1
|
Lee J, Jo NY, Shim SY, Le TYL, Jeong WY, Kwak KW, Choi HS, Lee BO, Kim SR, Lee MG, Hwang SG. Impact of organic liquid fertilizer on plant growth of Chinese cabbage and soil bacterial communities. Sci Rep 2025; 15:10439. [PMID: 40140494 PMCID: PMC11947161 DOI: 10.1038/s41598-025-95327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Organic liquid fertilizers from livestock manure are increasingly recognized as sustainable amendments influencing soil bacterial communities. Yet, their direct impacts on bacterial composition and crop functionality remain unclear. Addressing this gap, we developed a bio-liquid fertilizer (LBF) by culturing Chlorella fusca in a purified pig manure-based medium. We compared its effects with chemical (CLF) and fermented (FLM) liquid fertilizers on Chinese cabbage (Brassica rapa subsp. pekinensis). We aimed to determine how organic bio-liquid fertilizers enhance crop health and soil bacterial balance, contributing to sustainable agricultural practices. Although LBF did not surpass CLF in promoting growth, it significantly increased antioxidant compounds (polyphenols, flavonoids), sugars, and antioxidant activities, including nitrite-scavenging capacity and reducing power. Soil bacterial communities were strongly correlated with key chemical properties (Na, K, NO3--N, Ca, pH). Notably, Litorilinea decreased under CLF, and Sphingomonas and Nocardioides declined under FLM, whereas LBF treatment increased all three genera, suggesting improved bacterial conditions. These findings demonstrate that a well-designed organic bio-liquid fertilizer can bridge knowledge gaps by enhancing plant functionality and promoting beneficial soil bacteria. This approach supports more efficient nutrient recycling and may foster greater resilience and sustainability in modern farming systems.
Collapse
Affiliation(s)
- Junkyung Lee
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Na-Yeon Jo
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Su-Yeon Shim
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Tran Yen Linh Le
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea
| | - Woo Yong Jeong
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Ki Wung Kwak
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Hyun Sik Choi
- Hoengseong Agricultural Technology Extension Center, Hoengseong, 25208, Republic of Korea
| | - Byong-O Lee
- Hanbio Incorporated, Hoengseong, 25249, Republic of Korea
| | - Soo-Ryang Kim
- Industry-Academic Cooperation Foundation, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Myung-Gyu Lee
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea
| | - Sun-Goo Hwang
- Department of Smart-Farm Life, Science Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
2
|
Borker SS, Sharma P, Thakur A, Kumar A, Kumar A, Kumar R. Physiological and genomic insights into a psychrotrophic drought-tolerant bacterial consortium for crop improvement in cold, semiarid regions. Microbiol Res 2024; 286:127818. [PMID: 38970906 DOI: 10.1016/j.micres.2024.127818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
The agricultural land in the Indian Himalayan region (IHR) is susceptible to various spells of snowfall, which can cause nutrient leaching, low temperatures, and drought conditions. The current study, therefore, sought an indigenous psychrotrophic plant growth-promoting (PGP) bacterial inoculant with the potential to alleviate crop productivity under cold and drought stress. Psychrotrophic bacteria preisolated from the night-soil compost of the Lahaul Valley of northwestern Himalaya were screened for phosphate (P) and potash (K) solubilization, nitrogen fixation, indole acetic acid (IAA) production, siderophore and HCN production) in addition to their tolerance to drought conditions for consortia development. Furthermore, the effects of the selected consortium on the growth and development of wheat (Triticum aestivum L.) and maize (Zea mays L.) were assessed in pot experiments under cold semiarid conditions (50 % field capacity). Among 57 bacteria with P and K solubilization, nitrogen fixation, IAA production, siderophore and HCN production, Pseudomonas protegens LPH60, Pseudomonas atacamensis LSH24, Psychrobacter faecalis LUR13, Serratia proteamaculans LUR44, Pseudomonas mucidolens LUR70, and Glutamicibacter bergerei LUR77 exhibited tolerance to drought stress (-0.73 MPa). The colonization of wheat and maize seeds with these drought-tolerant PGP strains resulted in a germination index >150, indicating no phytotoxicity under drought stress. Remarkably, a particular strain, Pseudomonas sp. LPH60 demonstrated antagonistic activity against three phytopathogens Ustilago maydis, Fusarium oxysporum, and Fusarium graminearum. Treatment with the consortium significantly increased the foliage (100 % and 160 %) and root (200 % and 133 %) biomasses of the wheat and maize plants, respectively. Furthermore, whole-genome sequence comparisons of LPH60 and LUR13 with closely related strains revealed genes associated with plant nutrient uptake, phytohormone synthesis, siderophore production, hydrogen cyanide (HCN) synthesis, volatile organic compound production, trehalose and glycine betaine transport, cold shock response, superoxide dismutase activity, and gene clusters for nonribosomal peptide synthases and polyketide synthetases. With their PGP qualities, biocontrol activity, and ability to withstand environmental challenges, the developed consortium represents a promising cold- and drought-active PGP bioinoculant for cereal crops grown in cold semiarid regions.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallavi Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aman Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
3
|
Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol 2023; 14:1218708. [PMID: 37529326 PMCID: PMC10388556 DOI: 10.3389/fmicb.2023.1218708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The cold adapted microorganisms, psychrophiles/psychrotolerants, go through several modifications at cellular and biochemical levels to alleviate the influence of low temperature stress conditions. The low temperature environments depend on these cold adapted microorganisms for various ecological processes. The ability of the microorganisms to function in cold environments depends on the strategies directly associated with cell metabolism, physicochemical constrains, and stress factors. Pseudomonas is one among such group of microorganisms which is predominant in cold environments with a wide range of ecological and biotechnological applications. Bioformulations of Pseudomonas spp., possessing plant growth promotion and biocontrol abilities for application under low temperature environments, are well documented. Further, recent advances in high throughput sequencing provide essential information regarding the prevalence of Pseudomonas in rhizospheres and their role in plant health. Cold adapted species of Pseudomonas are also getting recognition for their potential in biodegradation and bioremediation of environmental contaminants. Production of enzymes and bioactive compounds (primarily as an adaptation mechanism) gives way to their applications in various industries. Exopolysaccharides and various biotechnologically important enzymes, produced by cold adapted species of Pseudomonas, are making their way in food, textiles, and pharmaceuticals. The present review, therefore, aims to summarize the functional versatility of Pseudomonas with particular reference to its peculiarities along with the ecological and biotechnological applications.
Collapse
Affiliation(s)
- Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ayushi Kimothi
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Avinash Sharma
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Zhou Q, Tu M, Fu X, Chen Y, Wang M, Fang Y, Yan Y, Cheng G, Zhang Y, Zhu Z, Yin K, Xiao Y, Zou L, Chen G. Antagonistic transcriptome profile reveals potential mechanisms of action on Xanthomonas oryzae pv. oryzicola by the cell-free supernatants of Bacillus velezensis 504, a versatile plant probiotic bacterium. Front Cell Infect Microbiol 2023; 13:1175446. [PMID: 37325518 PMCID: PMC10265122 DOI: 10.3389/fcimb.2023.1175446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial leaf streak (BLS) of rice is a severe disease caused by the bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) that has gradually become the fourth major disease on rice in some rice-growing regions in southern China. Previously, we isolated a Bacillus velezensis strain 504 that exhibited apparent antagonistic activity against the Xoc wild-type strain RS105, and found that B. velezensis 504 was a potential biocontrol agent for BLS. However, the underlying mechanisms of antagonism and biocontrol are not completely understood. Here we mine the genomic data of B. velezensis 504, and the comparative transcriptomic data of Xoc RS105 treated by the cell-free supernatants (CFSs) of B. velezensis 504 to define differentially expressed genes (DEGs). We show that B. velezensis 504 shares over 89% conserved genes with FZB42 and SQR9, two representative model strains of B. velezensis, but 504 is more closely related to FZB42 than SQR9, as well as B. velezensis 504 possesses the secondary metabolite gene clusters encoding the essential anti-Xoc agents difficidin and bacilysin. We conclude that approximately 77% of Xoc RS105 coding sequences are differentially expressed by the CFSs of B. velezensis 504, which significantly downregulates genes involved in signal transduction, oxidative phosphorylation, transmembrane transport, cell motility, cell division, DNA translation, and five physiological metabolisms, as well as depresses an additional set of virulence-associated genes encoding the type III secretion, type II secretion system, type VI secretion system, type IV pilus, lipopolysaccharides and exopolysaccharides. We also show that B. velezensis 504 is a potential biocontrol agent for bacterial blight of rice exhibiting relative control efficiencies over 70% on two susceptible cultivars, and can efficiently antagonize against some important plant pathogenic fungi including Colletotrichum siamense and C. australisinense that are thought to be the two dominant pathogenic species causing leaf anthracnose of rubber tree in Hainan province of China. B. velezensis 504 also harbors some characteristics of plant growth-promoting rhizobacterium such as secreting protease and siderophore, and stimulating plant growth. This study reveals the potential biocontrol mechanisms of B. velezensis against BLS, and also suggests that B. velezensis 504 is a versatile plant probiotic bacterium.
Collapse
Affiliation(s)
- Qi Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Tu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xue Fu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muyuan Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
6
|
Rincón-Molina CI, Martínez-Romero E, Aguirre-Noyola JL, Manzano-Gómez LA, Zenteno-Rojas A, Rogel MA, Rincón-Molina FA, Ruíz-Valdiviezo VM, Rincón-Rosales R. Bacterial Community with Plant Growth-Promoting Potential Associated to Pioneer Plants from an Active Mexican Volcanic Complex. Microorganisms 2022; 10:microorganisms10081568. [PMID: 36013987 PMCID: PMC9413462 DOI: 10.3390/microorganisms10081568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Microorganisms in extreme volcanic environments play an important role in the development of plants on newly exposed substrates. In this work, we studied the structure and diversity of a bacterial community associated to Andropogon glomeratus and Cheilanthes aemula at El Chichón volcano. The genetic diversity of the strains was revealed by genomic fingerprints and by 16S rDNA gene sequencing. Furthermore, a metagenomic analysis of the rhizosphere samples was carried out for pioneer plants growing inside and outside the volcano. Multifunctional biochemical tests and plant inoculation assays were evaluated to determine their potential as plant growth-promoting bacteria (PGPB). Through metagenomic analysis, a total of 33 bacterial phyla were identified from A. glomeratus and C. aemula rhizosphere samples collected inside the volcano, and outside the volcano 23 bacterial phyla were identified. For both rhizosphere samples, proteobacteria was the most abundant phylum. With a cultivable approach, 174 bacterial strains were isolated from the rhizosphere and tissue of plants growing outside the volcanic complex. Isolates were classified within the genera Acinetobacter, Arthrobacter, Bacillus, Burkholderia, Cupriavidus, Enterobacter, Klebsiella, Lysinibacillus, Pantoea, Pseudomonas, Serratia, Stenotrophomonas and Pandoraea. The evaluated strains were able to produce indole compounds, solubilize phosphate, synthesize siderophores, showed ACC deaminase and nitrogenase activity, and they had a positive effect on the growth and development of Capsicum chinense. The wide diversity of bacteria associated to pioneer plants at El Chichón volcano with PGPB qualities represent an alternative for the recovery of eroded environments, and they can be used efficiently as biofertilizers for agricultural crops growing under adverse conditions.
Collapse
Affiliation(s)
- Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P., Cuernavaca 62210, Morelos, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P., Cuernavaca 62210, Morelos, Mexico
| | - Luis Alberto Manzano-Gómez
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, C.P., Tuxtla Gutierrez 29000, Chiapas, Mexico
| | - Adalberto Zenteno-Rojas
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P., Cuernavaca 62210, Morelos, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, C.P., Tuxtla Gutierrez 29050, Chiapas, Mexico
- Correspondence: ; Tel.: +52-9616150461
| |
Collapse
|
7
|
Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion. Microbiol Res 2022; 260:127049. [DOI: 10.1016/j.micres.2022.127049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022]
|
8
|
Thakur N, Singh SP, Zhang C. Microorganisms under extreme environments and their applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100141. [PMID: 35909627 PMCID: PMC9325898 DOI: 10.1016/j.crmicr.2022.100141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are group of microorganisms that possess ability to tolerate and live under the extremes of physico-chemical, geological and nutritional conditions. Such microorganisms are evolutionary relics and have evolved adaptation strategies at cellular, biochemical and molecular levels. They produce enzymes that are capable to maintain stability and function under the multitudes of extremities. These organisms also produce variety of other molecules and metabolites, such as extremolytes and surface-active compounds to protect against extremes of salinity, pH, pressure, temperatures and solar radiation. Investigations on these microorganisms can further open new avenues and opportunity for research and biotechnological applications in the areas of waste water treatment, bio-plastics, biofuel, cosmetics, agriculture, food and pharmaceuticals. Further, extremophiles have potential roles to play in bioremediation, astrobiology and biorefinery.
Collapse
Affiliation(s)
- Nagendra Thakur
- Department of Microbiology, Sikkim University, 6th Mile, Tadong 737102, Gangtok, Sikkim, India
| | - Satya P. Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, Illinois, United States
| |
Collapse
|
9
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
10
|
Abdel-Azeem AM, Abu-Elsaoud AM, Abo Nahas HH, Abdel-Azeem MA, Balbool BA, Mousa MK, Ali NH, Darwish AMG. Biodiversity and Industrial Applications of Genus Chaetomium. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Bioactive Secondary Metabolites from Psychrophilic Fungi and Their Industrial Importance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Fungal Laccases to Where and Where? Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 2020; 21:6000217. [PMID: 33232451 DOI: 10.1093/femsyr/foaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Collapse
Affiliation(s)
- Paula Nizovoy
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Hui Sun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Laurie B Connell
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| |
Collapse
|
15
|
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN. Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Abo Nouh FA, Abdel-Azeem AM. Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_6] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019. [DOI: 10.1007/978-981-13-6536-2_13] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-14846-1_1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|