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
26
|
Quezada C, Torres Á, Niechi I, Uribe D, Contreras-Duarte S, Toledo F, San Martín R, Gutiérrez J, Sobrevia L. Role of extracellular vesicles in glioma progression. Mol Aspects Med 2018; 60:38-51. [PMID: 29222067 DOI: 10.1016/j.mam.2017.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
The role of extracellular vesicles in cancer biology has emerged as a focus of the study of great importance and has been shown to directly influence tumour development in several cancers including brain tumours, such as gliomas. Gliomas are the most aggressive brain tumours, and in the last time, a considerable effort has been made to understand their biology. Studies focus in the signalling pathways involved in the processes of angiogenesis, viability, drug resistance and immune response evasion, as well as gliomas ability to infiltrate healthy tissue, a phenomenon regulated by the migratory and invasive capacity of the cells within a tumour. In this review, we summarize the different types and classifications of extracellular vesicles, their intravesicular content, and their role in the regulation of tumour progression processes in glioma.
Collapse
Affiliation(s)
- Claudia Quezada
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Ángelo Torres
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Uribe
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
27
|
Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding RNAs in ischemic stroke. Cell Death Dis 2018; 9:281. [PMID: 29449542 PMCID: PMC5833768 DOI: 10.1038/s41419-018-0282-x] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. Uncovering the cellular and molecular pathophysiological processes in stroke have been a top priority. Long non-coding (lnc) RNAs play critical roles in different kinds of diseases. In recent years, a bulk of aberrantly expressed lncRNAs have been screened out in ischemic stroke patients or ischemia insulted animals using new technologies such as RNA-seq, deep sequencing, and microarrays. Nine specific lncRNAs, antisense non-coding RNA in the INK4 locus (ANRIL), metastasis-associate lung adenocarcinoma transcript 1 (MALAT1), N1LR, maternally expressed gene 3 (MEG3), H19, CaMK2D-associated transcript 1 (C2dat1), Fos downstream transcript (FosDT), small nucleolar RNA host gene 14 (SNHG14), and taurine-upregulated gene 1 (TUG1), were found increased in cerebral ischemic animals and/or oxygen-glucose deprived (OGD) cells. These lncRNAs were suggested to promote cell apoptosis, angiogenesis, inflammation, and cell death. Our Gene Ontology (GO) enrichment analysis predicted that MEG3, H19, and MALAT1 might also be related to functions such as neurogenesis, angiogenesis, and inflammation through mechanisms of gene regulation (DNA transcription, RNA folding, methylation, and gene imprinting). This knowledge may provide a better understanding of the functions and mechanisms of lncRNAs in ischemic stroke. Further elucidating the functions and mechanisms of these lncRNAs in biological systems under normal and pathological conditions may lead to opportunities for identifying biomarkers and novel therapeutic targets of ischemic stroke.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, 410219, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shu-Zhen Zhu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Shi Z, Pan B, Feng S. The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 2018; 22:2055-2061. [PMID: 29392896 PMCID: PMC5867120 DOI: 10.1111/jcmm.13515] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non-coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Liu W, Lv C, Zhang B, Zhou Q, Cao Z. MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA (NEW YORK, N.Y.) 2017; 23:1019-1027. [PMID: 28396577 PMCID: PMC5473136 DOI: 10.1261/rna.059592.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
Aggressive cancer cells gain robust tumor vascular mimicry (VM) capability that promotes tumor growth and metastasis. VE-cadherin is aberrantly overexpressed in vasculogenic cancer cells and regarded as a master gene of tumor VM. Although microRNAs (miRNAs) play an important role in modulating tumor angiogenesis and cancer metastasis, the miRNA that targets VE-cadherin expression in cancer cells to inhibit tumor cell-mediated VM is enigmatic. In this study, we found that miR-27b levels are negatively co-related to VE-cadherin expression in ovarian cancer cells and tumor cell-mediated VM, and demonstrated that miR-27b could bind to the 3'-untranslated region (3'UTR) of VE-cadherin mRNA. Overexpression of miR-27b in aggressive ovarian cancer cell lines Hey1B and ES2 significantly diminished intracellular VE-cadherin expression; convincingly, the inhibitory effect of miR-27b could be reversed by miR-27b specific inhibitor. Intriguingly, miR-27b not only effectively suppressed ovarian cancer cell migration and invasion, but also markedly inhibited formation of ovarian cancer cell-mediated capillary-like structures in vitro and suppressed generation of functional tumor blood vessels in mice. Together, our study suggests that miR-27b functions as a new inhibitor of ovarian cancer cell-mediated VM through suppression of VE-cadherin expression, providing a new potential drug candidate for antitumor VM and anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Wenming Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
30
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|