1
|
Zhong Y, Yang S, Wang X, Sun C. Research progress of ZIC5 for tumor metastasis. Biochem Soc Trans 2024; 52:1363-1372. [PMID: 38747731 DOI: 10.1042/bst20231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024]
Abstract
The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.
Collapse
Affiliation(s)
- Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| |
Collapse
|
2
|
Escuin S, Rose Raza-Knight S, Savery D, Gaston-Massuet C, Galea GL, Greene NDE, Copp AJ. Dual mechanism underlying failure of neural tube closure in the Zic2 mutant mouse. Dis Model Mech 2023; 16:297163. [PMID: 36916392 PMCID: PMC10073009 DOI: 10.1242/dmm.049858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.
Collapse
Affiliation(s)
- Sarah Escuin
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saba Rose Raza-Knight
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carles Gaston-Massuet
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
3
|
Liu F, Shi Z, Bao W, Zheng J, Chen K, Lin Z, Song HN, Luo X, Dong Q, Jiang L, Wang Y, Chen G, Chen X. ZIC2 promotes colorectal cancer growth and metastasis through the TGF-β signaling pathway. Exp Cell Res 2022; 415:113118. [PMID: 35390314 DOI: 10.1016/j.yexcr.2022.113118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
ZIC2 is involved in the tumor progression of many types of cancers. The role of ZIC2 in the metastasis of colorectal cancer and its mechanism are not yet clear. In this study, we found that high ZIC2 expression was not only associated with poor prognosis, relapse-free survival and advanced metastasis but was also an independent prognostic factor in colorectal cancer patients. Moreover, ZIC2 knockdown inhibited cell proliferation, migration and invasion, while the upregulation of ZIC2 had the opposite effect in vitro. ZIC2 overexpression induced TGF-β1 expression and increased Smad3 phosphorylation. The carcinogenic effects of elevated ZIC2 expression can be eliminated by interfering with the TGF-β1 receptor with inhibitors. This further verified the promoting effect of ZIC2 on the TGF-β signaling pathway. In vivo experiments have also confirmed that ZIC2 can promote liver metastases of colorectal cancer. The results suggest that ZIC2 is associated with poor prognosis and relapse-free survival in colorectal cancer patients. Moreover, ZIC2 promoted colorectal cancer progression and metastasis by activating the TGF-β signaling pathway. Hence, ZIC2 is expected to be a new therapeutic and prognostic target for colorectal cancer in the future.
Collapse
Affiliation(s)
- Fangting Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Zhehao Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Wenming Bao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Jiuyi Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Zhihui Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Hao-Nan Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Xin Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Qiantong Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Yi Wang
- Department of of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Gang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| |
Collapse
|
4
|
Maurya S, Yang W, Tamai M, Zhang Q, Erdmann-Gilmore P, Bystry A, Martins Rodrigues F, Valentine MC, Wong WH, Townsend R, Druley TE. Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics 2021; 17:220-238. [PMID: 34304711 PMCID: PMC8865227 DOI: 10.1080/15592294.2021.1954780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.
Collapse
Affiliation(s)
- Shailendra Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wei Yang
- McDonnell Genome Institute, Genome Technology Access Center, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Minori Tamai
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Qiang Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amelia Bystry
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Mark C Valentine
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wing H Wong
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd E Druley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Szenajch J, Szabelska-Beręsewicz A, Świercz A, Zyprych-Walczak J, Siatkowski I, Góralski M, Synowiec A, Handschuh L. Transcriptome Remodeling in Gradual Development of Inverse Resistance between Paclitaxel and Cisplatin in Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E9218. [PMID: 33287223 PMCID: PMC7730278 DOI: 10.3390/ijms21239218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer drugs is the main challenge in oncology. In pre-clinical studies, established cancer cell lines are primary tools in deciphering molecular mechanisms of this phenomenon. In this study, we proposed a new, transcriptome-focused approach, utilizing a model of isogenic cancer cell lines with gradually changing resistance. We analyzed trends in gene expression in the aim to find out a scaffold of resistance development process. The ovarian cancer cell line A2780 was treated with stepwise increased concentrations of paclitaxel (PTX) to generate a series of drug resistant sublines. To monitor transcriptome changes we submitted them to mRNA-sequencing, followed by the identification of differentially expressed genes (DEGs), principal component analysis (PCA), and hierarchical clustering. Functional interactions of proteins, encoded by DEGs, were analyzed by building protein-protein interaction (PPI) networks. We obtained human ovarian cancer cell lines with gradually developed resistance to PTX and collateral sensitivity to cisplatin (CDDP) (inverse resistance). In their transcriptomes, we identified two groups of DEGs: (1) With fluctuations in expression in the course of resistance acquiring; and (2) with a consistently changed expression at each stage of resistance development, constituting a scaffold of the process. In the scaffold PPI network, the cell cycle regulator-polo-like kinase 2 (PLK2); proteins belonging to the tumor necrosis factor (TNF) ligand and receptor family, as well as to the ephrin receptor family were found, and moreover, proteins linked to osteo- and chondrogenesis and the nervous system development. Our cellular model of drug resistance allowed for keeping track of trends in gene expression and studying this phenomenon as a process of evolution, reflected by global transcriptome remodeling. This approach enabled us to explore novel candidate genes and surmise that abrogation of the osteomimic phenotype in ovarian cancer cells might occur during the development of inverse resistance between PTX and CDDP.
Collapse
Affiliation(s)
- Jolanta Szenajch
- Laboratory for Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Alicja Szabelska-Beręsewicz
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Aleksandra Świercz
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Michał Góralski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
| | - Agnieszka Synowiec
- Laboratory for Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
| |
Collapse
|
6
|
Morenilla-Palao C, López-Cascales MT, López-Atalaya JP, Baeza D, Calvo-Díaz L, Barco A, Herrera E. A Zic2-regulated switch in a noncanonical Wnt/βcatenin pathway is essential for the formation of bilateral circuits. SCIENCE ADVANCES 2020; 6:6/46/eaaz8797. [PMID: 33188033 PMCID: PMC7673756 DOI: 10.1126/sciadv.aaz8797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/30/2020] [Indexed: 05/06/2023]
Abstract
The Wnt pathway is involved in a wide array of biological processes during development and is deregulated in many pathological scenarios. In neurons, Wnt proteins promote both axon extension and repulsion, but the molecular mechanisms underlying these opposing axonal responses are unknown. Here, we show that Wnt5a is expressed at the optic chiasm midline and promotes the crossing of retinal axons by triggering an alternative Wnt pathway that depends on the accumulation of βcatenin but does not activate the canonical pathway. In ipsilateral neurons, the transcription factor Zic2 switches this alternative Wnt pathway by regulating the expression of a set of Wnt receptors and intracellular proteins. In combination with this alternative Wnt pathway, the asymmetric activation of EphB1 receptors at the midline phosphorylates βcatenin and elicits a repulsive response. This alternative Wnt pathway and its Zic2-triggered switch may operate in other contexts that require a two-way response to Wnt ligands.
Collapse
Affiliation(s)
- Cruz Morenilla-Palao
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - María Teresa López-Cascales
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - José P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Diana Baeza
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Luís Calvo-Díaz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain.
| |
Collapse
|
7
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|