1
|
Dindhoria K, Monga I, Thind AS. Computational approaches and challenges for identification and annotation of non-coding RNAs using RNA-Seq. Funct Integr Genomics 2022; 22:1105-1112. [DOI: 10.1007/s10142-022-00915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
|
2
|
Schuler R, Bugacov A, Hacia J, Ho T, Iwata J, Pearlman L, Samuels B, Williams C, Zhao Z, Kesselman C, Chai Y. FaceBase: A Community-Driven Hub for Data-Intensive Research. J Dent Res 2022; 101:1289-1298. [PMID: 35912790 PMCID: PMC9516628 DOI: 10.1177/00220345221107905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research of the National Institutes of Health, was established in 2009 with the recognition that dental and craniofacial research are increasingly data-intensive disciplines. Data sharing is critical for the validation and reproducibility of results as well as to enable reuse of data. In service of these goals, data ought to be FAIR: Findable, Accessible, Interoperable, and Reusable. The FaceBase data repository and educational resources exemplify the FAIR principles and support a broad user community including researchers in craniofacial development, molecular genetics, and genomics. FaceBase demonstrates that a model in which researchers "self-curate" their data can be successful and scalable. We present the results of the first 2.5 y of FaceBase's operations as an open community and summarize the data sets published during this period. We then describe a research highlight from work on the identification of regulatory networks and noncoding RNAs involved in cleft lip with/without cleft palate that both used and in turn contributed new findings to publicly available FaceBase resources. Collectively, FaceBase serves as a dynamic and continuously evolving resource to facilitate data-intensive research, enhance data reproducibility, and perform deep phenotyping across multiple species in dental and craniofacial research.
Collapse
Affiliation(s)
- R.E. Schuler
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - A. Bugacov
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - J.G. Hacia
- Keck School of Medicine, Biochemistry
and Molecular Medicine, University of Southern California, Los Angeles, CA,
USA
| | - T.V. Ho
- Ostrow School of Dentistry, Center for
Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA,
USA
| | - J. Iwata
- School of Dentistry, Diagnostic &
Biomedical Sciences, The University of Texas Health Science Center at Houston,
Houston, TX, USA
| | - L. Pearlman
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - B.D. Samuels
- Ostrow School of Dentistry, Center for
Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA,
USA
| | - C. Williams
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - Z. Zhao
- School of Biomedical Informatics,
Center for Precision Health, The University of Texas Health Science Center at
Houston, Houston, TX, USA
| | - C. Kesselman
- Viterbi School of Engineering,
Information Sciences Institute, University of Southern California, Marina del Rey,
CA, USA
| | - Y. Chai
- Ostrow School of Dentistry, Center for
Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA,
USA
| |
Collapse
|
3
|
Cai J, Chen H, Xie S, Hu Z, Bai Y. Research Progress of Totipotent Stem Cells. Stem Cells Dev 2022; 31:335-345. [PMID: 35502477 DOI: 10.1089/scd.2022.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Totipotent stem cells (TSCs), can develop into complete organisms, used in biological fields such as regenerative medicine, mammalian breeding, and conservation. However, cells from early-stage embryos cultured are hard to self-renew and maintain developmental totipotency, which becomes a key factor limiting the research of TSCs. Fortunately, a break-through in the study of induced pluripotent stem cells returning to their totipotent state has been made, resulting in the establishment of multiple TSCs and igniting a new wave of stem cell research. Furthermore, the blastocyst-like structures can be generated by the established TSCs, which lays a foundation for synthetic embryos in vitro. In this review, we summarize the totipotent stage of the early embryos, the establishment and cultivation of TSCs, and the developmental ability exploration of TSCs to promote further research of TSCs.
Collapse
Affiliation(s)
- Jianfeng Cai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China, 528000;
| | - Huifang Chen
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Shiting Xie
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Zhichao Hu
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Yinshan Bai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| |
Collapse
|
4
|
Yu W, Gu Q, Wu D, Zhang W, Li G, Lin L, Lowe JM, Hu S, Li TW, Zhou Z, Miao MZ, Gong Y, Zhao Y, Lu E. Identification of potentially functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory network in periodontitis: Bridging the gap between bioinformatics and clinical needs. J Periodontal Res 2022; 57:594-614. [PMID: 35388494 PMCID: PMC9325354 DOI: 10.1111/jre.12989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Background and Objective Periodontitis is a multifactorial chronic inflammatory disease that can lead to the irreversible destruction of dental support tissues. As an epigenetic factor, the expression of circRNA is tissue‐dependent and disease‐dependent. This study aimed to identify novel periodontitis‐associated circRNAs and predict relevant circRNA‐periodontitis regulatory network by using recently developed bioinformatic tools and integrating sequencing profiling with clinical information for getting a better and more thorough image of periodontitis pathogenesis, from gene to clinic. Material and Methods High‐throughput sequencing and RT‐qPCR were conducted to identify differentially expressed circRNAs in gingival tissues from periodontitis patients. The relationship between upregulated circRNAs expression and probing depth (PD) was performed using Spearman's correlation analysis. Bioinformatic analyses including GO analysis, circRNA‐disease association prediction, and circRNA‐miRNA‐mRNA network prediction were performed to clarify potential regulatory functions of identified circRNAs in periodontitis. A receiver‐operating characteristic (ROC) curve was established to assess the diagnostic significance of identified circRNAs. Results High‐throughput sequencing identified 70 differentially expressed circRNAs (68 upregulated and 2 downregulated circRNAs) in human periodontitis (fold change >2.0 and p < .05). The top five upregulated circRNAs were validated by RT‐qPCR that had strong associations with multiple human diseases, including periodontitis. The upregulation of circRNAs were positively correlated with PD (R = .40–.69, p < .05, moderate). A circRNA‐miRNA‐mRNA network with the top five upregulated circRNAs, differentially expressed mRNAs, and overlapped predicted miRNAs indicated potential roles of circRNAs in immune response, cell apoptosis, migration, adhesion, and reaction to oxidative stress. The ROC curve showed that circRNAs had potential value in periodontitis diagnosis (AUC = 0.7321–0.8667, p < .05). Conclusion CircRNA‐disease associations were predicted by online bioinformatic tools. Positive correlation between upregulated circRNAs, circPTP4A2, chr22:23101560‐23135351+, circARHGEF28, circBARD1 and circRASA2, and PD suggested function of circRNAs in periodontitis. Network prediction further focused on downstream targets regulated by circRNAs during periodontitis pathogenesis.
Collapse
Affiliation(s)
- Weijun Yu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Gu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Department of Immunology, Bio Sorbonne Paris Cité, University of Paris, Paris, France
| | - Di Wu
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA.,Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weiqi Zhang
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Lu Lin
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jared M Lowe
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tia Wenjun Li
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA.,Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Z Miao
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Yuhua Gong
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Zhao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zhang P, Li X, Pan C, Zheng X, Hu B, Xie R, Hu J, Shang X, Yang H. Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Res Ther 2022; 13:39. [PMID: 35093185 PMCID: PMC8800338 DOI: 10.1186/s13287-022-02718-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022] Open
Abstract
As the importance of cell heterogeneity has begun to be emphasized, single-cell sequencing approaches are rapidly adopted to study cell heterogeneity and cellular evolutionary relationships of various cells, including stem cell populations. The hematopoietic stem and progenitor cell (HSPC) compartment contains HSC hematopoietic stem cells (HSCs) and distinct hematopoietic cells with different abilities to self-renew. These cells perform their own functions to maintain different hematopoietic lineages. Undeniably, single-cell sequencing approaches, including single-cell RNA sequencing (scRNA-seq) technologies, empower more opportunities to study the heterogeneity of normal and pathological HSCs. In this review, we discuss how these scRNA-seq technologies contribute to tracing origin and lineage commitment of HSCs, profiling the bone marrow microenvironment and providing high-resolution dissection of malignant hematopoiesis, leading to exciting new findings in HSC biology.
Collapse
|
6
|
Yu X, Li M, Guo C, Wu Y, Zhao L, Shi Q, Song J, Song B. Therapeutic Targeting of Cancer: Epigenetic Homeostasis. Front Oncol 2021; 11:747022. [PMID: 34765551 PMCID: PMC8576334 DOI: 10.3389/fonc.2021.747022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
A large number of studies have revealed that epigenetics plays an important role in cancer development. However, the currently-developed epigenetic drugs cannot achieve a stable curative effect. Thus, it may be necessary to redefine the role of epigenetics in cancer development. It has been shown that embryonic development and tumor development share significant similarities in terms of biological behavior and molecular expression patterns, and epigenetics may be the link between them. Cell differentiation is likely a manifestation of epigenetic homeostasis at the cellular level. In this article, we introduced the importance of epigenetic homeostasis in cancer development and analyzed the shortcomings of current epigenetic treatment regimens. Understanding the dynamic process of epigenetic homeostasis in organ development can help us characterize cancer according to its differentiation stages, explore new targets for cancer treatment, and improve the clinical prognosis of patients with cancer.
Collapse
Affiliation(s)
- Xiaoyuan Yu
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Menglu Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Guo
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuesheng Wu
- Department of Oncology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Zhao
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Qinying Shi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianbo Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Significance of Sex Differences in ncRNAs Expression and Function in Pregnancy and Related Complications. Biomedicines 2021; 9:biomedicines9111509. [PMID: 34829737 PMCID: PMC8614665 DOI: 10.3390/biomedicines9111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
In the era of personalized medicine, fetal sex-specific research is of utmost importance for comprehending the mechanisms governing pregnancy and pregnancy-related complications. In recent times, noncoding RNAs (ncRNAs) have gained increasing attention as critical players in gene regulation and disease pathogenesis, and as candidate biomarkers in human diseases as well. Different types of ncRNAs, including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in every step of pregnancy progression, although studies taking into consideration fetal sex as a central variable are still limited. To date, most of the available data have been obtained investigating sex-specific placental miRNA expression. Several studies revealed that miRNAs regulate the (patho)-physiological processes in a sexually dimorphic manner, ensuring normal fetal development, successful pregnancy, and susceptibility to diseases. Moreover, the observation that ncRNA profiles differ according to cells, tissues, and developmental stages of pregnancy, along with the complex interactions among different types of ncRNAs in regulating gene expression, strongly indicates that more studies are needed to understand the role of sex-specific ncRNA in pregnancy and associated disorders.
Collapse
|
8
|
Sun X, Wang L, Obayomi SMB, Wei Z. Epigenetic Regulation of β Cell Identity and Dysfunction. Front Endocrinol (Lausanne) 2021; 12:725131. [PMID: 34630329 PMCID: PMC8498190 DOI: 10.3389/fendo.2021.725131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023] Open
Abstract
β cell dysfunction and failure are driving forces of type 2 diabetes mellitus (T2DM) pathogenesis. Investigating the underlying mechanisms of β cell dysfunction may provide novel targets for the development of next generation therapy for T2DM. Epigenetics is the study of gene expression changes that do not involve DNA sequence changes, including DNA methylation, histone modification, and non-coding RNAs. Specific epigenetic signatures at all levels, including DNA methylation, chromatin accessibility, histone modification, and non-coding RNA, define β cell identity during embryonic development, postnatal maturation, and maintain β cell function at homeostatic states. During progression of T2DM, overnutrition, inflammation, and other types of stress collaboratively disrupt the homeostatic epigenetic signatures in β cells. Dysregulated epigenetic signatures, and the associating transcriptional outputs, lead to the dysfunction and eventual loss of β cells. In this review, we will summarize recent discoveries of the establishment and disruption of β cell-specific epigenetic signatures, and discuss the potential implication in therapeutic development.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
- Tianjin Fourth Central Hospital, Tianjin, China
- The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
- The Fourth Central Hospital Clinical College, Tianjin Medical University, Tianjin, China
| | - Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ, United States
| |
Collapse
|
9
|
Xue T, Liu Y, Cao M, Tian M, Zhang L, Wang B, Liu X, Li C. Revealing New Landscape of Turbot ( Scophthalmus maximus) Spleen Infected with Aeromonas salmonicida through Immune Related circRNA-miRNA-mRNA Axis. BIOLOGY 2021; 10:biology10070626. [PMID: 34356481 PMCID: PMC8301059 DOI: 10.3390/biology10070626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary In this study, the expression of circRNAs, miRNAs, and mRNA in the immune organs spleen of turbot (Scophthalmus maximus) infected with Aeromonas salmonicida was analyzed by high-throughput sequencing, and circRNA-miRNA-mRNA network was constructed, so as to explore the function of non-coding RNA in the immune system of teleost. A total of 119, 140, and 510 differential expressed circRNAs, miRNAs, and mRNAs were identified in the infected groups compared with the uninfected group. The qRT-PCR verified the reliability and accuracy of the Illumina sequencing data. Fifteen triple networks of circRNA-miRNA-mRNA were presented in the form of “up (circRNA)-down (miRNA)-up (mRNA)” or “down-up-down”. Immune-related genes were also found in these networks. These results indicate that circRNAs and miRNAs may regulate the expression of immune-related genes through the circRNA-miRNA-mRNA regulatory network and thus participate in the immune response of turbot spleen after pathogen infection. Abstract Increasing evidence suggests that non-coding RNAs (ncRNA) play an important role in a variety of biological life processes by regulating gene expression at the transcriptional and post-transcriptional levels. Turbot (Scophthalmus maximus) has been threatened by various pathogens. In this study, the expression of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNA in the immune organs spleen of turbot infected with Aeromonas salmonicida was analyzed by high-throughput sequencing, and a circRNA-miRNA-mRNA network was constructed, so as to explore the function of non-coding RNA in the immune system of teleost. Illumina sequencing was performed on the uninfected group and infected group. A total of 119 differential expressed circRNAs (DE-circRNAs), 140 DE-miRNAs, and 510 DE-mRNAs were identified in the four infected groups compared with the uninfected group. Most DE-mRNAs and the target genes of DE-ncRNAs were involved in immune-related pathways. The quantitative real-time PCR (qRT-PCR) results verified the reliability and accuracy of the high-throughput sequencing data. Ninety-six differentially expressed circRNA-miRNA-mRNA regulatory networks were finally constructed. Among them, 15 circRNA-miRNA-mRNA were presented in the form of “up (circRNA)-down (miRNA)-up (mRNA)” or “down-up-down”. Immune-related genes gap junction CX32.2, cell adhesion molecule 3, and CC chemokine were also found in these networks. These results indicate that ncRNA may regulate the expression of immune-related genes through the circRNA-miRNA-mRNA regulatory network and thus participate in the immune response of turbot spleen after pathogen infection.
Collapse
|
10
|
Gao Q, Wang T, Pan L, Qian C, Wang J, Xin Q, Liu Y, Zhang Z, Xu Y, He X, Cao Y. Circular RNAs: Novel potential regulators in embryogenesis, female infertility, and pregnancy-related diseases. J Cell Physiol 2021; 236:7223-7241. [PMID: 33876837 DOI: 10.1002/jcp.30376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs with unique cyclic structures. Although they were previously considered as nonfunctional transcription byproducts, numerous studies have demonstrated that circRNAs regulate gene transcription and expression via different mechanisms. Reproductive health influences the quality of life and affects offspring propagation in women. CircRNAs have been found to modify pregnancy-related diseases, gynecologic cancers, polycystic ovary syndrome, aging, gamete, and embryo development. It's promising for circRNAs to be the novel diagnostic and therapeutic targets for multiple reproductive diseases. With the widespread application of assisted reproduction technology (ART), it has been revealed that circRNA identification contributes to estimating the quality of gametes and embryos, reflecting the success rate of ART. CRISPR-Cas9 gene editing technology has enabled the discovery of new roles of circRNAs. So far, the roles of circRNAs in the reproductive system remain poorly defined. In this review, we describe the classification and functions of circRNAs in embryogenesis and the female reproductive system diseases, revealing potential roles of circRNAs physiologically and pathologically. In so-doing, we provide ideas for developing circRNA-based therapeutic treatment and clinical application of various female reproductive system diseases.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| | - Linxin Pan
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Qian
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Qiong Xin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Sun Y, Yu Q, Li L, Mei Z, Zhou B, Liu S, Pan T, Wu L, Lei Y, Liu L, Drmanac R, Ma K, Liu S. Single-cell RNA profiling links ncRNAs to spatiotemporal gene expression during C. elegans embryogenesis. Sci Rep 2020; 10:18863. [PMID: 33139759 PMCID: PMC7606524 DOI: 10.1038/s41598-020-75801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Recent studies show that non-coding RNAs (ncRNAs) can regulate the expression of protein-coding genes and play important roles in mammalian development. Previous studies have revealed that during C. elegans (Caenorhabditis elegans) embryo development, numerous genes in each cell are spatiotemporally regulated, causing the cell to differentiate into distinct cell types and tissues. We ask whether ncRNAs participate in the spatiotemporal regulation of genes in different types of cells and tissues during the embryogenesis of C. elegans. Here, by using marker-free full-length high-depth single-cell RNA sequencing (scRNA-seq) technique, we sequence the whole transcriptomes from 1031 embryonic cells of C. elegans and detect 20,431 protein-coding genes, including 22 cell-type-specific protein-coding markers, and 9843 ncRNAs including 11 cell-type-specific ncRNA markers. We induce a ncRNAs-based clustering strategy as a complementary strategy to the protein-coding gene-based clustering strategy for single-cell classification. We identify 94 ncRNAs that have never been reported to regulate gene expressions, are co-expressed with 1208 protein-coding genes in cell type specific and/or embryo time specific manners. Our findings suggest that these ncRNAs could potentially influence the spatiotemporal expression of the corresponding genes during the embryogenesis of C. elegans.
Collapse
Affiliation(s)
- Yan Sun
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Qichao Yu
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Lei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Biaofeng Zhou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Shang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Taotao Pan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Liang Wu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Ying Lei
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | | | - Kun Ma
- BGI-Shenzhen, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China.
| | - Shiping Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China.
| |
Collapse
|
12
|
CircRNAs: A new perspective of biomarkers in the nervous system. Biomed Pharmacother 2020; 128:110251. [DOI: 10.1016/j.biopha.2020.110251] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
|
13
|
Di Agostino S, Riccioli A, De Cesaris P, Fontemaggi G, Blandino G, Filippini A, Fazi F. Circular RNAs in Embryogenesis and Cell Differentiation With a Focus on Cancer Development. Front Cell Dev Biol 2020; 8:389. [PMID: 32528957 PMCID: PMC7266935 DOI: 10.3389/fcell.2020.00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the recent years thousands of non-coding RNAs have been identified, also thanks to highthroughput sequencing technologies. Among them, circular RNAs (circRNAs) are a well-represented class characterized by the high sequence conservation and cell type specific expression in eukaryotes. They are covalently closed loops formed through back-splicing. Recently, circRNAs were shown to regulate a variety of cellular processes functioning as miRNA sponges, RBP binding molecules, transcriptional regulators, scaffold for protein translation, as well as immune regulators. A growing number of studies are showing that deregulated expression of circRNAs plays important and decisive actions during the development of several human diseases, including cancer. The research on their biogenesis and on the various molecular mechanisms in which they are involved is going very fast, however, there are still few studies that address their involvement in embryogenesis and eukaryotic development. This review has the intent to describe the most recent progress in the study of the biogenesis and molecular activities of circRNAs providing insightful information in the field of embryogenesis and cell differentiation. In addition, we describe the latest research on circRNAs as novel promising biomarkers in diverse types of tumors.
Collapse
Affiliation(s)
- Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Riccioli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Paola De Cesaris
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Filippini
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
14
|
Motofei IG. Malignant Melanoma: Autoimmunity and Supracellular Messaging as New Therapeutic Approaches. Curr Treat Options Oncol 2019; 20:45. [PMID: 31056729 DOI: 10.1007/s11864-019-0643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Melanoma is one of the most aggressive forms of cancer, with a high mortality rate in the absence of a safe and curable therapy. As a consequence, several procedures have been tested over time, with the most recent (immunological and targeted) therapies proving to be effective in some patients. Unfortunately, these new treatment options continue to generate debate related to the therapeutic strategy (intended to maximize the long-term results of patients with melanoma), not only about the monotherapy configuration but also regarding association/succession between distinct therapeutic procedures. As an example, targeted therapy with BRAF inhibitors proved to be effective in advanced BRAF-mutant melanoma. However, such treatments with BRAF inhibitors lead to therapy resistance in half of patients after approximately 6 months. Even if most benign nevi incorporate oncogenic BRAF mutations, they rarely become melanoma; therefore, targeted therapy with BRAF inhibitors should be viewed as an incomplete or perfectible therapy. Another example is related to the administration of immune checkpoint inhibitors/ICIs (anti-CTLA-4 antibodies, anti-PD-1/PD-L1 antibodies), which are successfully used in metastatic melanoma. It is currently believed that CTLA-4 and PD-1 blockade would favor a strong immune response against cancer cells. The main side effects of ICIs are represented by the development of immune-related adverse events, which in some cases can be lethal. These ICI side effects would thus be not only therapeutically counterproductive but also potentially dangerous. Surprisingly, a subset of immune-related adverse events (especially autoimmune toxicity) seems to be clearly correlated with better therapeutic results, perhaps due to an additional therapeutic effect (currently insufficiently studied/exploited). Contrary to the classical approach of cancer (considered until now an uncontrolled division of cells), a very recent and comprehensive theory describes malignancy as a supracellular disease. Cancerous disease would therefore be a disturbed supracellular process (embryogenesis, growth, development, regeneration, etc.), which imposes/coordinates an increased rhythm of cell division, angiogenesis, immunosuppression, etc. Melanoma is presented from such a supracellular perspective to be able to explain the beneficial role of autoimmunity in cancer (autoimmune abortion/rejection of the melanoma-embryo phenotype) and to create premises to better optimize the newly emerging therapeutic options. Finally, it is suggested that the supracellular evolution of malignancy implies complex supracellular messaging (between the cells and host organism), which would be interfaced especially by the extracellular matrix and noncoding RNA. Therefore, understanding and manipulating supracellular messaging in cancer could open new treatment perspectives in the form of digitized (supracellular) therapy.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/Oncology, St. Pantelimon Hospital, Carol Davila University, Dionisie Lupu Street, no. 37, 020022, Bucharest, Romania.
| |
Collapse
|
15
|
Can the Single Cell Make Biomedicine Different? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:1-6. [PMID: 29943291 DOI: 10.1007/978-981-13-0502-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The single-cell as the basic unit of biological organs and tissues has recently been considered an important window to furthermore understand molecular mechanisms of organ function and biology. The current issue with a special focus on single cell biomedicine is the first effort to collect the evidence of disease-associated single cell research, define the significance of single cell biomedicine in the pathogenesis of diseases, value the correlation of single cell gene sequencing with disease-specific biomarkers, and monitor the dynamics of RNA processes and responses to microenvironmental changes and drug resistances.
Collapse
|