1
|
Giri RP, Mukhopadhyay MK, Sanyal MK, Bose D, Chakrabarti A, Quan P, Bu W, Lin B. Structural Flexibility of Proteins Dramatically Alters Membrane Stability─A Novel Aspect of Lipid-Protein Interaction. J Phys Chem Lett 2022; 13:11430-11437. [PMID: 36468973 DOI: 10.1021/acs.jpclett.2c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein isoforms are structural variants with changes in the overall flexibility predominantly at the tertiary level. For membrane associated proteins, such structural flexibility or rigidity affects membrane stability by playing modulatory roles in lipid-protein interaction. Herein, we investigate the protein chain flexibility mediated changes in the mechanistic behavior of phospholipid model membranes in the presence of two well-known isoforms, erythroid (ER) and nonerythroid (NER) spectrin. We show dramatic alterations of membrane elasticity and stability induced by spectrin in the Langmuir monolayers of phosphatidylocholine (PC) and phosphatidylethanolamine (PE) by a combination of isobaric relaxation, surface pressure-area isotherm, X-ray scattering, and microscopy measurements. The NER spectrin drives all monolayers to possess an approximately equal stability, and that required 25-fold increase and 5-fold decrease of stability in PC and PE monolayers, respectively. The untilting transition of the PC membrane in the presence of NER spectrin observed in X-ray measurements can explain better membrane packing and stability.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- Institute for Experimental and Applied Physics, Kiel University, 24118Kiel, Germany
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Dipayan Bose
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, West Bengal, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata700103, India
| | - Peiyu Quan
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
2
|
Meli A, Linger R, Stevens-Hernandez CJ, Gyongyver G, Marks DC, Aung HH, Tan JCG, Cardigan R, Bruce LJ, New HV. The compound effect of irradiation and familial pseudohyperkalemia on potassium leak from red blood cells. Transfusion 2022; 62:2587-2595. [PMID: 36285891 DOI: 10.1111/trf.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Familial pseudohyperkalemia (FP) is a rare asymptomatic condition characterized by an increased rate of potassium leak from red blood cells (RBC) on refrigeration. Gamma irradiation compromises RBC membrane integrity and accelerates potassium leakage. Here, we compared the effect of irradiation, applied early or late in storage, on FP versus non-FP RBC. STUDY DESIGN Five FP and 10 non-FP individuals from the National Institute for Health Research Cambridge BioResource, UK, and three FP and six non-FP individuals identified by Australian Red Cross Lifeblood consented to the study. Blood was collected according to standard practice in each center, held overnight at 18-24°C, leucocyte-depleted, and processed into red cell concentrates (RCC) in Saline Adenine Glucose Mannitol. On Day 1, RCC were split equally into six Red Cell Splits (RCS). Two RCS remained non-irradiated, two were irradiated on Day 1 and two were irradiated on Day 14. RBCs were tested over cold storage for quality parameters. RESULTS As expected, non-irradiated FP RCS had significantly higher supernatant potassium levels than controls throughout 28 days of storage (p < .001). When irradiated early, FP RCS released potassium at similar rates to control. When irradiated late, FP RCS supernatants had higher initial post-irradiation potassium concentration than controls but were similar to controls by the end of storage (14 days post-irradiation). No other parameters studied showed a significant difference between FP and control. DISCUSSION FP does not increase the rate of potassium leak from irradiated RBCs. Irradiation may cause a membrane defect similar to that in FP RBCs.
Collapse
Affiliation(s)
- Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Rachel Linger
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christian J Stevens-Hernandez
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Gyorffy Gyongyver
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, Australia
| | - Htet Htet Aung
- Research and Development, Australian Red Cross Lifeblood, Alexandria, Australia
| | - Joanne C G Tan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, Australia
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lesley J Bruce
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | - Helen V New
- Clinical Directorate, NHS Blood and Transplant, London, UK
| |
Collapse
|
3
|
Chambrion C, Depond M, Angella L, Mouri O, Kendjo E, Fricot-Monsinjon A, Roussel C, Biligui S, Tantaoui I, Taieb A, Argy N, Houzé S, Piarroux R, Siriez JY, Jaureguiberry S, Larréché S, Théllier M, Cenac N, Buffet P, Ndour PA. Altered Subpopulations of Red Blood Cells and Post-treatment Anemia in Malaria. Front Physiol 2022; 13:875189. [PMID: 35480048 PMCID: PMC9037233 DOI: 10.3389/fphys.2022.875189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In acute malaria, the bulk of erythrocyte loss occurs after therapy, with a nadir of hemoglobin generally observed 3–7 days after treatment. The fine mechanisms leading to this early post-treatment anemia are still elusive. We explored pathological changes in RBC subpopulations by quantifying biochemical and mechanical alterations during severe malaria treated with artemisinin derivatives, a drug family that induce “pitting” in the spleen. In this study, the hemoglobin concentration dropped by 1.93 G/dl during therapy. During the same period, iRBC accounting for 6.12% of all RBC before therapy (BT) were replaced by pitted-RBC, accounting for 5.33% of RBC after therapy (AT). RBC loss was thus of 15.9%, of which only a minor part was due to the loss of iRBC or pitted-RBC. When comparing RBC BT and AT to normal controls, lipidomics revealed an increase in the cholesterol/phosphatidylethanolamine ratio (0.17 versus 0.24, p < 0.001) and cholesterol/phosphatidylinositol ratio (0.36 versus 0.67, p = 0.001). Using ektacytometry, we observed a reduced deformability of circulating RBC, similar BT and AT, compared to health control donors. The mean Elongation Index at 1.69Pa was 0.24 BT and 0.23 AT vs. 0.28 in controls (p < 0.0001). At 30Pa EI was 0.56 BT and 0.56 AT vs. 0.60 in controls (p < 0.001). The retention rate (rr) of RBC subpopulations in spleen-mimetic microsphere layers was higher for iRBC (rr = 20% p = 0.0033) and pitted-RBC (rr = 19%, p = 0.0031) than for healthy RBC (0.12%). Somewhat surprisingly, the post-treatment anemia in malaria results from the elimination of RBC that were never infected.
Collapse
Affiliation(s)
- Charlotte Chambrion
- Biologie Intégrée du Globule Rouge, Université de Paris, Université des Antilles, Paris, France
| | - Mallorie Depond
- Biologie Intégrée du Globule Rouge, Université de Paris, Université des Antilles, Paris, France
| | - Lucia Angella
- Biologie Intégrée du Globule Rouge, Université de Paris, Université des Antilles, Paris, France
| | - Oussama Mouri
- Centre National de Référence du Paludisme, Hôpital Pitié Salpêtrière, Paris, France
| | - Eric Kendjo
- Centre National de Référence du Paludisme, Hôpital Pitié Salpêtrière, Paris, France
| | | | - Camille Roussel
- Biologie Intégrée du Globule Rouge, Université de Paris, Université des Antilles, Paris, France
- Laboratoire d'Hématologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sylvestre Biligui
- Centre National de Référence du Paludisme, Hôpital Pitié Salpêtrière, Paris, France
| | - Ilhame Tantaoui
- Centre National de Référence du Paludisme, Hôpital Pitié Salpêtrière, Paris, France
| | - Aida Taieb
- Centre National de Référence du Paludisme, Hôpital Pitié Salpêtrière, Paris, France
| | - Nicolas Argy
- Centre National de Référence du Paludisme, Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Sandrine Houzé
- Centre National de Référence du Paludisme, Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Renaud Piarroux
- Sorbonne Université, Centre National de Référence du Paludisme, Hôpital Pitié-Salpêtriére, Paris, France
| | - Jean-Yves Siriez
- Service d'accueil des Urgences Pédiatriques, Hôpital Robert Debré, Paris, France
| | | | - Sébastien Larréché
- Département de Biologie Médicale, Hôpital d’Instruction Des Armées Bégin, Saint-Mandé, France
| | - Marc Théllier
- Sorbonne Université, Centre National de Référence du Paludisme, Hôpital Pitié-Salpêtriére, Paris, France
| | - Nicolas Cenac
- IRSD, INSERM, INRA, INPENVT, Université de Toulouse, Toulouse, France
| | - Pierre Buffet
- Biologie Intégrée du Globule Rouge, Université de Paris, Université des Antilles, Paris, France
| | - Papa Alioune Ndour
- Biologie Intégrée du Globule Rouge, Université de Paris, Université des Antilles, Paris, France
- *Correspondence: Papa Alioune Ndour,
| |
Collapse
|
4
|
Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int J Mol Sci 2021; 22:ijms22115843. [PMID: 34072544 PMCID: PMC8198892 DOI: 10.3390/ijms22115843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.
Collapse
Affiliation(s)
- Chloé Turpin
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Aurélie Catan
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Centre Hospitalier Universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | | | - Philippe Rondeau
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Correspondence: ; Tel.: +262(0)-2-62-93-88-43; Fax: +262-(0)-2-62-93-88-01
| |
Collapse
|
5
|
Bose D, Chakrabarti A. Multiple Functions of Spectrin: Convergent Effects. J Membr Biol 2020; 253:499-508. [PMID: 32990795 DOI: 10.1007/s00232-020-00142-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Spectrin is a multifunctional, multi-domain protein most well known in the membrane skeleton of mature human erythrocytes. Here we review the literature on the crosstalk of the chaperone activity of spectrin with its other functionalities. We hypothesize that the chaperone activity is derived from the surface exposed hydrophobic patches present in individual "spectrin-repeat" domains and show a competition between the membrane phospholipid binding functionality and chaperone activity of spectrin. Moreover, we show that post-translational modifications such as glycation which shield these surface exposed hydrophobic patches, reduce the chaperone function. On the other hand, oligomerization which is linked to increase of hydrophobicity is seen to increase it. We note that spectrin seems to prefer haemoglobin as its chaperone client, binding with it preferentially over other denatured proteins. Spectrin is also known to interact with unstable haemoglobin variants with a higher affinity than in the case of normal haemoglobin. We propose that chaperone activity of spectrin could be important in the cellular biochemistry of haemoglobin, particularly in the context of diseases.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
6
|
Bose D, Chakrabarti A. Chaperone potential of erythroid spectrin: Effects of hemoglobin interaction, macromolecular crowders, phosphorylation and glycation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140267. [PMID: 31470132 DOI: 10.1016/j.bbapap.2019.140267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Spectrin, the major protein component of the erythrocyte membrane skeleton has chaperone like activity and is known to bind membrane phospholipids and hemoglobin. We have probed the chaperone activity of spectrin in presence of hemoglobin and phospholipid SUVs of different compositions to elucidate the effect of phospholipid/hemoglobin binding on chaperone function. It is seen that spectrin displays a preference for hemoglobin over other substrates leading to a decrease in chaperone activity in presence of hemoglobin. A competition is seen to exist between phospholipid binding and chaperone function of spectrin, in a dose dependent manner with the greatest extent of decrease being seen in case of phospholipid vesicles containing aminophospholipids e.g. PS and PE which may have implications in diseases like hereditary spherocytosis where mutation in spectrin is implicated in its detachment from cell membrane. To gain a clearer understanding of the chaperone like activity of spectrin under in-vivo like conditions we have investigated the effect of macromolecular crowders as well as phosphorylation and glycation states on chaperone activity. It is seen that the presence of non-specific, protein and non-protein macromolecular crowders do not appreciably affect chaperone function. Phosphorylation also does not affect the chaperone function unlike glycation which progressively diminishes chaperone activity. We propose a model where chaperone clients adsorb onto spectrin's surface and processes that bind to and occlude these surfaces decrease chaperone activity.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
7
|
Martínez-Vieyra V, Rodríguez-Varela M, García-Rubio D, De la Mora-Mojica B, Méndez-Méndez J, Durán-Álvarez C, Cerecedo D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182996. [PMID: 31150634 DOI: 10.1016/j.bbamem.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Vette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | - Mario Rodríguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Diana García-Rubio
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico
| | | | | | - Carlos Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, Mexico.
| |
Collapse
|