1
|
Branzei D, Bene S, Gangwani L, Szakal B. The multifaceted roles of the Ctf4 replisome hub in the maintenance of genome integrity. DNA Repair (Amst) 2024; 142:103742. [PMID: 39137555 PMCID: PMC11425796 DOI: 10.1016/j.dnarep.2024.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
At the core of cellular life lies a carefully orchestrated interplay of DNA replication, recombination, chromatin assembly, sister-chromatid cohesion and transcription. These fundamental processes, while seemingly discrete, are inextricably linked during genome replication. A set of replisome factors integrate various DNA transactions and contribute to the transient formation of sister chromatid junctions involving either the cohesin complex or DNA four-way junctions. The latter structures serve DNA damage bypass and may have additional roles in replication fork stabilization or in marking regions of replication fork blockage. Here, we will discuss these concepts based on the ability of one replisome component, Ctf4, to act as a hub and functionally link these processes during DNA replication to ensure genome maintenance.
Collapse
Affiliation(s)
- Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy.
| | - Szabolcs Bene
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Barnabas Szakal
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Via Adamello 16, Milan 20139, Italy
| |
Collapse
|
2
|
Hoggard T, Chacin E, Hollatz AJ, Kurat CF, Fox CA. The budding yeast Fkh1 Forkhead associated (FHA) domain promotes a G1-chromatin state and the activity of chromosomal DNA replication origins. PLoS Genet 2024; 20:e1011366. [PMID: 39102423 PMCID: PMC11326605 DOI: 10.1371/journal.pgen.1011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/15/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Allison J Hollatz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christoph F Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Integrated Program in Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Hoggard T, Chacin E, Hollatz AJ, Kurat CF, Fox CA. The budding yeast Fkh1 Forkhead associated (FHA) domain promoted a G1-chromatin state and the activity of chromosomal DNA replication origins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580712. [PMID: 38405780 PMCID: PMC10889021 DOI: 10.1101/2024.02.16.580712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Erika Chacin
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Allison J. Hollatz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison
- Integrated Program in Biochemistry, University of Wisconsin, Madison
| | - Christoph F. Kurat
- Biomedical Center Munich (BMC), Division of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Martinsried, Germany
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison
- Integrated Program in Biochemistry, University of Wisconsin, Madison
| |
Collapse
|
4
|
Ahmad H, Chetlangia N, Prasanth SG. Chromatin's Influence on Pre-Replication Complex Assembly and Function. BIOLOGY 2024; 13:152. [PMID: 38534422 PMCID: PMC10968542 DOI: 10.3390/biology13030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
In all eukaryotes, the initiation of DNA replication requires a stepwise assembly of factors onto the origins of DNA replication. This is pioneered by the Origin Recognition Complex, which recruits Cdc6. Together, they bring Cdt1, which shepherds MCM2-7 to form the OCCM complex. Sequentially, a second Cdt1-bound hexamer of MCM2-7 is recruited by ORC-Cdc6 to form an MCM double hexamer, which forms a part of the pre-RC. Although the mechanism of ORC binding to DNA varies across eukaryotes, how ORC is recruited to replication origins in human cells remains an area of intense investigation. This review discusses how the chromatin environment influences pre-RC assembly, function, and, eventually, origin activity.
Collapse
Affiliation(s)
- Hina Ahmad
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; (H.A.); (N.C.)
| | - Neha Chetlangia
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; (H.A.); (N.C.)
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; (H.A.); (N.C.)
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
6
|
Pląskowska K, Zakrzewska-Czerwińska J. Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus. FEMS Microbiol Rev 2023; 47:fuad057. [PMID: 37791401 PMCID: PMC11318664 DOI: 10.1093/femsre/fuad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| |
Collapse
|
7
|
Thakur BL, Baris AM, Fu H, Redon CE, Pongor L, Mosavarpour S, Gross J, Jang SM, Sebastian R, Utani K, Jenkins L, Indig F, Aladjem M. Convergence of SIRT1 and ATR signaling to modulate replication origin dormancy. Nucleic Acids Res 2022; 50:5111-5128. [PMID: 35524559 PMCID: PMC9122590 DOI: 10.1093/nar/gkac299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2023] Open
Abstract
During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Adrian M Baris
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Jacob M Gross
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| |
Collapse
|
8
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
9
|
Parker PJ, Lockwood N, Davis K, Kelly JR, Soliman TN, Pardo AL, Marshall JJT, Redmond JM, Vitale M, Silvia Martini. A cancer-associated, genome protective programme engaging PKCε. Adv Biol Regul 2020; 78:100759. [PMID: 33039823 PMCID: PMC7689578 DOI: 10.1016/j.jbior.2020.100759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities.
Collapse
Affiliation(s)
- Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, Guy's Campus, London, SE1 1UL, UK.
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Joanna R Kelly
- Cancer Research UK, Manchester Institute, Alderley Park, SK10 4TG, UK
| | - Tanya N Soliman
- Barts Cancer Institute, Charterhouse Square, London, EC1M 6BE, UK
| | - Ainara Lopez Pardo
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
10
|
Ohbayashi R, Hirooka S, Onuma R, Kanesaki Y, Hirose Y, Kobayashi Y, Fujiwara T, Furusawa C, Miyagishima SY. Evolutionary Changes in DnaA-Dependent Chromosomal Replication in Cyanobacteria. Front Microbiol 2020; 11:786. [PMID: 32411117 PMCID: PMC7198777 DOI: 10.3389/fmicb.2020.00786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/02/2020] [Indexed: 12/02/2022] Open
Abstract
Replication of the circular bacterial chromosome is initiated at a unique origin (oriC) in a DnaA-dependent manner in which replication proceeds bidirectionally from oriC to ter. The nucleotide compositions of most bacteria differ between the leading and lagging DNA strands. Thus, the chromosomal DNA sequence typically exhibits an asymmetric GC skew profile. Further, free-living bacteria without genomes encoding dnaA were unknown. Thus, a DnaA-oriC-dependent replication initiation mechanism may be essential for most bacteria. However, most cyanobacterial genomes exhibit irregular GC skew profiles. We previously found that the Synechococcus elongatus chromosome, which exhibits a regular GC skew profile, is replicated in a DnaA-oriC-dependent manner, whereas chromosomes of Synechocystis sp. PCC 6803 and Nostoc sp. PCC 7120, which exhibit an irregular GC skew profile, are replicated from multiple origins in a DnaA-independent manner. Here we investigate the variation in the mechanisms of cyanobacterial chromosome replication. We found that the genomes of certain free-living species do not encode dnaA and such species, including Cyanobacterium aponinum PCC 10605 and Geminocystis sp. NIES-3708, replicate their chromosomes from multiple origins. Synechococcus sp. PCC 7002, which is phylogenetically closely related to dnaA-lacking free-living species as well as to dnaA-encoding but DnaA-oriC-independent Synechocystis sp. PCC 6803, possesses dnaA. In Synechococcus sp. PCC 7002, dnaA was not essential and its chromosomes were replicated from a unique origin in a DnaA-oriC independent manner. Our results also suggest that loss of DnaA-oriC-dependency independently occurred multiple times during cyanobacterial evolution and raises a possibility that the loss of dnaA or loss of DnaA-oriC dependency correlated with an increase in ploidy level.
Collapse
Affiliation(s)
- Ryudo Ohbayashi
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Yusuke Kobayashi
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan.,Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| |
Collapse
|
11
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Polyploidy in halophilic archaea: regulation, evolutionary advantages, and gene conversion. Biochem Soc Trans 2019; 47:933-944. [PMID: 31189733 DOI: 10.1042/bst20190256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
All analyzed haloarachea are polyploid. In addition, haloarchaea contain more than one type of chromosome, and thus the gene dosage can be regulated independently on different replicons. Haloarchaea and several additional archaea have more than one replication origin on their major chromosome, in stark contrast with bacteria, which have a single replication origin. Two of these replication origins of Haloferax volcanii have been studied in detail and turned out to have very different properties. The chromosome copy number appears to be regulated in response to growth phases and environmental factors. Archaea typically contain about two Origin Recognition Complex (ORC) proteins, which are homologous to eukaryotic ORC proteins. However, haloarchaea are the only archaeal group that contains a multitude of ORC proteins. All 16 ORC protein paralogs from H. volcanii are involved in chromosome copy number regulation. Polyploidy has many evolutionary advantages for haloarchaea, e.g. a high resistance to desiccation, survival over geological times, and the relaxation of cell cycle-specific replication control. A further advantage is the ability to grow in the absence of external phosphate while using the many genome copies as internal phosphate storage polymers. Very efficient gene conversion operates in haloarchaea and results in the unification of genome copies. Taken together, haloarchaea are excellent models to study many aspects of genome biology in prokaryotes, exhibiting properties that have not been found in bacteria.
Collapse
|
13
|
Aze A, Maiorano D. Recent advances in understanding DNA replication: cell type-specific adaptation of the DNA replication program. F1000Res 2018; 7. [PMID: 30228862 PMCID: PMC6117848 DOI: 10.12688/f1000research.15408.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
DNA replication is an essential process occurring prior to cell division. Cell division coupled to proliferation ensures the growth and renewal of a large variety of specialized cell types generated during embryonic development. Changes in the DNA replication program occur during development. Embryonic undifferentiated cells show a high replication rate and fast proliferation, whereas more differentiated cells are characterized by reduced DNA synthesis and a low proliferation rate. Hence, the DNA replication program must adapt to the specific features of cells committed to different fates. Recent findings on DNA synthesis regulation in different cell types open new perspectives for developing efficient and more adapted therapies to treat various diseases such as genetic diseases and cancer. This review will put the emphasis on recent progress made in this field.
Collapse
Affiliation(s)
- Antoine Aze
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, 34396 Cedex 5, France
| | - Domenico Maiorano
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, 34396 Cedex 5, France
| |
Collapse
|