1
|
Dias PB, Messias-Reason I, Hokazono K, Nisihara R. The role of mannose-binding lectin (MBL) in diabetic retinopathy: A scoping review. Immunol Lett 2024; 267:106863. [PMID: 38705482 DOI: 10.1016/j.imlet.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic systemic disease characterized by a multifactorial nature, which may lead to several macro and microvascular complications. Diabetic retinopathy (DR) is one of the most severe microvascular complications of DM, which can result in permanent blindness. The mechanisms involved in the pathogenesis of DR are multiple and still poorly understood. Factors such as dysregulation of vascular regeneration, oxidative and hyperosmolar stress in addition to inflammatory processes have been associated with the pathogenesis of DR. Furthermore, compelling evidence shows that components of the immune system, including the complement system, play a relevant role in the development of the disease. Studies suggest that high concentrations of mannose-binding lectin (MBL), an essential component of the complement lectin pathway, may contribute to the development of DR in patients with DM. This review provides an update on the possible role of the complement system, specifically the lectin pathway, in the pathogenesis of DR and discusses the potential of MBL as a non-invasive biomarker for both, the presence and severity of DR, in addition to its potential as a therapeutic target for intervention strategies.
Collapse
Affiliation(s)
- Paula Basso Dias
- Clinical Hospital, Federal University of Paraná, Curitiba, Brazil; Department of Ophthalmology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Kenzo Hokazono
- Department of Ophthalmology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Renato Nisihara
- Clinical Hospital, Federal University of Paraná, Curitiba, Brazil; Department of Medicine, Positivo University, Curitiba, Brazil.
| |
Collapse
|
2
|
Oliveira Cavalcanti E, Freitas Lidani KC, de Freitas Oliveira Toré C, de Messias Reason IJ, Andrade FA. MASP1 Gene Polymorphism and MASP-3 Serum Levels in Patients with Chronic Chagas Disease. Immunol Invest 2022; 51:2108-2121. [PMID: 36166216 DOI: 10.1080/08820139.2022.2110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chagas disease (CD), caused by Trypanosoma cruzi, is a major public health issue worldwide affecting 6-7 million people, mainly in Latin America. The complement system plays a crucial role in host immune defense against T. cruzi infection and during the chronic phase of CD; however, the role of the MBL-associated serine protease 1 (MASP1) gene encoding MASP-1, MASP-3, and MAp44 complement proteins has not yet been reported in CD. This study investigated the possible association between MASP1 gene polymorphisms and MASP-3 protein serum levels in chronic CD and its clinical forms. METHODS Five polymorphisms of MASP1 gene regulatory regions were genotyped in 214 patients with CD and 197 healthy controls (rs7609662 G>A, rs13064994 C>T, rs72549262 C>G, rs1109452 C>T and rs850314 G>A). MASP-3 serum levels were assessed in 70 patients and 66 healthy controls. Clinical data, serum levels of complement proteins (ficolin-2, ficolin-3 and MBL) and inflammatory markers (pentraxin-3 and hsCRP) were also included in the analyses. RESULTS A significant association of the MASP1 GC_CCA haplotype with CD (padj= 0.002; OR 3.17 [1.19-8.39]) and chronic chagasic cardiomyopathy (CCC) (padj= 0.013; OR 4.57 [1.37-15.16] was observed. MASP-3 and pentraxin-3 levels were positively correlated in the patients (rho = 0.62; p = 0.0001). MASP-3 levels were not associated with MASP1 polymorphisms or CD and its clinical forms. Furthermore, no correlation was observed between MASP-3 levels and that of ficolin-2, ficolin-3, MBL and hsCRP. CONCLUSION Our findings suggest a possible role for the MASP1 GC_CCA haplotype in susceptibility to chronic CD and CCC clinical forms.
Collapse
Affiliation(s)
- Ednéia Oliveira Cavalcanti
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.,Department of Medicine, Positivo University, Curitiba, Brazil
| |
Collapse
|
3
|
Lidani KCF, Andrade FA, Beltrame MH, Chakravarti I, Tizzot MR, Cavalcanti EO, Sandri TL, Luz PR, Messias-Reason IJ. Ficolin-3 in chronic Chagas disease: Low serum levels associated with the risk of cardiac insufficiency. Parasite Immunol 2021; 43:e12829. [PMID: 33686686 DOI: 10.1111/pim.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS To investigate whether FCN3 polymorphisms and circulating ficolin-3 levels were associated with clinical forms of chronic Chagas disease (CD) and to assess their potential use as biomarkers for the disease or its severity. METHODS AND RESULTS FCN3 polymorphisms (g.1637delC (rs532781899) in exon 5; g.3524_3532insTATTTGGCC (rs28362807) in intron 5 and g.4473C > A) (rs4494157) in intron 7) were determined in 178 chronic CD patients (65 asymptomatic, 68 cardiac, 21 digestive and 24 cardiodigestive), and 285 healthy controls by sequence-specific PCR. Ficolin-3 serum levels, measured by ELISA in 80 patients and 80 controls, did not differ between groups. On the other hand, ficolin-3 levels were positively correlated with left ventricular ejection fraction (P = .002; r = .5), with lower levels associated with increased risk of cardiac insufficiency (P = .033; OR 7.21, 95%IC 1.17-44.4). Ficolin-3 levels were positively correlated with ficolin-2 (P = .021; r = .63), and negatively with MBL (P = .002; r = -.36) and pentraxin-3 (P = .04; r = -.32) levels. No significant results were observed for the investigated FCN3 polymorphisms and CD. The g.1637del/1637C heterozygotes presented lower ficolin-3 levels than g.1637C/1637C homozygotes in the control group (P = .023). CONCLUSION Low ficolin-3 levels may play a role in the pathophysiology of cardiac insufficiency associated with CD.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Indira Chakravarti
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maria Regina Tizzot
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Edneia Oliveira Cavalcanti
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Paola Rosa Luz
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Iara J Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Ghosh S, Das S, Mukherjee J, Abdullah S, Mondal R, Sultana S, Sehgal A, Behl T. Enumerating the role of properdin in the pathogenesis of IgA nephropathy and its possible therapies. Int Immunopharmacol 2021; 93:107429. [PMID: 33571820 DOI: 10.1016/j.intimp.2021.107429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the most prevalent form of glomerulonephritis affecting almost 1.3% of the total population worldwide. It is an autoimmune disorder where the host autoantibody forms an immune complex with the defective galactose-deficient IgA1 and gets deposited at the mesangium and endocapillary region of glomeruli. IgA has the capability to activate alternative and lectin complement cascades which even aggravates the condition. Properdin is directly associated with IgAN by activating and stabilising the alternative complement pathway at the mesangium, thereby causing progressive renal damage. OBJECTIVE The present review mainly focuses on correlating the influence of properdin in activating the complement cascade at glomeruli which is the major cause of disease exacerbation. Secondly, we have described the probable therapies and new targets that are under trials to check their efficacy in IgAN. METHODS An in-depth research was carried out from different peer-reviewed articles till December 2020 from several renowned databases like PubMed, Frontier, and MEDLINE, and the information was analysed and written in a simplified manner. RESULTS Co-deposition of properdin is observed along with IgA and C3 in 75%-100% of the patients. It is not yet fully understood whether properdin inhibition can attenuate IgAN, as many conflicting reports have revealed worsening of IgAN after impeding properdin. CONCLUSION With no specific cure still available, the treatment strategies are of great concern to find a better target to restrict the disease progression. More research and clinical trials are required to find out a prominent target to combat IgAN.
Collapse
Affiliation(s)
- Srijit Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Srijita Das
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Joy Mukherjee
- Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Salik Abdullah
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Rupsa Mondal
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Shirin Sultana
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India.
| |
Collapse
|
5
|
Sena L, Oliveira-Toré CF, Skare T, de Messias-Reason IJ, Andrade FA. C3 Gene Functional Polymorphisms and C3 Serum Levels in Patients with Rheumatoid Arthritis. Immunol Invest 2020; 50:1027-1041. [PMID: 32787514 DOI: 10.1080/08820139.2020.1800726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The complement system is a key component of the innate immunity that plays a significant role in the development and clinical presentation of Rheumatoid arthritis (RA). Complement protein C3 is a central molecule in the activation of complement with a significant role in the inflammatory processes of RA. Nevertheless, the impact of C3 gene polymorphisms in the development of RA is still unknown. The current study aimed to investigate the possible influence of C3 gene polymorphisms in the susceptibility and clinical expression of RA. Three C3 polymorphisms (rs2250656:A > G, intron 2; rs2230199:C > G [p.Arg102Gly], exon 3 and rs1047286:C > T [p.Pro314Leu], exon 9) were assessed by sequence-specific PCR in a total of 156 RA patients and 270 healthy controls from Southern Brazil. In addition, C3 levels were measured in 60 patients and 60 controls by immunoturbidimetry and clinical features were collected from medical records. The frequency of rs2230199 G allele and GG genotype was significantly higher in RA patients than controls (padj = 0.012 OR = 1.57 [1.11-2.31]; padj = 0.008, OR = 1.60 [1.35-2.33]) as well as the rs1047286 T and TT (padj = 0.010, OR = 1.67 [1.12-2.40]; padj = 0.001, OR = 1.83 [1.27-2.65] and the C3 AGT haplotype (padj = 0.0007 OR = 1.92 [1.32-2.80]). Moreover, C3 serum levels were higher in patients than controls (median: 169 mg/dl vs.155 mg/dl; padj = 0.022), as well as in RF seronegative compared with seropositive patients (172 mg/dl vs. 165 mg/dl; padj = 0.007). Our results suggest that the rs2230199 G (p.102Gly) and rs1047286 T (p.314Leu) alleles play a role in the pathophysiology of RA, possibly impacting complement activation by the alternative pathway.
Collapse
Affiliation(s)
- Leia Sena
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Camila F Oliveira-Toré
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thelma Skare
- Rheumatology Unit, Evangelical Mackenzie Hospital, Curitiba, Brazil
| | | | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Forsdyke DR. Metabolic optimization of adoptive T cell transfer cancer immunotherapy: A historical overview. Scand J Immunol 2020; 92:e12929. [PMID: 32640079 DOI: 10.1111/sji.12929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
After prolonged extracorporeal multiplication in physiological culture media, there can be curative infusions of a cancer patient's own cytotoxic T cells (adoptive T cell transfer; ACT), which must achieve efficient activation in potentially adverse tumour microenvironments. With spectacular, yet irregular, success, improvements are needed. Developing lymphoid cells are biologically selected, not only for 'near-self' reactivity (positive selection), but also to avoid self-reactivity (negative selection). Thus, success requires harnessing near-self cells while avoiding extreme autoimmune phenomena. Abrupt metabolic changes accompanying T cell activation to leave the G0 stage and enter the G1 stage of the cell cycle (eg enhanced glycolysis) are accompanied by increased transcription of the G0S9 gene that mediates salvage synthesis of NAD+ from nicotinamide; the latter has recently been shown to increase the efficiency of ACT. Despite theoretical and experimental advances, there has not been parallel progress in simulating in vivo conditions with culture media that were initially formulated for their positive benefits for tumour cell lines (cell survival and proliferation). Yet for lymphoid cells, inhibition or death (ie immunological tolerance) is as important as their activation and proliferation (immunological response). Thus, use of media optimized for the latter may mask the former. The resilience of established culture protocols may have been partly politically driven. However, unphysiological conditions have sometimes yielded fortuitous insights. Optimization of culture media for specific tissues must consider the nature of problems addressed in research settings and the need to avoid mishaps in clinical settings.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Forsdyke DR. Two signal half-century: From negative selection of self-reactivity to positive selection of near-self-reactivity. Scand J Immunol 2018; 89:e12746. [PMID: 30592317 DOI: 10.1111/sji.12746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
With the emergence of clonal selection ideas in the 1950s, the development of immune cell repertoires was seen to require the negative selection of self-reacting cells, with surviving cells exhibiting a broad range of specificities. Thus, confronting a universe of not-self-antigens, a potential host organism spread its resources widely. In the 1960s, the two signal hypothesis showed how this might work. However, in the 1970s an affinity/avidity model further proposed that anticipating a pathogen strategy of exploiting "holes" in the repertoire created by negative selection, hosts should also positively select near-self-reacting cells. A microbe mutating an antigen from a form foreign to its host to a form resembling that host should prevail over host defences with respect to that antigen. By mutating a step towards host self, along the path from non-self to self, it should come to dominate the microbe population. By progressive stepwise mutations, such microbes would become better adapted, to the detriment of their hosts. But they would lose this advantage if, as they mutated closer to host self, they encountered progressively stiffer host defences. Thus, as described in the affinity/avidity model, positive selection of lymphocytes for specificities that were very close to, but not quite, anti-self (ie, "anti-near-self") should be an important host adaptation. While positive selection affects both B and T cells, mechanisms are uncertain. Converging evidence from studies of lymphocyte activation, either polyclonally (with lectins as "antigen-analogs") or monoclonally (by specific antigen), supports the original generic affinity/avidity model for countering mutations towards host self.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|